Quantum Machine Intelligence (2023) 5:45
https://doi.org/10.1007/s42484-023-00133-0

RESEARCH ARTICLE l‘)

Check for
updates

Time series quantum classifiers with amplitude embedding
M. P. Cuéllar’ . C. Cano’ - L. G. B. Ruiz? - L. Servadei?

Received: 30 June 2023 / Accepted: 24 October 2023 / Published online: 27 November 2023
© The Author(s) 2023

Abstract

Quantum Machine Learning was born during the past decade as the intersection of Quantum Computing and Machine Learning.
Today, advances in quantum computer hardware and the design of simulation frameworks able to run quantum algorithms in
classic computers make it possible to extend classic artificial intelligence models to a quantum environment. Despite these
achievements, several questions regarding the whole quantum machine learning pipeline remain unanswered, for instance the
problem of classical data representation on quantum hardware, or the methodologies for designing and evaluating quantum
models for common learning tasks such as classification, function approximation, clustering, etc. These problems become
even more difficult to solve in the case of Time Series processing, where the context of past historical data may influence
the behavior of the decision-making model. In this piece of research, we address the problem of Time Series classification
using quantum models, and propose an efficient and compact representation of time series in quantum data using amplitude
embedding. The proposal is capable of representing a time series of length n in log, (n) computational units, and experiments
conducted on benchmark time series classification problems show that quantum models designed for classification can also

outperform the accuracy of classic methods.

Keywords Quantum machine learning - Time series classification - Amplitude embedding - Quantum neural networks

1 Introduction

A time series X (t) = {x(1), x(2), ..., x(¢)} is a sequence of
observations of a given phenomenon sampled periodically

C. Cano, L. G. B. Ruiz, and L. Servadei contributed equally to this work

X M. P. Cuéllar
manupc @decsai.ugr.es

C. Cano
ccano@decsai.ugr.es

L. G. B. Ruiz
bacaruiz@ugr.es

L. Servadei
lorenzo.servadei @tum.de

Department of Computer Science and Artificial Intelligence,
University of Granada, ETSIIT. C/. Pdta. Daniel Saucedo
Aranda s.n., Granada 18014, Spain

Department of Software and Computer Engineering,
University of Granada, ETSIIT. C/. Pdta. Daniel Saucedo
Aranda s.n., Granada 18014, Spain

School of Computation, Information and Technology,
Technical University of Munich, Hans-Piloty-Strale 1,
Garching bei Munchen, Munich 85748, Germany

and indexed in time. If the time series is not infinite, we write
a time series of length 7" as X(7'). Time Series analysis tools
are very common in many scientific fields and solve differ-
ent types of problems such as forecasting (Liu et al. 2021),
clustering (Warren Liao 2005), classification (Fawaz et al.
2018), or anomaly detection (Schmidl et al. 2022), to men-
tion just a few. In the case of a classification problem, a dataset
containing pairs of time series and labels {X;(T;), y,-}lN: 1 1s
provided, where the labels y; € Y = {yx|l < k < K} with
K the number of classes. The objective is to find a model
f usually parameterized by a set of parameters 6 so that the
model output is the label of a time series given as input, i.e.,
vi = f(Xi(T;),0), using a supervised learning approach.
Examples of well-known time series classifiers are k-Nearest
Neighbors (k-NN) with either Euclidean or Dynamic Time
Warping (DTW) distance measurements (Kate 2015), neu-
ral networks and deep learning (Fawaz et al. 2018), the
BOSS algorithm (Schifer 2015), shapelets (Bagnall et al.
2015), support vector machines (Cuturi 2011), time series
forests (Deng et al. 2013), and so on. Depending on the
method, we can distinguish two types of time series pro-
cessing: one analyzes time series as a sequence of values
(e.g., recurrent neural networks or DTW), and the other type

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-023-00133-0&domain=pdf

45 Page2of13

Quantum Machine Intelligence (2023) 5:45

removes the time component and analyzes the data as a time-
less pattern (e.g., time series forests, Euclidean distance, or
feedforward SVM/neural networks). In this paper we study
time series classification problems using quantum comput-
ing algorithms. The proposal described in this manuscript
fits in the second category, since loops are not yet allowed
in a quantum algorithm, although recently intensive research
efforts are being conducted regarding, for example, Recur-
rent Quantum Neural Networks (Bausch 2020).

Quantum Computing (QC) was introduced by Richard
Feynman in 1982 (Feynman 1982) after observing the com-
plexity of simulating a quantum system with a classic
computer. The foundations of QC come from the area of
physics (quantum mechanics) and its mathematical model-
ing using linear algebra over Hilbert spaces. QC natively
includes computational tools that are not present in classical
computing, such as superposition, entanglement, quantum
parallelism, or tunneling. These tools have been the cor-
nerstone for the design of algorithms capable of solving
certain problems more efficiently in a quantum computer
than in a classic one, for example, the search over unordered
sets with the Grover’s algorithm (Grover 1997), the fac-
torization of integers with Shor’s method (Shor 1999), or
the identification of constant or balanced functions with
the Deutsch-Jozsa proposal (Deutsch and Jozsa 1992). On
the other hand, Quantum Machine Learning (QML) (Wit-
tek 2014) has been studied theoretically during the last two
decades, and it attempts to design and implement super-
vised, unsupervised, and reinforcement learning methods on
quantum computers. The advances in the development of
quantum computers and QC simulators and the emergence
of a plethora of software libraries for writing, optimizing, and
executing quantum circuits and algorithms such as Google’s
Cirq, IBM’s Qiskit, or Xanadu’s Pennylane, among others,
have allowed researchers to develop and adapt the ideas of
classical Machine Learning to the quantum level. Essen-
tial tools in QML are the Variational Quantum Eigensolver
(Peruzzo et al. 2014) to find the eigenvalues of a matrix effi-
ciently, the methods of quantum unconstrained optimization
with algorithm QAOA (Farhi et al. 2014), or methods to
compute gradients on quantum computer hardware such as
the parameter-shift rule (Crooks 2019). Examples of QML
methods range from regression problems (Wang 2017) to
classification (Schuld et al. 2014), clustering (Aimeur et al.
2007), and reinforcement learning (Dong et al. 2008). A
detailed review of QML methods is available in the survey
(Umer and Sharif 2022).

With respect to the classification problem, the early work
(Schuld et al. 2014) proposed a quantum algorithm analo-
gous to the k-NN method, applied to binarized data on the
MNIST digits dataset. Currently, most quantum classifiers
rely on hybrid classic-quantum approaches using variational
quantum circuits (VQC) trained with classical optimization

@ Springer

algorithms. Examples, in this case, are the work by Bohhan
et al. (Bokhan et al. 2022), which performs multi-class
classification in the MNIST dataset using Quantum Neural
Networks to predict 4 classes, and the article by Maheshwari
et al. (2022) which addresses binary classification problems
using amplitude encoding. If we focus on time series pro-
cessing algorithms with quantum computers, we find that
the literature is scarce and the problem has not been exten-
sively addressed. Time Series forecasting has been studied
in Rivera-Ruiz et al. (2022) using VQCs as predictive mod-
els, and also in Emmanoulopoulos and Dimoska (2022) for
real financial datasets. In the case of classification problems,
we have found no pure time series quantum classification
approaches, although a time series clustering algorithm that
it is later adapted for classification is proposed in Yarkoni
etal. (2021).

In this work, we explore how Time Series classifica-
tion can be performed in a quantum computing environment
using tools from the QML paradigm. The challenges of the
approach are varied and range from the problem of time
series representation to the design and optimization of the
classifier. Regarding the representation problem, contempo-
rary quantum computers do not allow loops in a quantum
algorithm, so encoding time series as sequences of values
can be difficult (Sutor 2019). However, there is a set of
tools for encoding classical information in quantum data,
also known as quantum embedding (Ganguly 2021), as basis
encoding to represent binary data, amplitude embedding to
encode data as amplitudes of a quantum state, tensor product
encoding to map a classic scalar data to a qubit, or hamilto-
nian encoding to embed data into the evolution of a quantum
system. Tensor product encoding is the most widely used
embedding technique, as it is an efficient and natural way
of feeding information to variational quantum circuits. How-
ever, representing a time series with tensor product encoding
would require a large number of available qubits (as many
as the length of the time series). For this reason, our design
studies amplitude encoding as an alternative to effectively
embed a time series of length 7" into /og>(T') qubits, so that
we achieve an exponential gain in space/memory and nec-
essary computational units to represent a time series with
respect to a classical computing paradigm. For the classi-
fier, we use VQCs since they have been widely studied for
both classification and regression problems in recent years
with promising results (Wang 2017; Rivera-Ruiz et al. 2022;
Emmanoulopoulos and Dimoska 2022). Typically, the out-
put of a VQC for regression or classification is measured
using quantum observables such as Pauli-Z operators on a
qubit or set of qubits (Andrés et al. 2022). However, in this
work, we study a different and almost unexplored strategy
which consists of measuring probability amplitudes of the
quantum state. This strategy has the advantage that, for a
system containing n qubits, it can be modeled with a maxi-

Quantum Machine Intelligence (2023) 5:45

Page3of 13 45

mum number of 2" possible outputs. The model is validated
on benchmark time series classification datasets containing
binary and multi-class problems. The results obtained sug-
gest that the approach is capable of achieving higher accuracy
than methods of the existing literature so that quantum algo-
rithms for Time Series classification can offer advantages in
both compact time series representation and performance.

The remaining of the manuscript is structured as follows:
Sect. 2 introduces the fundamental concepts of quantum com-
puting and quantum machine learning to make the article
self-complete. After that, Sect. 3 describes the approach. Sec-
tion4 then performs the experimentation using benchmark
data, and Sect. 5 concludes.

2 Fundamentals of quantum computing
and quantum machine learning

This section explains the fundamental concepts of quantum
computing and quantum machine learning necessary for the
proposal, to achieve the goals of article self-completeness and
describe the notation used. The basic references supporting
of the text in this section are Sutor (2019) for QC and Ganguly
(2021) for QML.

2.1 Quantum computing and quantum algorithms

Classical computing is substantiated over a binary comput-
ing unit or bit, whose values belong to the group with two
elements Z,. Operations on systems containing » bits are per-
formed over the space built by the cartesian product of the
group, i.e., X"Zy = Z’Z’, and each time a new bit is included
into the system, the dimension of the resulting space increases
by one. On the other hand, the fundamental computing unit
in quantum computing is the qubit, whose values are in the
vector space C? with an orthonormal basis denoted by the
column vectors |0) = (1,0)" and |1) = (0, 1)?, also known
as the computational basis. As an element of the vector space,
the value of an arbitrary qubit |1) can be expressed as a linear
combination of the basis vectors, i.e., [{) = «o|0) + a1]1),
where o, a1 € C are called amplitudes and hold the addi-
tional constraint that |eg|? + |ej|> = 1. Unlike classical
computing, where a bit can be set to a value in {0, 1}, a
qubit can potentially hold an infinite number of values. Fur-
thermore, the mathematical model for a system containing
n qubits is the tensor product of the complex plane, i.e.,
®" C? = C* which means that every time a new qubit
is included in the system, the resulting space doubles its size.
For example, the mathematical model that supports a sys-
tem with n = 2 qubits is (sz, and its computational basis is
obtained as {|0) ® |0) = |00), |0) ® |1) = |01), |1) ® |0) =
[10), |1) ® |1) = |11)}. A quantum state |¢/) in this system

can be expressed as |{) = Z,‘zial «;|i), where |i) stands

for the i-th basis vector in binary representation, with the
constraint Y2 o1 oy |2 = 1.

One of the limitations of quantum computing is that it is
not possible to know the exact value of an arbitrary quantum
state |y) at a given time. The measurement operation on the
quantum state causes the state to collapse to any basis state
|i) with probability |a; |, which is the system output. Except
for measurement, all quantum operations must be reversible
and can be modeled as a unitary matrix U that multiplies the
state |1), causing a state transition to [/}, i.e., |[') = U|vr).
Examples of quantum operations are the rotation X/Y/Z gates
parameterized by 6 (R, (0), Ry(0), R;(0)) on a single qubit,
or the Controlled-NOT (CNOT gate) applied to two qubits
(Eq. D).

R.(0) = (cos(%) —isin(%)) Ry(0) = (cos(%) —sin(%))

—isin(%) cos(%) sin(3) cos(%)

1000
e—i0/2 0 ey
RZ(Q) = (0 ei9/2>

0100
0001
0010

CNOT =

A quantum algorithm is a sequence of quantum operations
applied on an initially known quantum state (usually |0)).
Quantum algorithms are implemented in quantum circuits,
whose graphical representation assigns a horizontal line for
each qubit in the system, and the gates are graphical symbols
located on a line. If a gate involves an operation between
more than one qubit, a vertical line is used to connect the
source/target qubits of the gate. Figure 1 shows an example of
a cicuit with two qubits g, g1 that implements the algorithm
CNOT((Hlqo)) ® lg1)). This circuit is a basic quantum
entanglement over two qubits go, g1, which first moves qubit
qo from |0) to standard superposition using the Hadamard
(H) gate, and then applies a CNOT gate on g; controlled by
qo-. Finally, both qubits are measured in classical bits ¢y, cq,
respectively. The resulting quantum state of the circuit before
measurementis [{) = g |00)+ 4 |11), so the measurement

will provide the basis states |00) or |11) with probability of
0.5.

Qo — H

a1

Fig. 1 Quantum circuit example containing 2 qubits qg, g1, and 2 bits
for measurement in line ¢

@ Springer

45 Page4of13

Quantum Machine Intelligence (2023) 5:45

Clo—RX

8.0

g1

Fig.2 Example of variational quantum circuit with parameterized gates
R, (6p) over qubit gp and cR, (61) over g; controlled by go

A variational quantum circuit (VQC) is a quantum circuit
containing parameterized gates. The parameters for these
gates are typically provided to the computer at runtime, and
can help tune a template circuit to fit different behaviors.
Figure2 shows an example of a parameterized quantum cir-
cuit with a X-rotation gate R, whose parameter is 6y, and a
controlled X-rotation gate c R, with parameter 8;. The imple-
mented algorithm is c¢Rxg, ((Rxg,]q0)) ® |q1)) and, from
Eq. 1, it is easy to verify that the circuit of Fig. 2 is equiv-
alent to the circuit of Fig. 1 when 6y = 7/2 and 6; = m,
or also that the circuit returns the quantum state |11) when
0o = 61 = . VQCs play a very important role in Quantum
Machine Learning since they can be used to embed classi-
cal information in a quantum state, and also to control the
behavior of classification/regression models (Wittek 2014;
Wang 2017; Bokhan et al. 2022; Andrés et al. 2022) such
as Quantum Support Vector Machines or Quantum Neural
Networks.

2.2 Quantum machine learning

Quantum Machine Learning sits at the intersection of Quan-
tum Computing and Machine Learning, and attempts to apply
ML techniques on quantum computers. There are three main
ways to approach this general goal (Pushpak and Jain 2021):

e Quantum Algorithms for Quantum Data (Q-Q): It assumes
quantum datasets that are processed by quantum algo-
rithms on quantum hardware.

e Classic Algorithms for Quantum Data (C-Q): It uses
classical machine learning models running on classical
computers to process quantum information. An exam-

ple in this category is the analysis of quantum states, or
quantum tomography, with traditional machine learning.

e Quantum Algorithms for Classic Data (Q-C): A tradi-
tional classic dataset is processed by a quantum algorithm
running on quantum hardware.

Since most contemporary data analysis problems use clas-
sical data, the Q-C strategy is the most studied nowadays in
the research areas of Machine Learning and Artificial Intel-
ligence. In this way, QML proposals in the literature have
focused on adapting known ML algorithms to quantum com-
puters, or on constructing a QML algorithm analogous to a
classical ML method (Umer and Sharif 2022).

The usual pipeline for a QML solution is a hybrid approach
that involves classical ML methods (running on Central Pro-
cessing Units, CPUs) and QML algorithms (running on
Quantum Processing Units, QPUs), and encompasses the fol-
lowing steps (Fig. 3):

1. Dataset acquisition and preprocessing: It is carried
out on CPU, and contains the usual initial steps in ML,
where data are acquired from sources and preprocessing
is performed (handling missing values, data transforma-
tions/normalizations, etc.).

2. Quantum Information Processing: This step is exe-
cuted in QPU, and it takes preprocessed classical data as
input and performs the following tasks:

(a) Quantum Embedding: Classical data are encoded
into a quantum state using a quantum embedding
technique, as basis encoding, tensor encoding, ampli-
tude encoding, etc (Ganguly 2021). This step typ-
ically involves the design of a variational quantum
algorithm to evolve a known initialized quantum state
such as |0) to the desired quantum state that encodes
the classical data.

(b) Antsatz: It implements the quantum algorithm for
the QML task, such as regression, classification, and
clustering.

(c) Measurement: The resulting quantum state from the
QML algorithm is measured using a measurement
strategy, and the results are fed back to the classical
computer for the next stage.

Preprocessing

Quantum
ny Embedding =)

Antsatz :> Measurement —5/ Postprocessing

CPU |

Fig.3 Pipeline of Quantum Machine Learning processing of classic data

@ Springer

QPU

CPU

Quantum Machine Intelligence (2023) 5:45

Page50f13 45

3. Postprocessing and results: The outputs of the Quan-
tum Information Processing stage are postprocessed (if
necessary) in the CPU, and the final results are provided.

In this work, we address the problem of Time Series Clas-
sification, where the values of the time series are classical
numerical data. For this reason, we adopt the Q-C strategy
and follow the methodology described in Fig. 3. Regard-
ing the Quantum Information Processing stage, our proposal
requires designing the mechanisms to encode a Time Series
in a quantum state, the antsatz for the quantum classifier, and
a strategy to measure quantum states.

3 Time series quantum encoding
and classification

We adopt the common strategy in the literature in which
a Variational Quantum Circuit interpreted as a feedforward
Quantum Neural Network is used as a decision maker to
solve the machine learning problem at hand (Macaluso et al.
2020; Andrés et al. 2022; Skolik et al. 2022). In partic-
ular, we extend this scheme and create a hybrid classical
/quantum neural network where the quantum processing uses
amplitude embedding of pre-processed time series. The main
scheme of the proposal is shown in Fig. 4, and contains the
following components:

e Time Series preprocessing and resampling. In this
step, traditional preprocessing is performed on the time
series data acquired on classical computers, including
resampling, differentiation, scaling, etc. The resulting
time series dataset is fed into the hybrid classical /quan-
tum neural network.

e Hybrid classic/quantum neural network processing.
The neural network is organized into three main blocks:

— Classic pre-quantum processing. This step aims to
perform linear/non-linear transformations of the time

series, either with injections into higher dimensional
spaces or projections to lower dimensional spaces,
with the aim of preparing the time series and extract-
ing relevant features for a better performance of the
quantum classifier. It can contain none, one, or sev-
eral classical fully-connected layers with activation
functions typically used in Deep Learning.
Quantum processing. This stage starts with an
encoding layer that takes as input the pre-processed
time series of the pre-quantum classical layers and
provides a representation of the quantum state of the
time series using the amplitude embedding strategy.
After that, one or more quantum layers containing
Variational Quantum Circuits are executed. Finally,
the measurement is performed to return the classifi-
cation results. In the following sections, the layers of
the quantum processing step are called the Variational
Quantum Classifier.

Classic post-quantum processing. This last module
also runs on a classic computer. It takes the outputs
of the Variational Quantum Classifier and performs
aggregations of the measurements to return the target
label of the input time series.

In the following subsections, we describe in detail the
components of the proposed hybrid classical/quantum neural
network model separately, with a special focus on quantum
and post-quantum processing.

In the following subsections, we describe in detail the
components of the hybrid classic/quantum neural network
model proposed separately, with a special focus on quantum
and post-quantum processing.

3.1 Time series quantum amplitude embedding
A quantum state |¢) containing n qubits is modeled as the

complex linear combination of the 2" vectors of the compu-
tational basis, i.e., [¢) = Y7 o' @li),o; € C. Amplitude

x |
5012|)82
I 3] = =
= 2 < [o5
5 . 9 £ s £ 5%
reprocessing 2] I} = = == Output
= (Resampling, 8 =) 5 =R § = § = IabF:eI
differenciation...) = = £ 9] 02
S = 2 = > J
(=
i= =]
) . ~l < 8
Input Time Series B J |
Hybrid classic/quantum neural network

Fig.4 Example of variational quantum circuit with parameterized gates Ry (6p) over qubit gg and cR, (6) over g controlled by go

@ Springer

45 Page60f13

Quantum Machine Intelligence (2023) 5:45

embedding encompasses a set of techniques for encoding
multidimensional classical data into the amplitudes of the
quantum state {c;}. Since all probability amplitudes |c;|?
must sum 1, amplitude embedding methods are restricted to
classical data with unitary L2-norm. If this is not the case for
a classical input data pattern v = (v1, va, ..., Un), then the
preprocessing described in the Eq. 2 is required to ensure the
unitary norm, where ||v]|| stands for the L2-norm of v.
Vi

vl

©))

V; <

Furthermore, if we want to use all the available ampli-
tudes to represent the information, the classical input data
must have dimension 7 = 2". In the case of T < 2", clas-
sical data can be injected into the 2" dimensional space by
means of zero-filling the remaining components from 7" + 1
to 2. On the other hand, if T > 2" then the data must be
projected to a space of dimension 2" or lower. In this work
we assume a Quantum Variational Classifier with n qubits.
In our experiments, the Time Series are resampled to a length
of T = 2" using any user-defined resampler (linear, polyno-
mial, etc.) and fed to the quantum embedding layer in the case
that the pre-quantum processing module contains no layers.
Otherwise, the time series is fed to the classical pre-quantum
module whose output dimension must be 2".

Amplitude encoding can be achieved, in the case of
classical multidimensional data v € Rzn, using a Divide-
and-Conquer procedure described in Araujo et al. (2021).
This is performed by means of a sequence of Y-rotation gates
Ry (0) and (multiple) controlled Y-rotation gates c Ry () (see
Eq. 1). The idea behind the method is to redistribute the prob-
abilities that the k-th qubit is |0) or |1) conditioned to all
previous qubits qo, ...qx—1. Figure 5 shows a simple example
for encoding an 8-dimensional data with the unitary norm.
The goal of the example is to show the decomposition and dis-
tribution of amplitude probabilities for embedding the array
v = (0,0.5,4/0.15, 0, +/0.125, +/0.125, 0.5, //0.1) to the

quantum state |/) = 0]000) +0.5[001) 4 +/0.15[010) +0[011) +
V/0.125|100) + +/0.125|101) + 0.5/110) 4+ +/0.1/111) composed
of three qubits |gog1g2) initialized to |000). To do so, we first
calculate the probability of p(go = |1)) = 0.6 (root node) as
the sum of the squared absolute amplitudes of basis vectors
[100), |101), |110), |111), i.e., assigning the qubit gg = |1)
and leaving the qubits gy, g2 free. The angle required for
a Y-rotation gate to create the quantum state +/0.6|100) +
/0.4|000) is calculated as 6 = 2asin(/p(qo = |1))). After
that, we recursively decompose each amplitude with con-
trolled rotation gates c Ry; where ¢ stands for the target qubit
and c for the set of control qubits. For example, in the case of
the decomposition of [100) for the second qubit g, we first
calculate the probability of g; = |1) constrained to g9 = |1),
ie., p(g1 = [l)lgo = [1)) = 0.35/0.6, and perform the
conditional rotation of g; subject to gg [1), cRy?. The
procedure is applied recursively for each node in the tree
until we establish all probability amplitudes. The design of
a quantum circuit that implements these operations is sim-
ple, for example, by means of executing operations as they
appear in a pre-order tree traversal. Figure 6 shows the result-
ing circuit of Fig. 5 using this procedure. Gates X are used to
switch qubits from |0) to |1) and vice versa to set conditions
of control qubits.

In Fig. 6, the Ry operation in the first block corresponds
to the rotation performed on the root node in Fig. 5. Then, the
cRy of the second block comes from the next node visited in
the preorder traversal with the first left-child criterion. The
third block contains a multiple-controlled Ry gate that corre-
sponds to the operation of node +/0.35|110), and adjusts the
probability of g, subject to the first qubits gog; = |11). After
that, amplitudes of the basis vectors |111), |110) are set. The
fourth block contains the operation of the node 0.5/100) to
establish the amplitudes of basis vectors |101), [100). Since
it is partially conditioned on g |0), negating ¢ with a
X-gate is required for the cRy gate. After performing the
conditional rotation, ¢ returns to its previous value. The

1909, 9,>
R, (2asin(y p(q,=I1>)))
- \\\\\
\‘\\
A
+ J/0.4/000>

s o~ "/
V0.6/100>

cRy’(2asin(p(q,=[1>| q,=[1>)))

=

<
0.5/100>

F 3

e
V0.35|110>
cRy?(2asin(+p(q,=[1>1 q,q,=11>)))

/// 4 // //// /
el ¥ A

Vo1ji11> + 05110>

+

Ry} (2asin(Vp(q,=1>| q,q,=[10>)))

+ V/0.125/101> + +/0.125/100>

cRy?(2asin(p(q,=[1>| q,=[0>)))

“a
0.5[000>

Ry} (2 asin(+ p(q,=I1>| q,q,=(00>)))

¥y 3 \4

+ 0.15/010> + 05[001> <+ 0.0/000>

Fig.5 Example of amplitude embedding and probability amplitudes decomposition for the datav = (0, 0.5, +/0.15, 0, 4+/0.125, 4/0.125, 0.5, +/0.1)

@ Springer

Quantum Machine Intelligence (2023) 5:45

Page70f13 45

R + +_
d0 o
R R
a _ pmaw i
R R R
q2 15 w "

Fig.6 Circuit obtained by preorder traversal of tree in Fig. 5

fifth block contains a single X-rotation gate, whose goal is
to negate go and to allow to visit the right branch of the root
node. Then, a conditional rotation is performed on the node
4/0.4]000) in the sixth block of the circuit to obtain the tar-
get amplitudes +/0.5010) and 0|011), and the seventh block
performs a similar operation to the fourth block to set ampli-
tudes in node 0.5]000). The last block returns g to its initial
value, and finishes the amplitude embedding of the data.

As it can be verified, the height of a tree designed to create
amplitude embedding is equal to the number of qubits 7. This
implies that a classical data of dimension 7' can be encoded
into log> (T') qubits, but also that the number of operations to
create the encoded quantum state grows exponentially with
the number of qubits needed in the worst case. Therefore,
there is a trade off between space and time complexity that
must be studied for each problem whose data can be encoded
using this technique.

In this work, we encode classical time series data into a
quantum state using amplitude embedding. To benefit from
all the computational power that can be encoded into n qubits,
our proposal is constrained to time series of length 7 = 2"
with unitary norm. As mentioned above, this can be achieved
by time series resampling and preprocessing on a classical
CPU with Eq. 2. Once these conditions are met, the time
series X(T) = {x(0),x(1),...,x(2" — D}, x() € R, is
encoded with the aforementioned procedure in the quantum
state [{) = x(0)0...0) +x(1)]0...01) +...+x2"—=1)|1...1).
This quantum state is the input for the quantum classifier lay-
ers.

3.2 Variational quantum classifier

Unlike classical Neural Network design, there are not many
standardized layer structures for building a Quantum Neural
Network, such as fully connected linear layers or activation
functions. However, there seems to be a consensus in the lit-
erature (Wang 2017; Bokhan et al. 2022; Andrés et al. 2022;
Skolik et al. 2022; Rajesh et al. 2021) that a basic quantum
layer should contain parameterized gates to alter the value of
qubits (typically single-qubit rotation gates) followed by a
mechanism of information transfer among qubits, generally
implemented as entanglements organized by a given struc-
ture. In this work, a layer of a quantum neural network is

implemented as a sequence of rotations Ry, Ry, R, for each
qubit, and entanglement with CNOT gates organized in a ring
structure. This antsatz structure was selected after a previous
trial-and-error experimentation to adjust the number and type
of rotation gates, and the CNOT information transfer mecha-
nism. The inclusion of rotation gates on all three axes is also
justified to allow for a general antsatz that does not constrain
the desired observable to be used for measurement. Figure 7
shows the structure of a layer for a circuit containing 4 qubits,
where 6;; is the free parameter to be optimized for the rota-
tion gate j of the i-th qubit. A layer of a Quantum Neural
Network with n qubits contains a fixed value of parameters
equal to 3n.

In this work, the Quantum Processing step described
in Sect.3 is composed of an encoding layer containing the
quantum embedding procedure described in Subsection 3.1
followed by one or several layers (hyperparameter) con-
taining the antsatz described here for a given number of
qubits (also a hyperparameter). The output of the last layer
is measured to obtain the results of the Variational Quantum
Classifier.

3.3 Measurement and aggregation

The usual way in the existing literature to obtain the results of
a Quantum Neural Network is through an observable applied
to one or more qubits, for example the Pauli-Z o, observable
(Ganguly 2021) on the computational basis. Formally, the
mathematical modeling of the expectation of the value of an
observable O over aquantum state |) is (Y| O |¥) where (|
stands for the complex conjugate transpose of |}, and O for

qO_RX_RY_RZ_ —

6_00 601 6_02

ql_RX_RY_RZ_ L

qz_RX_RY_RZ L

— Rx — Ry _ Rz S
as 030 831 032

Fig.7 Antsatz of the proposed quantum neural network layer

@ Springer

45 Page8of13

Quantum Machine Intelligence (2023) 5:45

_Rx _Ry _Rz _, @
90 =g oot T ew :

—Rx _ Ry _ Rz _/
0 010 811 012 D ‘ ‘

—Rx _Ry _Rz _______g¢@n [
a2 .20 0.21 0.22 A 4

=

3
C =

000> ey —

001> | er, P — _

010> | —P@—} p(class=0)
011> | e, —
100> ez, [—

2 D —
H%if Z% ||2 __»B—»p(class=1)
6

111> | —

Fig.8 Example of measurement aggregation with non-parameterized post-quantum processing for binary classification

the hermitian matrix of the observable operator. In this work,
we select a slightly different approach in which we measure
the probability of each basis vector of the system, i.e., an
approximation of the values {|o; |2} for all basis vectors |i).
In a quantum computer simulation software, this is easily
performed with O (1) complexity since the true quantum state
value is known; however, this measurement in a real scenario
with quantum hardware would require to run the quantum
processing step multiple times, or replicating the circuit in
different quantum registers running in parallel, to obtain the
approximation of the probability amplitudes. The method has
the advantage that it is possible to have a maximum number
of 2" outcomes, which means that the system can probide a
maximum of 2" different class labels for a quantum classifier
with n qubits.

For the case where the number of class labels C < 2"
(the usual situation), we propose to aggregate the measured
values to take into consideration the information encoded by
all entangled qubits. This aggregation is performed on the
CPU (step classic post-quantum processing described in
Sect.3), and can be parameterized (e.g., a fully-connected
linear layer followed by a softmax activation function), or not
parameterized. In this work, we explore this second case and
we propose to aggregate by addition values of |o;|? to pro-
vide the final probability of a class label prediction. Figure 8
shows an example of this scheme with the measurement on
the variational classifier with 3 qubits in the last layer assum-
ing a binary classification problem. The aggregation in the
Figure is performed on consecutive qubits, and the scheme
returns the classification probability for two classes {0, 1}.
In the experiments, we name this module as the aggregation
post-quantum processing step.

3.4 Training scheme

The proposed model is a hybrid classical/quantum neural
network, so parameter optimization is performed on the CPU.
In this section we consider the general case in which all pre-
quantum, quantum, and post-quantum modules contain a set
of parameters 6!, 02, 63, respectively. Figure 9 describes the

@ Springer

learning procedure: First, the time series data are fed into
the network to provide the probability of the class labels in a
forward pass. After that, aloss function (binary cross-entropy
for binary classifiers, cross-entropy for multiclass problems,
etc.) is calculated and gradients are backpropagated through
the layer structure. Finally, an optimizer (gradient descent,
back-propagation, Adam, etc.) updates the parameters.

4 Experiments

Experiments have been conducted on multi-class and binary
time series classification benchmark datasets to test the pro-
posal. The datasets used are available on the website of
the UEA & UCR Time Series Classification Repository
(Dau et al. 2019) https://www.timeseriesclassification.com.
Quantum neural networks do not allow loops in the inter-
nal structure and, for that reason, we compare the results
with classical feedforward neural networks as the closest net-
work structure we have found in classical neural networks.
Since we performed the experiments in quantum computer
simulation software, we constrained the experimentation to
problems with a reduced number of classes (up to 7) since the
classical operations required for the simulation of quantum

cPu [QPU |[cPU

]

layers
I
Post-Quantum layers

Pre-processed
dataset

Pre-Quantum layers
I
Quantum variational

2
R
S

2

| CPU -
Compute™ | °
gradients T

o i3 it CPU
Optimizer

Fig.9 Training scheme for the hybrid classic/quantum neural network

https://www.timeseriesclassification.com

Quantum Machine Intelligence (2023) 5:45

Page90of13 45

algorithms grow exponentially with the number of qubits,
and linearly with the number of input/output data patterns.

4.1 Dataset description

The Table 1 summarizes the datasets used in our experimen-
tation, and it contains the name of the dataset (column 1), the
number of classes in the problem (column 2), the number of
training and test samples (columns 3 and 4), and the length
of the time series (column 5). Some datasets also contain
unbalanced data, such as Earthquakes with 264 patterns for
class 0 and 58 patterns for class 1; OliveOil with 13 patterns
for class 3, 8 patterns for class 1, 5 patterns for class 0 and 4
patterns for class 2; and DistalPhalanxTW with 215 patterns
for class 5, 82 patterns for class 2, 30 patterns for class 3, 29
patterns for class 0, 28 patterns for class 1, and 18 patterns
for class 4. In these cases, we treat unbalanced data with the
class weighting strategy to give the same importance to all
classes during the learning of both classical Artificial Neural
Networks and the hybrid classic/quantum proposal. The main
criteria to select the datasets were that the UEA & UCR Time
Series Classification Repository contains a reference to the
best solution reported in the literature for comparison, and
also that the size of the dataset allows an experimentation
with different number of class labels in a desktop computer
in affordable time. A brief description of each dataset is pro-
vided below to show the nature of the time series data.

The Coffee dataset contains spectrographs of two variants
of coffee beans (Arabica and Robusta), and the goal is to dis-
tinguish between these two variants using its spectrograph.
On the other hand, Earthquakes contains seismic measure-
ments from the Northern California Earthquake Data Center
averaged hourly from 1967 to 2003, and the objective is to
predict whether or not an earthquake with value 5 or higher
in the Ritcher scale will take place or not. The Car dataset
aims to classify four different types of cars (Sedan, Pickup,
Minivan, SUV) from 1-D time series created from a map-
ping of the cars’ contours. OliveOil is a dataset containing
spectrographs of extra virgin olive oils from four different
countries, and the problem targets at predicting the coun-
try of origin of each oil from spectrograph information. The
DistalPhalanxTW dataset gathers time series obtained from

a mapping of the contour of bone image data, and the goal is
to predict the Tanner-Whitehouse score which gathers infor-
mation about the age of a person in 6 classes. Finally, the
nature of the Plane dataset is similar to the Car dataset, and
contains mappings of the contour of seven different planes
to 1-D time series. The goal is to predict the type of aircraft
based on this information.

4.2 Experimental settings

Experiments were performed on a desktop computer Intel(R)
Core(TM) i5-9600K CPU at 3.70GHz with 32GB RAM. The
classical feedforward neural networks were implemented
in Pytorch 1.13, and the classic/quantum approach using
Pytorch 1.13 for the classical part and Xanadu’s Pennylane-
Pytorch bridge for the quantum algorithms. The source code
of all experiments is available at https://github.com/manupc/
gtsclassification.

A preliminary experimentation stage was carried out
following a trial-and-error procedure to find out the best
hyperparameters for each model and problem, and Table 2
summarizes the pre-processing operations and network struc-
ture for each case. After this prior experimentation, we set
the number of quantum layers for all datasets to 1 in the
hybrid classical/quantum neural network. Additionally, the
Adam algorithm was used for all experiments. The loss func-
tions used to train the models were the Binary Cross-Entropy
from logits for the binary classification problems, and the
Cross-Entropy for the multiclass datasets. The remaining
settings in Table 2 correspond to the time series preprocess-
ing step, where two possible operations were considered:
Resampling to a new time series length, and differentia-
tion. The Pre-Quantum and Post-Quantum rows of QNN,
and the Structure row of ANN, establish the layer structure
of classical networks structures, where Linear(x) repre-
sents a fully-connected linear layer with x neurons, and
ReLU/SoftMax stands for the corresponding activation func-
tions.

We carried out 30 different executions of each problem
and model with the settings described in Table 2, in order to
analyze the results statistically.

Table 1 Datasets used for the

experimentation Name # classes # training samples # test samples Length
Coffee 2 28 28 286
Earthquakes 2 322 139 512
Car 4 60 60 577
OliveOil 4 30 30 570
DistalPhalanxTW 6 400 139 80
Plane 7 105 105 144

@ Springer

https://github.com/manupc/qtsclassification
https://github.com/manupc/qtsclassification

45 Page100f13

Quantum Machine Intelligence (2023) 5:45

Table 2 Hyperparameter settings for the experimentation

Model Parameter Coffee Earthquakes Car OliveOil DistalPhalanxTW Plane
Preprocessing Resampling 256 16 256 256 - 128
Differenciation No No No Yes No No
QNN Pre-Quantum Linear(256) Linear(4) Linear(16) Linear(256) Linear(100) Linear(128)
ReLU
Linear(64)
Qubits 8 2 4 8 6 7
Post-Quantum Linear(1) Linear(1) Aggregation Aggregation Linear(6) Aggregation
SoftMax
Learning Rate 0.1 0.1 0.001 0.001 0.01 0.005
Adam iterations 100 100 600 200 600 600
ANN Structure Linear(10) Linear(20) Linear(500) Linear(200) Linear(100) Linear(100)
ReLU ReLU ReLU ReLU ReLU ReLU
Linear(1) Linear(20) Linear(16) Linear(4) Linear(6) Linear(7)
ReLU ReLU SoftMax SoftMax SoftMax
Linear(1) Linear(4)
SoftMax
Learning Rate 0.001 0.001 0.001 0.001 0.0001 0.0001
Adam iterations 200 2000 1000 5000 7000 5000

4.3 Results and discussion

The results are mainly analyzed using the accuracy met-
ric, since it is the value provided in the reference methods
in the literature for the studied datasets (Dau et al. 2019).
Table 3 summarizes the results obtained with the hybrid
classical/quantum approach (QNN) and classical neural net-
works (ANN). Each dataset is analyzed from Column 2 to
Column 7. Rows 2-3 show the average percentage accuracy
obtained on training/test sets for both QNN and ANN. After
that, rows 4-5 print the standard deviation of the accuracy
in the training/test sets in our experiments. Then rows 6—7

Table 3 Summary of results in the experimentation

and 8-9 describe the worst and best accuracy obtained in
training/test, respectively, and rows 10-11 plot the average
computational time of a training run, measured in seconds.
The last row of the Table 3 prints the accuracy on the test set of
the best-reported method for each dataset, obtained from the
UEA & UCR Time Series Classification Repository website,
which we use as reference for comparisons.

A non-parametric Mann—Whitney U test with a confi-
dence level of 95% was applied to check whether there are
significant differences between the results of QNN and ANN
in the accuracy distributions in the test sets. If so, then row
2 of Table 3 prints the symbol (+) if QNN performs better

Coffee Earthquakes Car OliveOil DistalPhalanxTW Plane
QNN Mean (Tr/Ts) 100.00/100.00 (x) 88.47/77.17 (x) 100.00/88.00 (+) 99.78/96.22 (+) 82.16/66.21(-) 100.00/99.52 (+)
ANN Mean (Tt/Ts) 98.33/97.86 92.46/76.91 93.89/77.00 93.78 / 88.89 80.50/ 69.06 98.44/95.78
QNN Sd (Tr/Ts) 0.00/0.00 2.52/1.38 0.00/1.52 0.83/1.13 3.51/4.27 0.00/0.48
ANN Sd (Tr/Ts) 8.98/9.65 3.46/1.10 4.80/3.56 1.66/1.57 0.86/0.32 3.07/6.95
QNN Worst (Tt/Ts) 100.00 / 100.00 80.43/74.82 100.00 / 85.00 96.67/93.33 72.50/58.27 100.00 / 99.05
ANN Worst (Tt/Ts) 50.00/46.43 78.88/74.82 68.33/58.33 93.33/86.67 80.25/68.35 90.48 /78.10
QNN Best (Tt/T's) 100.00 / 100.00 94.10/80.58 100.00/91.67 100.00/ 96.67 89.00/74.10 100.00 / 100.00
ANN Best (Tt/Ts) 100.00 / 100.00 94.10/79.14 95.00/78.33 100.00 / 90.00 85.00/70.50 100.00/ 99.05
QNN Avg. Time (s.) 28.54 263.81 615.20 244.54 5269.19 1657.38
ANN Avg. Time (s.) 0.13 4.72 2.79 6.91 13.26 10.45
Best reported solution 99.96 75.92 90.18 90.13 69.32 100

@ Springer

Quantum Machine Intelligence (2023) 5:45

Page 110f 13 45

than ANN on a dataset, the symbol (-) if QNN is worse than
ANN, and (x) if no statistical differences were found. We also
provide boxplots of the results for he accuracy populations
on the test sets in Fig. 10 to support the discussion.

If we analyze the average learning ability of QNN with
respect to ANN, Table 3 points out that QNN was better in
3 problems, worse in 1 problem, and equivalent in two of
them. On the other hand, if we focus on the standard devia-
tion as a measure of the robustness of the models, we can see
that the results of the QNN models have less variability than
the ANNSs in the test sets, for all problems except for Distal-
PhalanxTW and Earthquakes, which is a desirable feature in
any machine learning model intended for deployment. In the
case of DistalPhalanxTW, Fig. 10e verifies that the standard
deviation of test accuracy for ANN is lower than in QNN,
but also that the latter model is capable of achieving better
results. This fact suggests that the dataset is difficult to learn
and it is easy to fall into local optima solutions that, in the
case of QNN, can be surpassed more easily than in ANN
despite the fact that worse solutions can also be found. On
the other hand, the analysis for the case of the Earthquakes
dataset is similar. Although both models performed equiva-
lently in the problem according to the Mann—Whitney U test,
we can see in Fig. 10b that QNN found the best solution as an
outlier. This fact, and also that the median of accuracy in the
boxplot is higher for QNN though the first quartile is similar
to that of ANN, could explain the small increase in variance
for this model. Finally, we also highlight the variability of
0.0 obtained by QNN on the Coffee dataset, which means

that the best solution with 100% accuracy was found in all
runs, which also supports the previous analysis.

The study on the average accuracy and variability in the
test set, with regards to QNN, may seem counterintuitive with
respect to the existing analyses in the literature that indi-
cate that the vanishing gradient problem is harder to solve
in Quantum Neural Networks than in traditional ones. This
is a well-documented fact in different articles (Andrés et al.
2022; Wang 2017; Skolik et al. 2022), and it is mainly due to
the fact that QNNs are implemented in sequences of atomic
operations rather than in parallel computations performed in
the same layer in classical neural networks. Gradient prop-
agation is more difficult from the output to the first layer. If
we also consider that quantum operations are implemented
as qubit rotation gates whose internal mathematics involve
trigonometric calculus, we may derive that the gradient can
become zero after a few propagations. However, this is not
our case, since all experiments used a single quantum layer
so that the vanishing gradient problem was not present in our
study.

If we focus on the best possible accuracy in test sets found
by each model, rows 8-9 in Table 3 highlight in bold the
model with the best performance in a single training experi-
ment, and row 2 highlights those in which the QNN proposal
was better, on average, than the reported solution in the liter-
ature after the 30 experiment runs were finished. The QNN
proposal was able to achieve the best results with respect to
ANN in all problems, although the ANN approach also found
the best solution for the Coffee dataset. The fact that QNNs

100 — — °

o

o 90 T
S 80
90 85 T
79 o
80 e T i -
70 - e
60 76 65
50 o 75 60 o
QNN ANN QNN ANN QNN ANN
(a) Coffee (b) EarthQuakes (c) Car
— 74 T 100 =
9% oy =)
94 . 70 ° 95
68 °
92 o6 H 90
90 64 85
62
88 U 60 80
- 58 - . . o
QNN ANN QNN ANN QNN ANN
(d) OliveOil (e) DistalPhalanxTW (f) Plane

Fig. 10 Boxplots of QNN and ANN resulting accuracy populations in test sets

@ Springer

45 Page120f13

Quantum Machine Intelligence (2023) 5:45

are able to achieve absolute better results in test accuracy,
together with the results of the Mann—Whitney U test that
stated that QNNs were equivalent or better than ANNs in
five of six problems studied, suggests that these models may
be a relevant alternative to be considered in the problem of
Time Series Classification. However, as rows 1011 in Table
3 suggest, this comes at the cost of a huge increase in the
computational time required to train the QNN model which,
in the case of DistalPhalanxTW, is over 500% with respect to
the training time of classic ANNs. We remark that this com-
putational time was measured over the quantum algorithm
simulation Xanadu’s Pennylane which is also noise-free. We
expect that, in the next few years, quantum computers with
a suitable reduced noise can be widely accessible to verify
whether there is a true gain in computational time beyond
simulation.

To conclude the analysis and discussion of the results,
we compare the outcomes of the QNN and ANN models
with the best accuracy in the test reported in the literature
(last row of Table 3). From rows 8-9, we can observe that
QNN have the potential to provide better results than ANNs
on all datasets except Coffee, where the best test solutions
are optimal in both cases. Moreover, QNNs were able to
improve the best average accuracy reported in the problems
Coffee, Earthquakes and OliveQil. This fact reinforces the
analysis of the potential of quantum computing, and QNNs
in particular, to solve Time Series Classification problems,
since these models can represent a Time Series compactly
using amplitude embedding, but also improve the results on
the studied datasets.

5 Conclusions

In this work, we have studied the problem of time series
classification using quantum machine learning. In particular,
a hybrid classical /quantum neural network was designed
to solve the problem, and we used amplitude embedding to
encode a time series of length 7" into /og> (T') qubits as acom-
pact data representation. The designed network also includes
a novel method to perform measurement on the quantum
classifier and proposes to aggregate the measurements of
all qubits to take into account all information encoded in
the quantum algorithm, to finally calculate the class labels.
Experiments conducted on benchmark time series classifica-
tion problems, with a varied number of target classes ranging
from 2 to 7, suggest that the quantum neural network proposal
is a competitive model capable of obtaining the best accu-
racy results with respect to both classical neural networks
and literature reports, although the time complexity to train
the models is much higher than for classical artificial neural
networks. In future works, we plan to extend the proposed
methodology to other problems with a larger number of data,

@ Springer

by designing parallelization methods for quantum algorithms
simulation, and also to explore the potential of quantum neu-
ral networks in other machine learning problems.

Author contribution All authors contributed equally to this work.

Funding This article was funded by the project QUANERGY (Ref.
TED2021-129360B-100), Ecological and Digital Transition R&D
projects call 2022 by MCIN/AEI/10.13039/501100011033 and Euro-
pean Union NextGeneration EU/PRTR, and supported by Grant
PID2021-1289700A-100 funded by MCIN/AEI/10.13039/50110
0011033/FEDER.

Data Availibility Statement The datasets used are available on the web-
site of the UEA & UCR Time Series Classification Repository at https://
www.timeseriesclassification.com

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aimeur E, Brassard G, Gambs S (2007) Quantum clustering algo-
rithms. In: Proceedings of the 24th international conference on
machine learning. ICML ’07, pp 1-8. Association for Comput-
ing Machinery, New York, NY, USA. https://doi.org/10.1145/
1273496.1273497

Andrés E, Cuéllar MP, Navarro G (2022) On the use of quantum
reinforcement learning in energy-efficiency scenarios. Energies
15(16). https://doi.org/10.3390/en15166034

Araujo IF, Park DK, Petruccione F, Silva AJ (2021) A divide-
and-conquer algorithm for quantum state preparation. Sci Rep
11:6329-6341. https://doi.org/10.1038/s41598-021-85474-1

Bagnall A, Lines J, Hills J, Bostrom A (2015) Time-series classification
with cote: the collective of transformation-based ensembles. IEEE
Trans Know Data Eng 27:1-1. https://doi.org/10.1109/TKDE.
2015.2416723

Bausch J (2020) Recurrent quantum neural networks

Bokhan D, Mastiukova AS, Boev AS, Trubnikov DN, Fedorov AK
(2022) Multiclass classification using quantum convolutional neu-
ral networks with hybrid quantum-classical learning. Front Phys
10. https://doi.org/10.3389/fphy.2022.1069985

Crooks GE (2019) Gradients of parameterized quantum gates using the
parameter-shift rule and gate decomposition

Cuturi M (2011) Fast global alignment kernels. In: Proceedings of the
28th international conference on machine learning, ICML 2011,
pp 929-936

Dau HA, Bagnall A, Kamgar K, Yeh C-CM, Zhu Y, Gharghabi S,
Ratanamahatana CA, Keogh E (2019) The UCR time series
archive. IEEE/CAA J Autom Sinica 6(6):1293-1305. https://doi.
org/10.1109/JAS.2019.1911747

https://www.timeseriesclassification.com
https://www.timeseriesclassification.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1273496.1273497
https://doi.org/10.1145/1273496.1273497
https://doi.org/10.3390/en15166034
https://doi.org/10.1038/s41598-021-85474-1
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.3389/fphy.2022.1069985
https://doi.org/10.1109/JAS.2019.1911747
https://doi.org/10.1109/JAS.2019.1911747

Quantum Machine Intelligence (2023) 5:45

Page 130f 13 45

Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for
classification and feature extraction. Inf Sci 239:142-153. https://
doi.org/10.1016/].ins.2013.02.030

Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum
computation. In: Proceedings of the royal society a: mathemati-
cal, physical and engineering sciences, pp 553-558. University of
Bristol, GBR

Dong D, Chen C, Li H, Tarn T-J (2008) Quantum reinforcement
learning. IEEE Trans Sys Man Cybern Part B (Cybernetics)
38(5):1207-1220. https://doi.org/10.1109/TSMCB.2008.925743

Emmanoulopoulos D, Dimoska S (2022) Quantum machine learning in
finance: time series forecasting. arXiv. arXiv:2202.00599

Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate opti-
mization algorithm

Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P-A (2018)
Deep learning for time series classification: a review. CoRR.
arXiv:1809.04356

Feynman RP (1982) Simulating physics with computers. Int J Theor
Phys 21(6):467-488. https://doi.org/10.1007/BF02650179

Ganguly S (2021) Quantum machine learning: an applied approach.
Apress, New York

Grover LK (1997) Quantum mechanics helps in searching for a needle
in a haystack. Phys Rev Lett 79:325-328. https://doi.org/10.1103/
PhysRevLett.79.325

Kate R (2015) Using dynamic time warping distances as features for
improved time series classification. Data Mining and Knowl Dis-
cov 30. https://doi.org/10.1007/s10618-015-0418-x

LiuZ,ZhuZ,Gao J, Xu C (2021) Forecast methods for time series data:
a survey. IEEE Access PP:1-1. https://doi.org/10.1109/ACCESS.
2021.3091162

Macaluso A, Clissa L, Lodi S, Sartori C (2020) A variational algorithm
for quantum neural networks. In: Krzhizhanovskaya VV, Zavod-
szky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira
J (eds) Computational Science - ICCS 2020. Springer, Cham, pp
591-604

Maheshwari D, Sierra-Sosa D, Garcia-Zapirain B (2022) Variational
quantum classifier for binary classification: real vs synthetic
dataset. IEEE Access 10:3705-3715. https://doi.org/10.1109/
ACCESS.2021.3139323

Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ,
Aspuru-Guzik A, O’Brien JL (2014) A variational eigenvalue
solver on a photonic quantum processor. Nat Commun 5(1). https://
doi.org/10.1038/ncomms5213

Pushpak SN, Jain S (2021) An introduction to quantum machine learn-
ing techniques. In: 2021 9th International conference on reliability,
infocom technologies and optimization (trends and future direc-

tions) (ICRITO), pp 1-6. https://doi.org/10.1109/ICRITO51393.
2021.9596240

Rajesh V, Naik UP, Mohana (2021) Quantum convolutional neural
networks (QCNN) using deep learning for computer vision appli-
cations In: 2021 International conference on recent trends . on
electronics, information, communication & technology (RTE-
ICT), pp 728-734. https://doi.org/10.1109/RTEICT52294.2021.
9574030

Rivera-Ruiz MA, Mendez-Vazquez A, Lépez-Romero JM (2022) Time
series forecasting with quantum machine learning architectures.
In: Pichardo Lagunas O, Martinez-Miranda J, Martinez Seis B
(eds) Advances in computational intelligence. Springer, Cham, pp
66-82

Schifer P (2015) The boss is concerned with time series classification
in the presence of noise. Data Mining Knowl Discov 29. https://
doi.org/10.1007/s10618-014-0377-7

Schmidl S, Wenig P, Papenbrock T (2022) Anomaly detection in
time series: a comprehensive evaluation. Proc. VLDB Endow.
15(9):1779-1797. https://doi.org/10.14778/3538598.3538602

Schuld M, Sinayskiy I, Petruccione F (2014) Quantum computing for
pattern classification. In: Pham D-N, Park S-B (eds) PRICAI 2014:
trends in artificial intelligence. Springer, Cham, pp 208-220

Shor PW (1999) Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Review
41(2):303-332. https://doi.org/10.1137/S0036144598347011

Skolik A, Jerbi S, Dunjko V (2022) Quantum agents in the Gym: a vari-
ational quantum algorithm for deep Q-learning. Quantum 6:720.
https://doi.org/10.22331/q-2022-05-24-720

Sutor R (2019) Dancing with Qubits. Packt, Birmingham, UK

Umer MJ, Sharif MI (2022) A comprehensive survey on quantum
machine learning and possible applications. Int J E-Health Med
Commun 13(5):1-17. https://doi.org/10.4018/IJEHMC.315730

Wang G (2017) Quantum algorithm for linear regression. Phys Rev A
96:012335. https://doi.org/10.1103/PhysRevA.96.012335

Warren Liao T (2005) Clustering of time series data—a survey. Patt
Recog 38(11):1857-1874. https://doi.org/10.1016/j.patcog.2005.
01.025

Wittek P (2014) Quantum machine learning: what quantum computing
means to data mining. Elsevier, Amsterdam, The Netherlands

Yarkoni S, Kleshchonok A, Dzerin Y, Neukart F, Hilbert M (2021)
Semi-supervised time series classification method for quantum
computing. Quantum Mach Intell 3(12):1-11. https://doi.org/10.
1007/s42484-021-00042-0

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1109/TSMCB.2008.925743
http://arxiv.org/abs/2202.00599
http://arxiv.org/abs/1809.04356
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1109/ACCESS.2021.3091162
https://doi.org/10.1109/ACCESS.2021.3091162
https://doi.org/10.1109/ACCESS.2021.3139323
https://doi.org/10.1109/ACCESS.2021.3139323
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1109/ICRITO51393.2021.9596240
https://doi.org/10.1109/ICRITO51393.2021.9596240
https://doi.org/10.1109/RTEICT52294.2021.9574030
https://doi.org/10.1109/RTEICT52294.2021.9574030
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.22331/q-2022-05-24-720
https://doi.org/10.4018/IJEHMC.315730
https://doi.org/10.1103/PhysRevA.96.012335
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1007/s42484-021-00042-0
https://doi.org/10.1007/s42484-021-00042-0

	Time series quantum classifiers with amplitude embedding
	Abstract
	1 Introduction
	2 Fundamentals of quantum computing and quantum machine learning
	2.1 Quantum computing and quantum algorithms
	2.2 Quantum machine learning

	3 Time series quantum encoding and classification
	3.1 Time series quantum amplitude embedding
	3.2 Variational quantum classifier
	3.3 Measurement and aggregation
	3.4 Training scheme

	4 Experiments
	4.1 Dataset description
	4.2 Experimental settings
	4.3 Results and discussion

	5 Conclusions
	References

