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Abstract
Quantum two-level systems, i.e., qubits, form the basis for most quantum machine learning approaches that have been
proposed throughout the years. However, higher dimensional quantum systems constitute a promising alternative and are
increasingly explored in theory and practice. Here, we explore the capabilities of multi-level quantum systems, so-called
qudits, for their use in a quantummachine learning context. We formulate classification and regression problems with the data
re-uploading approach and demonstrate that a quantum circuit operating on a single qudit is able to successfully learn highly
non-linear decision boundaries of classification problems such as the MNIST digit recognition problem. We demonstrate that
the performance strongly depends on the relation between the qudit states representing the labels and the structure of labels in
the training data set. Such a bias can lead to substantial performance improvement over qubit-based circuits in cases where the
labels, the qudit states, and the operators employed to encode the data arewell-aligned. Furthermore, we elucidate the influence
of the choice of the elementary operators and show that a squeezing operator is necessary to achieve good performances. We
also show that there exists a trade-off for qudit systems between the number of circuit-generating operators in each processing
layer and the total number of layers needed to achieve a given accuracy. Finally, we compare classification results from
numerically exact simulations and their equivalent implementation on actual IBM quantum hardware. The findings of our
work support the notion that qudit-based algorithms exhibit attractive traits and constitute a promising route to increasing the
computational capabilities of quantum machine learning approaches.
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1 Introduction

In recent years, the field of quantum machine learning
has attracted much attention. There, quantum circuits are
employed as central processing units for data-driven applica-
tions (Biamonte et al., 2017; Schuld and Petruccione, 2018;
Dunjko and Briegel, 2018). While it is currently not clear
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whether or not quantum processing can provide a benefit
on practical machine learning problems (Schuld and Killo-
ran, 2022; Schuld, 2021), there has been some evidence that
quantum machine learning models can outperform classical
models in certain tasks (Liu et al., 2021; Sweke et al., 2021;
Gyurik and Dunjko, 2022; Gyurik et al., 2022). While most
studies, theoretical (Bharti et al., 2022; Montanaro, 2016)
as well as experimental (Graham et al., 2022; Pino et al.,
2021; Kjaergaard et al., 2020), focus on quantum systems
consisting of two-level quantum systems, i.e., quantum bits
(qubits), quantum computing hardware and algorithms can
also be based on d-level systems, which are typically called
qudits (Wang et al., 2020; Ringbauer et al., 2022). Such qudit
systems were shown to have advantages in specific con-
texts (Cozzolino et al., 2019; Sheridan and Scarani, 2010)
and have already been applied to several tasks (Bravyi et al.,
2022; Deller et al., 2023;Weggemans et al., 2022). However,
a full evaluation on application-relevant tasks is still lacking.

Currently, it is not clear whether there is a fundamental
advantage or disadvantage of utilizing qudit systems over
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their qubit counterparts for quantum machine learning or
other application domains such as quantum optimization.
However, qudits provide a complementary route to increasing
the Hilbert space size in pursuit of better computation per-
formance. This is an alternative direction to qubit systems,
where the route to larger Hilbert spaces is to increase the
number of qubits. Among other challenges, increasing the
number of qubits comes with increased difficulty of engi-
neering high-fidelity interactions between separate qubits,
which are technologically challenging and typically involve
larger gate errors than single qubit operations, see for exam-
ple, Kjaergaard et al. (2020), Fedorov et al. (2022) or Resch
and Karpuzcu (2019). In that regard, expanding the local
Hilbert spacedimensionbyutilizationof qudit systems seems
promising, since certain interactions between spatially sep-
arated qubits could instead be implemented by local qudit
operations, and thus might prove to be more efficient (Fis-
cher et al., 2022; Ringbauer et al., 2022). We discuss several
of such aspects of qudit system at various parts in this work.

We explore the usage of qudit systems in the context of
the data re-uploading (Pérez-Salinas et al., 2020) quantum
machine learning approach to build regression and multi-
class classification models. In this scheme, a single qudit
provides a natural way of encoding multiple classes by rep-
resenting each class label as an orthogonal basis state. We
focus on the prominent data re-uploading architecture, since
it was shown in the original work that a single qubit is already
sufficient to implement a universal classifier. Due to the
comparably small resource requirement, data re-uploading
circuits were also experimentally implemented on a trapped
ion device (Dutta et al., 2022). Additionally, the encod-
ing characteristics of these models is well understood, as
it generates increasingly higher Fourier terms with more
layers (Schuld et al., 2021). Thus, it is natural to first eval-
uate and confirm these same properties for a single qudit as
well. Extending these circuits to multi-qubit/multi-qudit cir-
cuits would allow for more sophisticated setups including
entanglement. However, in this work, we refrain from doing
this and instead focus on the most simple, non-trivial case
to investigate the fundamental aspects of qubits and qudits
related to basic operators and Hilbert spaces.

This paper is structured as follows: In Sect. 2, we intro-
duce the mathematical description of qudits. Section3 illus-
trates the implementation of the data re-uploading algorithm
(Pérez-Salinas et al., 2020) with qudits and shows the circuit
structure as well as the chosen loss functions used during
training. Section4 presents the training procedure which is
done numerically and on IBMQ hardware. To be able to run
our model on qubit-based quantum hardware, we present a
way to encode qudits with multiple qubits. In Sect. 5, we ver-
ify the expressivity of our model by testing it on a simple
regression problem. We then go on and test our model on
multi-class classification problems where we show an intrin-

sic bias between the qudit state representation and the data
structure. Finally, we present numerical results of the model
when being trained on the MNIST handwritten digits data
set (LeCun and Cortes, 2005). We additionally investigate an
equivalent qubit-based implementation on IBMQ hardware
and the effect of entangling operations on the performance
of the model.

2 Qudits

d level quantum systems, typically called qudits, are a
generalization of qubits to d > 2 and can serve as a
basis for quantum information processing. The Hilbert space
is spanned by d orthonormal basis vectors, denoted by
|0〉, |1〉, ...|d − 1〉 and arbitrary qudit states can be repre-
sented by the supersposition |ψ〉 = ∑d−1

k=0 ck |k〉 with the
normalization condition

∑d−1
k=0 |ck |2 = 1.

Inspired by cold atom systems (Kasper et al., 2022), we
interpret a d-level qudit as a spin with total angular momen-
tum � = d−1

2 , such that the basis state |k〉 corresponds to
the spin eigenstate with angular momentum m = 2k−d+1

2 . A
natural set of operations on qudits states, which is also eas-
ily implementable in experiments, is given by the angular
momentum operators {Lx , Ly, Lz}. These generate rota-
tions around the corresponding axes and obey the canonical
commutation relations of the special unitary group SU (2),
[Li , L j ] = iεi jk Lk . The action of the angular momentum
operators on the qudit basis state is given by

Lx |k〉 = 1
2

(
γd,k+1|k + 1〉 + γd,k−1|k − 1〉) (1)

Ly |k〉 = 1
2i

(
γd,k+1|k + 1〉 − γd,k−1|k − 1〉) (2)

Lz |k〉 = 2k−d+1
2 |k〉 (3)

where k ∈ [0, d − 1] and with γd,k = √
(d − k − 1)(k + 1).

There are various ways to define a universal gate set to
realize arbitrary actions in the qudit Hilbert space, see, e.g.,
Wang et al. (2020) and Luo et al. (2014). For a single qudit,
as it is considered in this work, we choose the two angular
momentum operators Lx and Lz and the squeezing or one-
axis twisting operator Lz2 = L2

z . For d > 2, this additional
gate is needed to be able to generate any state by (possibly
many) repeated finite rotations as detailed in Kasper et al.
(2022) and Giorda et al. (2003). The reason for this is that
the iterated commutators of these three operators generate
all d2 − 1 Hermitian basis operators, which are necessary to
generate all unitary operations of the SU (d) group.

Equivalent to qubits, the gates for qudit circuits are then
generated by exponentiation of the basic operators which
implements the rotations

R j (θ) = e−iθL j , (4)
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with j ∈ {x, z, z2} and where θ ∈ R are free parameters.
In Fig. 1, we illustrate the qudit states (panel A) and the

action of the elementary operators by showing the Husimi-Q
quasi-probability distribution (Husimi, 1940) on a general-
ized Bloch sphere in panel B. The pure rotation does not
deform the probability distributions, but applying the squeez-
ing operation leads to a deformation of the state.

By choosing the operator set {Lx , Lz, L2
z }, we impose a

ladder structure on the qudit target states. This primarily
arises from the operator Lx , which couples each state |k〉
to its adjacent states |k + 1〉 and |k − 1〉, as it is illustrated in
Eq. 1.

3 Data re-uploading with a single qudit

We utilize a single d-level qudit and implement the quan-
tummachine learning model as a data re-uploading quantum
circuit (Pérez-Salinas et al., 2020; Jerbi et al., 2023). The
quantum circuit in its general form is build up from L layers
and encodes a quantum state, which depends on the input
data x as

|x,ω, θ〉 =
L∏

l=1

U (x,ω(l), θ (l))|0〉 , (5)

where |0〉 is the initial state. The characteristic of the data
re-uploading architecture is that the unitary operation of
each layer l encompasses data dependent unitaries, which are
parametrized by the scaling parameters ω(l) and data inde-
pendent operations with free parameters θ (l).

We tested several layer structures and found that they all
produce similar results. In the following, we report results
for two architectures. The first one is inspired by classical
Euler rotations, where the unitaries of each layer have the
structure:

U (x,ω(l), θ (l)) = W (θ (l))S(x, ω(l)) . (6)

The data encoding block S of each layer consists of alternat-
ing x and z rotations:

S(x,ω(l)) = Rα(xDω
(l)
D ) · · · Rz(x2ω

(l)
2 )Rx (x1ω

(l)
1 ) (7)

where the number of rotations is determined by the dimen-
sionality D of the input data and consequently α = x (α = z)
in case D is odd (even). The alternating x and z rotations are
chosen to ensure that these are non-commuting. This is nec-
essary to distinguish between the individual dimensions of
the data vector. If only x (or z) rotations were chosen to
encode the data, the classifier would only be able to learn the
sum of the input data.

The data-independent block in each layer is composed of
a sequence of three rotations followed by a squeezing gate
Rz2 as the last operation, i.e.,

W (θ (l)) = Rz2(θ
(l)
4 )Rx (θ

(l)
3 )Rz(θ

(l)
2 )Rx (θ

(l)
1 ) (8)

The first three operations give rise to Euler angles, starting
from |0〉, and thus the freedom to create overlap with an arbi-
trary qudit state. The total number of adjustable parameters
of a L-layer model is given by (4 + D)L . The action of this
circuit structure is illustrated in Fig. 1c.

The second architecture considered here is inspired by the
simplified form presented by Pérez-Salinas et al. (2020) and
has the structure:

U (x,ω(l), θ (l)) = e−i
∑D

j (θ
(l)
j +ω

(l)
j x j )Lc( j)−iθ(l)

D+1Lz2 . (9)

Here, the first term in the exponent is the sum over the
three angular momentum operators, i.e., the generators of the
SU (2), and the function c( j) = ( j mod 3) selects one of
them. The second term in the exponent is a generalization of
the original simplified architecture by including the squeez-
ing operator in each layer. The total number of adjustable
parameters for an L-layer model of this structure is given by
(2D + 1)L .

We like to point out that in this form, both architectures
implement the aforementioned ladder structure, since the
data encoding is done with the angular momentum opera-
tors, that only couple each qudit basis state to its adjacent
states.

In our work, we approach supervised classification and
regression tasks by using qudit-based quantum circuits. In a
supervised learning setting, there exists a set of N training
samples (xi , yi ) with i = 1, . . . , N , which consist of pairs
of input samples x with corresponding output values y. The
input samples are real-valued D-dimensional vectors x ∈
R

D , while the output values are either real numbers or a
finite set of integers for regression and classification tasks,
respectively.

For classification problems, the output values y ∈
(0, 1, . . . , d − 1) indicate to which of the d classes the data
sample x belongs. In the quantum formulation, each class
label is represented by a basis state of the d-level qudit |y 〉
with y = 0, . . . , d − 1. The model prediction, i.e., the prob-
ability that a data sample x belongs to class y, can then
conveniently be calculated from the overlap of the label state
and the qudit wave function obtained from the quantum cir-
cuit with input x:

P(y|x,ω, θ) = |〈y|ψ(x,ω, θ)〉|2, . (10)

Training the quantum circuit is achieved by minimizing
a loss function over the given training data set D =
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Fig. 1 a Schematic representation of d = 7 qudit states on a generalized Bloch sphere. b Schematic illustration of the action of the three operators
Rx (left), Rz (middle), and Rz2 (right) on a qudits state. c Illustration of the data re-uploading circuit structure

{(xi , yi )}i=1,...,N . The overlap of Eq. 10 is the basis for for-
mulating the mean squared error (MSE) loss function:

LMSE(ω, θ) = 1

N

N∑

i=1

(〈ȳi 〉 − yi
)2 (11)

with the average predicted label of the quantum model

〈ȳi 〉 =
d−1∑

y=0

y P(y|xi ,ω, θ) . (12)

Another popular choice is the overlap loss as used in Pérez-
Salinas et al. (2020):

Loverlap(ω, θ) =
N∑

i=1

(
1 − P(yi |xi ,ω, θ)

)
. (13)

The learning procedure amounts to adjusting the parameters
of the quantum circuit (ω, θ) in order to minimize the loss
function, which is done by running a classical optimization
algorithm.

After the quantum circuit has been trained, its accuracy is
evaluated by analyzing its predictions of the output variables
on a test data set, i.e., a set of data samples not used during
the training procedure. For a classification task, the predicted
output label is given by the basis state with the highest proba-
bility in the quantum state with the corresponding input data
sample, i.e.,

ypredictedi = argmaxy P(y|xi ,ωopt, θopt) , (14)

where (ωopt, θopt) are the optimized values of the circuit
parameters. The accuracy of the trained model can then be
evaluated by calculating the fraction of correctly predicted
labels in the test data set:

Accuracy = 1

Ntest

∑

i∈Dtest

δ
ypredictedi ,yi

, (15)

whereDtest denotes the test data set which contains Ntest data
samples and δa,b is the Kronecker delta.

TheMSE loss of Eq. 11 is also suitable to learn regression
tasks. In that case, the output variables are finite-range con-
tinuous variables, y ∈ [0, d − 1]. The resulting qudit state of
the trained quantum circuit is then a superposition of basis
states, and the predicted output value for input xi is calculated
as the expectation value of Eq. 12:

〈ȳi 〉predicted =
d−1∑

y=0

y P(y|xi ,ωopt, θopt) . (16)

For simulations running on actual quantum hardware, the
probability distribution of Eq. 10 is estimated by perform-
ing a finite number of measurement shots and recording the
measurement results as a histogram. This approximative dis-
tribution is then used to calculate the predicted output values
of Eqs. 14 and 16.

4 Experimental setup

We perform the training of the quantum circuit utilizing
exact numerical simulations of the qudit states and quan-
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tum gates. The parameter values of ω and θ are initialized
randomly in the range [−π, π ]. As classical optimization
algorithms for minimizing the loss function, we employ the
ADAM optimizer (Kingma and Ba, 2014) paired with the
exact gradients calculated by the automatic differentiation
package JAX (Bradbury et al., 2018). Additionally, we also
used L-BFGS-B and Powell optimization approaches from
the scipy library (Virtanen et al., 2020), where we do not
utilize automatic differentiation. Apart from differences in
the run time for the training, the results obtained with all
approaches were always comparable. If not stated otherwise,
all models are trained on randomly selected data sets with
size N = 750. The performance is evaluated on a separate
randomly selected test data set, which contains N

3 = 250 data
samples. In order to obtain reliable statistics of the results,
we run 60 different simulations for each setting, each time
randomly varying the data set and themodel initialization. To
visualize the decision boundaries of the trained classifiers,we
utilize the visualization library orqviz (Rudolph et al., 2021).

In addition to the numerically exact simulation, in 5.6,
we re-train and evaluate the qudit quantum circuit on the
IBM ibmq_lima hardware using the qiskit (Treinish et al.,
2023) framework. This allows us to estimate the impact of
gate errors and noise of actual NISQ hardware on the learn-
ing performance. As the IBM hardware naturally operates
on qubits, we employ a mapping of the d-level qudit Hilbert
space to d − 1 qubits, which is inspired by cold atom sys-
tems (Kasper et al., 2022; Santra et al., 2022). The qudit basis
state |k〉 is represented by the qubit Dicke-state |Dd−1

k 〉, i.e.,
|k〉 → |Dd−1

k 〉 (Gasieniec et al., 2019). The kth Dicke state
|Dd−1

k 〉 of d −1 qubits is given by the equal superposition of
all states which have k qubits in the state |1〉 and d − 1 − k
in state |0〉, i.e.,

|Dd−1
k 〉 =

(
d − 1
k

)− 1
2 ∑

x∈{0,1}d−1,hw(x)=k

|x〉 . (17)

where hw(x) indicates the Hamming weight of string x , i.e.,
the number of 1’s in x . The angular momentum operators
for the d − 1 qubit states are defined as the sum over the
single-qubit operators, L tot

a = ∑d−1
j=0 L

j
a with a = {x, y, z},

and they act as described by Eq. 1 on the Dicke states. In
particular, the Dicke state |Dd−1

k 〉 and the qudit state |k〉
have the same z-component of the angular momentum, i.e.,
L tot
z |Dd−1

k 〉 = 2k−d+1
2 |Dd−1

k 〉.
In this representation, the squeezing operation consists of

all pairwise qubit interactions:

L tot
z2 = (

L tot
z

)2 =
∑

i, j

Li
z L

j
z (18)

which is implemented as two-qubit zz-rotation gates on the
hardware (Treinish et al., 2023). From this form, it is clear that
the squeezing operator has the capability to generate correla-
tion and entanglement between the individual qubits (Santra
et al., 2022). On the qubit device, we start from the optimized
parameters found by the training with the exact simula-
tion and re-train the model on the actual hardware. There,
we perform 512 measurement shots for each qiskit circuit
evaluation.

For comparison, we also report the accumulated results on
classification tasks of a standard classical machine learning
approach, namely, the scikit-learn (Pedregosa et al,
2018) implementation of the random forest (RF) classifier
with 100 estimators, a k-nearest neighbor classifier with
k = 3 (knn), and a support vector classifier (SVC). The per-
formance of these approaches were always comparable, and
we report the cumulative results of running each algorithm
50 times on randomized data stets.

5 Results

5.1 Expressivity in one dimension

First, we examine the expressivity of the data re-uploading
circuit with a single qudit on a continuous one-dimensional
regression problem analogous to Schuld et al. (2021). We
train a model with one qutrit, i.e., a d = 3 qudit, to learn the
simple function

f (x) = 1
2

(
cos (2x) + cos (3.5x)

)
(19)

with x ∈ [−π, π]. As the model output, we use the expecta-
tion value of Eq. 12 but shift it to match the data range, i.e.,
f predictedi = 〈ȳi 〉 − 1. For training the quantum circuit, we
employ the MSE loss function of Eq. 11 and use a training
set of 100 linearly distributed samples.

We show the results of a L = 1 layer model in the left
panel of Fig. 2. It is evident that this model is not able to learn
the function properly. This confirms the previous insight for
qubit circuits (Schuld et al., 2021) that data re-uploading
models learn truncated Fourier series and that a circuit con-
taining only one angle parametrized by the input can only
encode one Fourier component. In the right panel, we show
the results of a model with L = 2 layers. As expected, this
model is now able to learn the function with two Fourier
coefficients exactly. The derivation is analogous to the qubit
case (Schuld et al., 2021), but is not shown in this work.
Apart from the results obtained by numerically exact sim-
ulations, we also include results from the evaluation on the
IBM ibmq_lima hardware (green dots in the plot). These
predicted values are generally noisy which result from the
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Fig. 2 Results of trained data
re-uploading models with
structure of Eqs. 6–8 using a
d = 3 qutrit with one (left) and
two (right) layers for the
regression task of learning the
function in Eq. 19 (blue line).
The purple dots indicate the
results of the numerically exact
model simulation obtained and
the green dots the results from
re-training and evaluation on the
IBM ibmq_lima hardware

inherent errors in the quantum circuit, as well as the shot
noise from the finite number of samples used to estimate the
probability distribution of Eq. 10.

5.2 Two-dimensional classification tasks

Inspired by the original benchmark of the data re-
uploading algorithm (Pérez-Salinas et al., 2020), we inves-
tigate the performance of the qudit circuit with the structure
of Eqs. 6–8 on various two-dimensional multi-class clas-
sification problems. The data samples are located on a
two-dimensional square x = (x1, x2) ∈ [−1, 1]2, where
each sample is associated with one out of d classes. In the
first problem setting, the classes are arranged in parallel hor-
izontal stripes. Figure3 shows the results for seven classes,
where we used a d = 7 qudit to represent the classes in the
quantum circuit.

In the upper row of the figure, we show results from the
case where we align the qudit states with the labels in such a
way that the z-components of the spin are in order with the
class label. In that case, adjacent classes are represented by
qudit states with adjacent z-spin values. Under these circum-
stances, the model has a strong inductive bias towards the
data set caused by the chosen ladder structure. This is illus-
trated in the leftmost figure where we draw the qudit states
on the generalized Bloch sphere. The lowest qudit state |0〉 is
associated with the class of the lowest (blue) stripe, the sec-
ond lowest qudit |1〉with the second lowest stripe, and so on.
The corresponding results show that the data re-uploading
circuit can predict this data set almost perfectly with three or
more layers, L ≥ 3 (blue graph in top right plot). Remark-
ably, the performance of the data re-uploading circuit is even
better than the classical machine learning models shown on
the far right of the right panel. However, the learned classes
and decision boundaries, as shown in themiddle panels of the
figure, can still differ from the ground truth. This is due to the
small size of the training data set, which necessarily leads to
small random variations of the learned decision boundaries,

depending on the precise location of the training data close
to the decision boundaries.

The importance of the squeezing operation Rz2 in the
W operator of Eq. 8 is highlighted by observing the mas-
sively degraded performance of the same circuits without
this gate (green graph in the top right panel of Fig. 3). With-
out squeezing, the median accuracy saturates at around 0.7,
while with squeezing, the median accuracy reaches 0.95 and
higher. This performance difference is attributed to the fact
that the squeezing operator is necessary to allow for the rep-
resentation of arbitrary unitary operations in the qudit Hilbert
space.

The second row of Fig. 3 shows the performance when
the class labels are randomly assigned to the qudit states.
This removes the inductive bias of the model and makes the
problem much harder to learn for the qudit quantum circuit,
since the ladder structure used for the data encoding does
not align to the data set. Consequently, the accuracy drops
significantly, and many more layers are necessary to recover
the performance level of the scenario with aligned labels.

The plots of the accuracies also show the accumulated
results of the three classical machine learning classifiers
(RF, SVC, and knn) for comparison. The performance of
the quantum circuits including squeezing with randomized
assignment of qudit states to labels is comparable to the clas-
sical approaches. For aligned labels, the quantum circuit even
slightly outperforms the classical approaches.

We also considered several other two-dimensional multi-
class classification problems and trained data re-uploading
models on several horizontal stripe data sets with varying
number of stripes (i.e., classes), as well as data sets where
the stripes are not horizontal but rotated by an angle. We also
investigated the models on data sets where the class regions
are given by concentric rings with approximately the same
width and where the center of the rings is somewhere in the
plane. The results (not shown) on those models were always
qualitatively similar to the ones presented here. Squeezing is
always necessary to achieve good performance, andwhen the
label order is aligned with the qudit states, the performance
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Fig. 3 Results of the seven-class horizontal stripe classification prob-
lem with circuit structure of Eqs. 6–8. In the upper row, the qudit states
are aligned with the class labels, while in the lower row, the class labels
are randomly assigned to the qudit states as illustrated in the pictures
on the left. The first stripe pattern shows the ground truth and the
training data samples. The middle and right stripe patterns show the
classification regions obtained after training with three and six layers,

respectively. The rightmost plots show the statistics of classification
accuracy, obtained from 50 independent training runs, as a function of
layers in the quantum circuit with (blue) andwithout (green) the squeez-
ing operation in the W blocks. Colored boxes indicate 25% and 75%
percentiles and horizontal whiskers the minimal and maximal values.
In the right panels, cML indicates the results of the classical machine
learning approaches

is consistently higher. The overall performance was slightly
reduced for the tilted stripes and the concentric rings, and the
variance in the results was also slightly larger as compared
to the horizontal stripes cases presented here.

5.3 ClassifyingMNIST data

As the next application example, we train the model of
Eqs. 6–8 on subsets of a scikit-learn (Pedregosa
et al, 2018) version of the MNIST handwritten digits data
set (LeCun and Cortes, 2005). This version includes down-
sampled imageswith 8x8pixels instead of the 28x28pixels of
the original MNIST data set. Since it is very computationally
demanding to encode 8 × 8 = 64 dimensional data samples
into the quantum circuit, we reduce the input dimension fur-

ther using the principal component analysis (PCA) (Jolliffe
and Cadima, 2016).

In Fig. 4a–c, we visualize the classification boundaries of
a L = 5 layer circuit for two, three, and five classes, where
the input dimension is reduced to D = 2 using a PCA. The
plots show that the data re-uploading classifier is able to learn
highly non-linear decision boundaries. It can also be seen
that the classifier tends to produce disconnected classification
regions due to the oscillatory nature of parametrized quantum
circuits. The statistics of the accuracy for various classes is
shown in Fig. 4d as a function of the quantum circuit layers.
It can be observed that the accuracy, as expected, increases
with more layers and that increasing the number of classes
in the problem reduces the accuracy. For more classes, the
reduction to two dimensions using PCA leads tomore spacial

Fig. 4 Learned classification regions of a single qudit classifier cir-
cuit with L = 5 layers trained on the first two (a), three (b), and five
(c) classes (i.e., digits) of the MNIST data set, which was compressed
down to two dimensions using PCA. Each background color indicates
one region associated with the same label. The training data samples

are shown in the plots and colored according to their true label. dAccu-
racy of the qudit classifier as a function of the number of layers for
various numbers of classes. RF denotes the random forest classifier for
comparison
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overlap between classes, which makes the problems inher-
ently noisy and limits the overall achievable accuracy. The
overlapping classes can be directly observed in panel (c).
Additionally, panel (d) shows the result from 50 runs of a
random forest (RF) classifier. The accuracy of the quantum-
based classifier approaches the values of the RF model with
increasing number of layers. However, the variance in the
result is significantly larger for the data re-uploading circuit.
One reason for this is found in the increasinglymore complex
classical optimization problem when increasing the number
of parameters in the quantum circuit.

5.4 Qudit vs qubit

The quantum circuits we employed up to this point used
a single d-level qudit to solve classification problems with
d classes, where each basis state encodes one class label.
While it may appear less natural, multi-class classifica-
tion problems can also be learned with a data re-uploading
circuit operating with a single qubit (Pérez-Salinas et al.,
2020). In those approaches, the different classes are repre-
sented by single-qubit quantum states which are chosen to
be maximally orthogonal. Unless a two-class classification
problem is considered, where the label states are |0〉 and
|1〉, these states cannot be fully orthogonal to each other.
For a d = 6 class example, we choose the eigenstates
of the three spin operators, i.e., |y 〉 ∈ {|0〉, |1〉, 1√

2
(|0〉 +

|1〉), 1√
2
(|0〉 − |1〉), 1√

2
(|0〉 + i |1〉), 1√

2
(|0〉 − i |1〉)}, as the

maximally orthogonal label states. Note that in this situation,
the overlap of Eq. 10 as a function of the labels is no longer
a proper probability distribution since

∑
y P(y) > 1.

The natural question which arises is whether there is any
difference when using qubit or qudit data re-uploading cir-
cuits for multi-class classification problems. Therefore, we
study and compare the performance of a single qubit as
well as a single qudit on several problems. For the single

qubit approach, we utilize the simplified data re-uploading
structure of Eq. 9. Here, the squeezing operator can be
removed from the circuit since it is proportional to the iden-
tity, Lz2 = 1

4 , and therefore only applies a global phase.
Figure 5 shows the results where the qubit and qudit mod-

els were trained on two different classification problemswith
d = 6 classes and D = 2 input dimensions. The left panel
of Fig. 5 shows the classification accuracy as a function of
the circuit layers for the tilted stripes data set, where the hor-
izontal stripes from Fig. 3 are rotated by an angle of 27◦.
It can be seen that the accuracy of the qubit and qudit cir-
cuits are comparable for the case where the class labels were
randomly assigned to the qudit basis states. However, for
labels aligned with the qudit states, the performance is con-
sistently higher for the qudit circuits. This result is similar to
the one obtained for the horizontal stripe data set reported in
Fig. 3 and can be explained by the ladder structure employed
in the qudit circuits. This gives rise to the inductive bias
and leads to a performance improvement in case the struc-
ture of the data encoding operators is aligned with the data.
This view is supported by a slight variation of the setup: we
consider aligned labels and basis states but replace the Lx

operator in the encoding scheme with a randomized version,
L̃ x = ∑

k(LP(k+1),P(k) + LP(k−1),P(k)). Here, P denotes a
random permutation of the label set k = 0, . . . , d − 1 and
Lk,k′ generates a transition from state k′ to state k. These
operators do not implement a ladder structure, since the
L̃ x generate transitions between random states. We indeed
observe in Fig. 5 that the median performance then decreases
to the similar level as for the situation with a ladder structure,
but randomized labels.

The right panel shows the results of the qubit and qudit
data re-uploading circuits for the MNIST handwritten digits
data set limited to six randomly selected digits (i.e., classes)
and where each image is reduced to two input dimensions
using a PCA. Here, qubit and qudit approaches are compara-

Fig. 5 Comparison of d = 6
multi-class classification
performance of qubit and qudit
data re-uploading circuits with
the simplified structure of Eq. 9.
Left: tilted D = 2 dimensional
stripes data set with a rotation
angle of 27◦. Qudit accuracies
are shown for aligned and
randomized label and state
assignment, as well as with
aligned labels and qudit states,
but with a randomized L̃ x in the
encoding. Right: six randomly
selected digits of the MNIST
data set which are reduced to
D = 2 input dimensions using a
PCA
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ble in their performance,while the qubit architectures seem to
slightly outperform the qudit ones, especially for smaller cir-
cuit depths. In this problem, the decision boundaries between
thedifferent classes are highly non-linear as discussedbefore.
Therefore, there is no apparent favorable alignment between
qudit basis states and class labels, and consequently, there is
also no inductive bias which could lead to an improved qudit
performance.

In our simulations, the loss function and the classifi-
cation accuracy are calculated numerically exact with full
access to the quantum state. When running on real quan-
tum hardware, this cannot be done, and one needs to prepare
and sample, i.e., measure, the quantum state multiple times
in order to estimate the probabilities/overlaps of Eq. 10.
For the qudit system, where each class label is associated
with an orthogonal basis state in the measurement basis,
the statistics of the measurement outcomes directly trans-
late to estimating the probabilities. For qubit systems with
non-orthogonal label states (i.e., for d > 2), different mea-
surement protocols such as quantum state tomography or
quantum state discrimination (Barnett andCroke, 2009) need
to be employed. For fixed number for measurement shots,
these lead to a slightly increased error probability for dis-
criminating between non-orthogonal states. Additionally, the
difference in overlap between a true label state and an unde-
sired label state is less pronouncedwhen different label states
have a finite overlap. For qudits, this difference is always
one since Pqudit(y|y′) = δy,y′ for label states y, y′ (here,
basis states). In the qubit representation, the difference is≤ 1
since Pqubit(y|y′) = δy,y′ + ∑

y′′ �=y′ cy′′δy,y′′ with cy ≥ 0.
For example, in the case of d = 6 classes considered here,
Pqubit(0|y′) = |〈0|y′〉|2 = 1

2 for y′ ∈ {2, 3, 4, 5}. This can
lead to a reduced training signal in the loss functions using
the overlap of Eq. 10, since even contributions from incorrect
label states have non-zero overlap and therefore reduce the
loss. Obtaining the overlaps using a finite number of mea-
surement samples necessarily adds noise to the estimates,

which in turn makes the problem of discriminating between
correctly and wrongly predicted labels more difficult. As
a consequence, the shot noise is expected to have a more
pronounced negative effect on the training as well as predic-
tion performance for multi-class problems when overlapping
label states are used.

5.5 Circuit structure and basic operators

For qubit circuits, the spin- 12 Paulimatrices allow to represent
arbitrary single-qubit unitary operations inside each layer.
For d-level qudits, one instead needs to include all d2−1 gen-
erators of the special unitary group in d dimensions SU (d),
to achieve the same arbitrary control. However, as indicated
above and shown in Kasper et al. (2022) and Giorda et al.
(2003), the three operators Lx , Lz , and Lz2 are sufficient to
represent any unitary operation by repeated finite rotations
with multiple layers. This leads to the question whether there
is a benefit when more than this reduced set of three oper-
ators are used in the data re-uploading circuit. We test this
hypothesis by adding the following two types of operators:

X j = |0〉〈0| − | j〉〈 j | (1 ≤ j ≤ d − 1)

Y j = |0〉〈 j | + | j〉〈0| . (20)

The motivation behind this choice is that these operators
directly couple the initial state |0〉 to all other states | j〉 and
thus may allow for a more efficient learning. We then use
the simplified structure of Eq. 9 and replace the squeezing
operator by the sum over all operators in Eq. 20.

The results of the three types of circuit structures on the
six-class reduced MNIST data set are shown in Fig. 6. The
left panel shows the accuracies as a function of the number
of circuit layers. First, one can observe that there is no sig-
nificant difference between the simplified structure of Eq. 9
and circuit structure of Eqs. 6–7. On the other hand, the per-
formance of the circuits with the extended set of operators is

Fig. 6 Comparison of results of
qudit data re-uploading circuits
of different structures on the
d = 6 class MNIST data set
with input dimension D = 2.
The left panel shows the results
as function of the number of
layers, while the right panel
shows it as function of the
degrees of freedom, i.e., the
number of tunable parameters in
the circuit (notice: the x-axis is
not to scale in the right plot)
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significantly better. At first glance, this seems to support the
hypothesis that adding more operators to the set generators
does in fact enhance the trainability of qudit quantum cir-
cuits. However, adding more operators also introduces more
free parameters to the quantum circuit for a given number
of layers, which allows for more flexibility in the trainable
circuit.When comparing the accuracies as a function of num-
ber of free parameters, as shown in the right panel of Fig. 6,
one can observe that the performance is statistically the same
for all circuit structures and number of operators. Therefore,
we conclude that it is not the number of operators which is
determining the trainability, but rather the number of train-
able parameters.

This reveals a tradeoff between the complexity of each
layer, i.e., the number of operators and free parameters in
each layer, and the total number of layers which are neces-
sary to achieve a certain accuracy. Including more operators
in each layer allows to achieve good performance with fewer
number of layers. On quantum hardware, where gate errors
play an important role, the freedom to choose the elemental
operations provides additional flexibility. And because dif-
ferent hardware may natively support different gate sets, this
allows to choose configurations which result in running vari-
ational quantum circuits with less errors. For qubits, this is
not possible since the three Pauli matrices form a basis and
no additional operators can be constructed.

5.6 Re-training on IBM hardware

Finally, we compare the classification performance of the
model of Eqs. 6–8 with and without the squeezing operation
between numerically exact results and the case where the
re-training and evaluation is done on actual ibmq_lima
hardware. For the qubit implementation of the qudit circuits,
we use the Dicke-state encoding described in Sect. 4. The
left panel of Fig. 7 shows the accuracy as a function of
the quantum circuit layers for the first five digits, i.e., qudit
dimension d = 5, and with input dimension D = 5. The

numerically exact simulations show the same trend as previ-
ously described for two input dimensions and approach the
values of the traditional RF classifier with an increasing cir-
cuit depth. However, when re-trained and evaluated on actual
hardware, the performance is only comparable for the first
two layers; after that, it saturates and then decreases strongly.
This is due to the noise and infidelities in the actual hardware
realization of the entangling gates used to implement the
squeezing operations. Removing the squeezing operations
from the circuit reveals this explicitly, since the accuracies
of both approaches are then comparable as shown in the right
panel of Fig. 7.

This is an explicit example of a situation where is more
efficient to increase the local Hilbert space and work with
qudits, instead of increasing the number of qubits.

6 Discussion

In this work, we demonstrated that multi-level qudit sys-
tems arewell-suited to be applied tomulti-class classification
problems, as each qudit basis state can naturally encode
one class of the data. We implemented data re-uploading
quantum circuits, where we used the angular momentum
and the squeezing operators to build a universal gate set.
We illustrated the capabilities of the qudit-based approach
on regression and classification benchmarks. Owing to the
ability to learn highly non-linear classification boundaries,
the models were able to successfully learn on various data
sets and achieve performances comparable to standard clas-
sical machine learning models. Interestingly, the achievable
performance was strongly dependent on the qudit states rep-
resenting the class labels and their relation to the structure of
the labels in the data set. This intrinsic bias due to the label
alignment can boost the performance of qudit circuits sub-
stantially, when the data set is structured accordingly, which
might be beneficial for certain types of application problems.

Fig. 7 Results for the
classification of the first five
digits of the MNIST data set
with input dimension D = 5
with (left) and without (right)
squeezing as a function of the
layers in the quantum circuit
operating with a d = 5 qudit.
The numerical exact simulations
are shown in blue, whereas the
results from ibmq_lima
simulations are in green. The
performance of a random forest
(RF) model is displayed to the
right in each plot
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We also studied the influence of the choice of the ele-
mentary operations and the layer structure in qudit quantum
circuits. There, we found that the structure, i.e., the particu-
lar sequence and types of rotations, does not appear to have
significant influence on the performance, as long as the num-
ber of degrees of freedom was accounted for. This reveals
a trade-off between the number of elementary operators in
the gate set and the number of layers to achieve the same
performance. In some situations, it might be advantageous
to utilize the minimum set of operators and to employ more
layers, while in others, more operators and less layers might
be the better choice. This is especially interesting on quan-
tum hardware where different gates typically have different
error rates, and the freedom to choose between several con-
figurations may allow to minimize the influence of errors on
the resulting performance.

However, our data encoding layers always employed only
Lz and Lx operators and thus implemented a ladder structure.
This is linked to the observed intrinsic bias, and selecting
different operators for the data encoding might mitigate this
bias. However, we did not investigate such extensions and
leave them for future work.

It should be noted that we did not employ any of the
more sophisticated techniques to improve the performance
of single-qudit data re-uploading circuits, for example,
employing different classical optimizers (Deller et al., 2023;
Lavrijsen et al., 2020), fine-tuning hyperparameter set-
tings (Moussa et al., 2022), and finding better parameter
initializations (Sack and Serbyn, 2021; Grant et al., 2019;
Egger et al., 2021). All techniques have been shown to be
very beneficial in related contexts and can be used in the
future to improve the current approach.

A necessary next step is to investigate the performance of
multi-qudit circuits, since here we only investigated single-
qudit circuits. Interesting research questions include how the
intrinsic bias of a single qudit influences a multi-qudit circuit
and its learning performance, and what the role of the set of
elementary operators is in these cases. Crucially, the effect
of multi-qudit entangling gates needs to be elucidated.

In summary, our results and discussion support the conclu-
sion that qudit systems offer a promising alternative quantum
computing architecture. There are several differences to
qubit-based systems which could potentially be leveraged to
eventually provide practical benefits for quantum algorithms
and quantum machine learning tasks in particular.
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