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Abstract
Time series prediction is essential for human activities in diverse areas. A common approach to this task is to harness recurrent
neural networks (RNNs). However, while their predictions are quite accurate, their learning process is complex and, thus,
time and energy consuming. Here, we propose to extend the concept of RRNs by including continuous-variable quantum
resources in it and to use a quantum-enhanced RNN to overcome these obstacles. The design of the continuous-variable
quantum RNN (CV-QRNN) is rooted in the continuous-variable quantum computing paradigm. By performing extensive
numerical simulations, we demonstrate that the quantum network is capable of learning-time dependence of several types of
temporal data and that it converges to the optimal weights in fewer epochs than a classical network. Furthermore, for a small
number of trainable parameters, it can achieve lower losses than its classical counterpart. CV-QRNN can be implemented
using commercially available quantum-photonic hardware.

Keywords Quantum machine learning · Quantum computing · Time series · Continuous variables · Quantum advantage ·
Quantum photonics

1 Introduction

Fast and accurate time series analysis and prediction lie at the
heart of digital signal processing, andmachine learning algo-
rithms help implement them (Gamboa 2017; Lim and Zohren
2021). They feature a wide palette of use cases ranging from
audio and video signal processing and compression (Ma et al.
2020), temporal signal classification (Hüsken and Stagge
2003), speech processing and recognition (Amodei et al.
2016; Dahl et al. 2012; Sak et al. 2014), economic (Saad et al.
1998), and earth system observation (Bonavita et al. 2021;
Holmstrom et al. 2016), to applications in seismology (Kong
et al. 2018) and biomedicine (Goecks et al. 2020). A method
that is particularly well suited for the analysis of temporal
correlations in data sequences is recurrent neural networks
(RNNs) (Sherstinsky 2020). This is because they accumu-
late information about subsequent input data, which amounts
to a cumulative memory effect seen in their computations.
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However, training large RNNs, such as highly parametrized
long short-term memory (LSTM) architecture (Hochreiter
and Schmidhuber 1997), can be computationally intensive,
requiring significant memory and processing power (Sale-
hinejad et al. 2018). Hence, neural networks such as gated
recurrent unit (GRU) (Cho et al. 2014), minimal gated unit
(MGU) (Zhou et al. 2016, and their variations (Dey and
Salem 2017; Heck and Salem 2017) were developed with the
aim of attaining comparable performance to more complex
models while utilizing fewer parameters, thereby reducing
the computational expenses associated with training.

Quantum machine learning (QML) (Schuld et al. 2014;
Biamonte et al. 2017) holds promise of augmenting the
machine learning process by employing quantum resources
and speeding up computations. To this end, both qubit
(discrete-variable, DV) and continuous-variable (CV) data
encodings are extensively studied (Garg and Ramakrishnan
2020; García et al. 2022). CV systems can be imple-
mented with quantum-photonic platforms and trapped ions.
Improvements in machine learning models using quantum
computation can be achieved either by speeding up the algo-
rithm (Rebentrost et al. 2014; Schuld et al. 2016; Liu et al.
2021) or by reducing the number of epochs required for
training. The latter approach is at the focus of this work.
It is usually pursued by means of parameterized quantum
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circuits (Schuld et al. 2021; Farhi and Neven 2018; Schuld
et al. 2020; Benedetti et al. 2019) where the values of quan-
tum gates’ parameters come as a result of circuit training.
This recursive process is similar in spirit to the feed-forward
neural network algorithm (Svozil et al. 1997). This method
has recently been proven to be useful for satellite image
classification (Sebastianelli et al. 2022), joint probability
distribution modeling (Zhu et al. 2022), and time series anal-
ysis (Bausch 2020; Takaki et al. 2021; Chen et al. 2022;
Emmanoulopoulos and Dimoska 2022).

Until now, quantum-enhanced implementations of RNNs
that have been used for time series analysis were designed
for multiple-qubit data input. One such quantum modifi-
cation of RNNs is the recurrent quantum neural network
(RQNN) (Bausch 2020). In this network, each cell is built
from a parametrized neuron, and amplitude amplification
serves as a nonlinear function applied after each cell call.
To date, it was the first fully quantum recurrent neural
network, specifically designed to address the challenges
of the vanishing and exploding gradient problem, while
also demonstrating strong performance on complex tasks.
On the contrary, the quantum recurrent neural network
(QRNN) (Takaki et al. 2021) consists of cells made of
parametrized quantum circuits, which are capable of per-
forming unitary transformations on all input qubits. This
network effectively leverages parametrized quantum circuits
for temporal learning tasks. An alternative approach to tem-
poral data prediction is based on quantum long short-term
memory (QLSTM) (Chen et al. 2022). It employs a clas-
sical architecture, in which LSTM cells are replaced with
parametrized quantum circuits optimized during the training
process. This study aimed to develop a hybrid network capa-
ble of learning sequential data. The resulting architecture
demonstrated faster convergence compared to its classical
counterparts for specific tasks. The idea of constructing the
quantum gated recurrent unit (QGRU) was proposed and
analyzed in Chen et al. 2020. The successful integration of
QGRU and attention mechanism resulted in a neural net-
work with improved nonlinear approximation and enhanced
generalization ability. In the last two cases, the implemen-
tation was based on internal measurements of the quantum
state to realize necessary additional operations and rule sets,
which rendered these approaches semi-classical. A differ-
ent variant of the quantum recurrent neural network was
proposed in Hibat-Allah et al. (2020), where a variational
wave-functions were used to learn the approximate ground
state of a quantum Hamiltonian. The authors shows that the
network is capable of representing several many-body wave
functions and allows for the efficient calculation of physical
estimators. Finally, the Hopfield network, which is a form of
an RNN, has awaited several implementations on a quantum
computer (Rebentrost et al. 2018; Rotondo et al. 2018; Tang
et al. 2019). This approach offers the potential for faster and

resource-efficient training compared to its classical counter-
parts.

Here, we propose a RNN-based quantum algorithm for
rapid and rigorous analysis and prediction of temporal data
in the CV regime (CV-QRNN). CV-QRNN capitalizes on the
parameterized quantum circuit proposed in Killoran et al.
(2019). Its operation cycle consists of three phases: enter-
ing data, processing them, and performing a measurement.
The measurement result, together with the next data point,
constitutes the input for the next cycle. To the best of our
knowledge, we are the first to construct and study a QRNN
in the CV regime for time series processing. We train CV-
QRNN for sequence data prediction, forecasting, and image
classification and compare the results with the state-of-the-
art LSTM implementation. By means of extensive numerical
simulations, we demonstrate significant reduction of the
number of epochs required for CV-QRNN training to achieve
similar results compared to a fully classical implementation
with a comparable number of tunable parameters.

This paper is organized as follows. Section2 describes
CV-QRNN’s theoreticalmodel and its architecture. InSect. 3,
we demonstrate results of our numerical simulations,with the
methods described in Sect. 4. The conclusions and discussion
are provided in Sect. 5.

2 Theoretical model

2.1 Continuous-variable quantum information
processing

There are twomain quantum information frameworks explored.
In one of them, information is encoded in discrete variables
that are represented by qubits, and in the other one in continu-
ous variables, embodied by qumodes.Both schemes facilitate
universal quantum computation, i.e., they can implement an
arbitrary unitary evolutionwith arbitrarily small error (Weed-
brook et al. 2012; Lloyd and Braunstein 1999). While qubits
are a counterpart of classical digital computation with bits,
CVs resemble analog computing. Here, we focus on the CV
quantum framework.

Quantum CV systems hold promise of performing com-
putations more effectively than their DV counterparts (Lloyd
and Braunstein 1999). In particular, thanks to the ability of
CV systems to deterministically prepare large resource states
and to measure results with high efficiency using homodyne
detection, they scale up easily (Gu et al. 2009), leading e.g., to
instantaneous quantum computing (IQP) (Douce et al. 2017).
These hypothesis is also reinforced by the fact that classical
analog computation has been shown to be effective in solving
differential equations, some optimization problems, and sim-
ulations of nonlinear physical systems (Vergis et al. 1986),
where it is able to achieve accurate results in a very short
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time (Chua and Lin 1984). Analog accelerators have been
proposed as an efficient implementation of deep neural net-
works (Xiao et al. 2020).

Universal CV quantum computation requires a set of
single-qumode gates and one controlled two-qumode gate
that will generate all possible Gaussian operations, as well as
one single-qumode nonlinear transformation of polynomial
degree 3 or higher (Lloyd and Braunstein 1999; Weed-
brook et al. 2012). In the case of quantum photonic circuits,
qumodes are realized by photonic modes that carry informa-
tion encoded in the quadratures of the electromagnetic field.
These quadratures possess a continuous spectrum and con-
stitute the CVs with which we compute. All Gaussian gates
can be built from simple linear devices such as beam splitters,
phase shifters, and squeezers (Knill et al. 2001). Nonlinear-
ity is usually achieved by cross-Kerr interaction (Stobińska
et al. 2008), but it can also be induced by the measurement
process, either photon-number-resolving (Scheel et al. 2003)
or homodyne (Filip et al. 2005).

The implementation of CV-QRNN will involve the dis-
placement gate

D(α) := exp
{
αâ† − α∗â

}
, (1)

where α is a complex displacement parameter, â (â†) is a
qumode annihilation (creation) operator, respectively. We
will also use the squeezing gate

S(r) := exp
{ r
2
(â2 + â†2)

}
, (2)

where r is a complex squeezing parameter, as well as the
phase gate

R(ϕ) := exp
{
−iϕâ†â

}
, (3)

with phase ϕ ∈ (0, 2π). We will also harness the beam
splitter gate, which is the simplest two-input and two-output
interferometer,

B(θ) := exp
{
θ(â†b̂ − âb̂†)

}
, (4)

where θ ∈ (0, π
2 ), â and b̂ (â† and b̂†) are annihilation

(creation) operators of two interfering qumodes, respec-
tively. Any arbitrary multiport interferometer, denoted here
by I (θ ,ϕ), can be implemented with a network of phase
and beam splitter gates (Reck et al. 1994). In our work, we
will use the Clemets decomposition (Clements et al. 2016) to
achieve this goal. All described gates are implementable with
the commercially available quantum-photonic hardware. To
realize nonlinear operations, CV-QRNNwill harness the ten-
sor product structure of a quantum system (Zanardi et al.
2004), which is capable of providing nonlinearity by means
of measurement, in the spirit of Refs. Killoran et al. 2019;
Takaki et al. 2021. This will free us from the necessity of
utilizing strong Kerr-type interactions that are difficult to
implement.

2.2 Recurrent neural networks

Our quantum-enhanced RNN architecture (CV-QRNN) is
inspired by the vanilla RNN depicted in Fig. 1 (Sherstinsky
2020). This is a standard network layout which is trained by
iterating over the elements of an input data sequence. Then,
during the prediction phase, the output values are looped back
to the input to obtain subsequent results.

In the RNN, Tx n-bit input sequences {xi }Txi=0 (xi ∈ R
n ,

indicated as green squares in Fig. 1) are sequentially pro-
cessed by a cell (brown square) to produce Ty m-bit output

sequences {̃ yi }Tyi=0 (̃ yi ∈ R
m , pink squares). At each time

Fig. 1 Schema of a recurrent neural network. At every time step t , an
input vector xt is injected to the network cell (brown square) that is
parametrized by a hidden state ht . After all the input data have been
processed, output sequences ỹτ are produced, and they serve as the

next input to the RNN (dashed arrows). Parameters of the network (not
shown on the figure) are described in the text. Additional sets of rules
R included in the network cells upgrade RNN to LSTM or GRU archi-
tectures
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step t , the RNN cell is characterized by a hidden state vector
ht ∈ R

d , which serves as a memory that keeps the internal
state of the network. It is updated as soon as a new data point
is injected into the network in step t + 1

ht+1 =
{
gh(Wx xt + Whht + bh), 0 ≤ t ≤ Tx
gh(Wx ỹt−Tx−1 + Whht + bh), t > Tx

(5)

where Wx ,Wh are weight matrices of dimensions d × n and
d×d , respectively, bh ∈ R

d is a bias vector, gh is an element-
wise nonlinear activation function. h0 is an initial hidden state
which is a parameter of the network.

The output sequences are computed only after all input
data points were processed by the RNN

ỹτ = go
(
WyhTx+τ + by

)
, (6)

whereWy is a weight matrix of dimensionm×d, by ∈ R
m is

a bias vector and go is an element-wise nonlinear activation
function, which can be different from gh .

Next, we validate the accuracy of the results produced by
the network. To this end, we compute a cost function C that

allows us to compare {̃ yt }Tyt=0 with the desired result { yt }Tyt=0.
In the case of the sequence prediction and forecasting task,
the mean square error was adopted:

CMSE

(
{̃ yt }Tyt=0, { yt }Tyt=0

)
= 1

m

Ty∑
t=0

‖ ỹt − yt‖2, (7)

while for the classification task—the binary cross entropy,
in which only a single output ỹ0 ≡ ỹ is compared to the

expected label y0 ≡ y

CBCE (̃ y, y)= 1

m

m∑
i=1

−(yi log(ỹi )+(1 − yi ) log(1− ỹi )) .

(8)

Minimization of the cost function by means of backprop-
agation helps us to optimize parameters of the network.
The state-of-the-art LSTM and GRU architectures intro-
duce a modification to RNNs by complementing the hidden
layer with additional sets of rules R that determine how
long the information about previous data points should be
kept (Hochreiter and Schmidhuber 1997). It is implemented
by functions acting on copies of input and hidden layer data,
which amplify or vanish selected values from previous itera-
tions. We use LSTM as a classical reference system to which
we compare the performance of CV-QRNN. We find this
comparison fair because LSTM is one of the most widely
used schemes in industrial applications (Van Houdt et al.
2020) that is similar in its architecture and mode of opera-
tion to CV-QRNN. In this paper, we use its implementation,
which follows the original proposal found inRef. (Hochreiter
and Schmidhuber 1997).

2.3 CV-QRNN architecture

The detailed CV-QRNN layout, shown in Fig. 2, is based on a
vanilla RNN. This is because GRU and LSTM architectures
cannot be directly implemented on a quantum computer as
a result of the no-cloning theorem (the no-cloning theorem

Fig. 2 CV-QRNN architecture. a Single layer L acts on n = n1 + n2
qumodes (horizontal lines) and consists of displacement gates D,
squeezing gates S, and multiport interferometers I . A vector x ∈ R

n2

encodes the input data, while ζ = {θ1,ϕ1, r1, r2, θ2,ϕ2,α1,α2, γ }
denotes all trainable parameters of the network. Red dashed lines split
the layer into three parts, responsible for (from left to right) encoding,
interaction, andmeasurement. bData sequence is processed recurrently

by iterating layer L over all inputs x1, . . . , xTx . All the qumodes are
initialized with the vacuum state |0〉⊗n1,2 . After each iteration, the out-
put x̃′

t is measured, mulitplied by parameter γ , and all bottom wires
are reset to the vacuum state. The first prediction of the network ỹ0 is
taken only after all data points have been processed. The subsequent
prediction ỹτ is the output of the layer L

(̃
yτ−1, ζ

)
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forbids to copy quantum information). In addition, quantum
memories, which are required to implement internal rules in
the latter networks, are unfeasible.

The wires represent the n-dimensional tensor product of
the qumodes, and the rectangles represent the quantum gates.
Each qumode is initially prepared in the vacuum state |0〉,
which is collectively denoted as |0〉⊗n . To highlight the fact
that every gate acts on n qumodes simultaneously, but each
qumode sees different gate parameters, we use the following
notation: D(v) ≡ ⊗

i D(vi ) and S(v) ≡ ⊗
i S(vi ), where

v = (v1, . . . , vn)
T,

⊗
is the tensor product, D and S are

a single-qumode displacement and squeezing gates, respec-
tively.

A single quantum layer L , shown in Fig. 2a, acts in the
following way: first, it encodes classical data x into the quan-
tum network by means of a displacement gate D(x) that acts
on n2 qumodes prepared in the vacuum state |0〉⊗n2 (bot-
tom wire). Next, all n = n1 + n2 qumodes (top and bottom
wires) are processed in a multiport interferometer I (θ1,ϕ1)

followed by squeezing gates S(r1,2), another interferometer
I (θ2,ϕ2), and displacement gates D(α1,2). As a result of this,
the layer L outputs a highly entangled state that involves all n
qumodes. Eventually, n2 qumodes are subjected to a homo-
dyne measurement and reset to the vacuum state, while n1
qumodes are passed to the next iteration.

The qumodes that are measured are dubbed the input
modes, while these left untouched—the register modes. The
output of the former, x̃, equals to the mean value of the mea-
surement results x̃′ multiplied by the trainable parameter γ .
For convenience of notation, we denote all the gates’ parame-
ters in the network as ζ = {θ1,ϕ1, r1, r2, θ2,ϕ2,α1,α2, γ }.
Thus, the layer L is characterized by 2

(
n2+max(1, n − 1)

)
+n + 1 parameters in total, which are randomly initialized
before the first run.

Sequential processing of data points {xi }Txi=0 is shown in
Fig. 2b. As soon as the quantum layer L(xt , ζ ) is executed in
the time step t , the bottomn2 qumodes are reset to the vacuum
state |0〉⊗n2 and fed to the next layer L(xt+1, ζ ) alongwith n1
qumodes that were never measured. This process is iterated
T times. The data point that follows xTx is x̃Tx ≡ ỹ0 and
the process continues, i.e., the layer L (̃ yτ , ζ ) outputs ỹτ+1,
for the next Ty steps. Only the output y0, . . . , yTy is then
analyzed.

3 Numerical simulations

To assess the quantum-enhanced performance of the CV-
QRNN architecture depicted in Fig. 2, we compared its
performance with a classical LSTM (Fig. 1). Our figure of
merit was the reduction in the number of epochs required to
obtain a clear plateau in subsequent values of the cost func-
tionC , which achieve the same order of magnitude as for the

reference classical network. The comparison involved run-
ning the quantum algorithm under a software simulator of a
CV quantum computer, which was used to calculate the mea-
surement outputs of the layer L and optimize the trainable
parameters ζ . Reference data were obtained by processing
the same input with a state-of-the-art LSTM implementation.
For our experiments, we chose two tasks to be realized by
both networks: time series prediction and forecasting, as well
as data classification. The former demonstrated the ability of
CV-QRNN architecture to compute subsequent data values
from initial samples of periodic or quasi-periodic functions.
The latter was a textbook classification problem of recogniz-
ingMNIST handwritten digits based on the initial learning of
the network. It allowed us to show that even a small number of
parameters was suitable for correct discrimination between
data sets.

Task 1 – sequence prediction and forecasting.Wedefine
prediction as computing only a single value of the function
f (x) based on the previous T data points in a sequence
and forecasting as computing several consecutive values
to achieve a longer output. For this task, we chose quasi-
periodic Bessel function of degree 0, f (x) ≡ J0(x). It has
wide applications in physics and engineering, as it describes
various natural processes (Korenev 2002). Since the oscil-
lation amplitude vanishes for large x , forecasting of this
function is non-trivial. The Bessel function was used to gen-
erate 200 equidistant points (xi , J0(xi )), where x0 = 0 and
x200 ≈ 4	 and 	 designates the function period. Next, tak-
ing xi = J0(xi ), we computed the sequence {xi }200i=0. It was
split equally between the training and test data sets, so that
each set contained 2 periods of the function. The networkwas
trained to predict xi+T based on the input that consisted of
T −1 previous data points. For each input {xi , . . . , xi+T−1},
where i = 0, . . . , 200 − T , the network returned the output
y, which was trained to be as close to xi+T as possible. We
used T = 4 (the rationale for this choice is presented below).
The standard baseline model for this task was to repeat
the last input point as the output value, xi+T = xi+T−1.
The results achieved for other functions, such as sine, trian-
gle wave, and damped cosine, are shown in the Appendix
2.

The results of the first task are depicted in Fig. 3, which
shows the cost function C (Eq. 7) as a function of the num-
ber of training epochs, plotted separately for the training and
test data sets. The outputs are compared for CV-QRNN and
LSTM networks, for which we used the same hyperparame-
ters, such as batch size, learning rate, and a similar number
of trainable parameters. The cost functionC for the quantum
network reaches the same value after 100 epochs as for the
classical network after 200 epochs. We noticed that in the
former case, the cost function drops rapidly in the first few
epochs, and for the same number of epochs, it achieves lower
values compared to the classical network.
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Fig. 3 Cost function C (Eq. (7)) computed for CV-QRNN (blue line,
training data; light gray, testing) and LSTM (orange line, training; dark
gray, testing), as a function of the number of epochs in the task of
predicting the values of the Bessel function J0(x) (Task 1). Shaded
regions represent the standard deviation, and solid lines are the average
for 5 runs of the simulation. The CV-QRNN achieves values ofC below
10−4 already after 10 epochs and reaches 10−5 below 100 epochs. Such
values are accessible for the correspondingLSTMafter 200 epochs. The
dashed line indicates the cost function for the simplest baseline strategy
in which the last input value is repeated as the predicted value

Prediction and forecasting capabilities of both networks
are visualized in Fig. 4, where output values are compared
directly with the previously generated test sequence. This
plot depicts how the Bessel function is gradually approxi-
mated after some number of computation epochs. It shows
that while CV-QRNN copes well with the task and the pre-
diction is especially well realized, LSTM is much worse in
prediction and fails in forecasting even after 100 epochs of
training.

We also investigated the dependence of CV-QRNN pre-
diction on the input sequence length T (Fig. 5). For this, we
have trained the network with 3 qumodes for T = 2n, with
n = 1, ..., 10, for 50 epochs and computed the cost func-
tion C . We observe that the worst prediction is achieved for
T = 2, which is expected since the recurrent feature of the
network is barely used in this case. However, for T values
ranging from 4 to 16, the cost function stabilized at approx-
imately ∼ 105. For T = 18 and T = 20, we observe large
fluctuations in the value of the cost function, with the best
value found being less than for T = 10 and theworst—about
the same as for T = 2. We believe that these fluctuations are
caused by the limited memory of our network, which has a
fixed number of parameters, in conjunction with the cut-off
dimension described in Sect. 4. In our experiments, we used
T = 4 which was a compromise between the computation
time and final cost function value.

Task 2 – MNIST image classification. The second task,
which was tested on the CV-QRNN architecture, was the
classification of handwritten digits from the MNIST data set
(Deng 2012). Due to the fact that simulating qumodes and
their interactions is resource-heavy, we have narroweddown

the test to the binary classification problem of digits “3”
and “6.” Additionally, we downsampled the original images
from 28 × 28 pixels to 7 × 7. We used 1000 images, which
were divided between training (80%) and test (20%) sets.
The image pixels were sequentially injected into the network
from left to right and from top to bottom, giving the sequence
{xi }48i=0. The labels were y ∈ {0, 1}, where 0 corresponded to
digit “3” and 1 to digit “6.” For the simulations, we used the
quantum network with 3 qumodes, with one qumode being
an input qumode and the rest two acting as register modes.
A comparable classical LSTM network was implemented
with the standard machine learning library. For both quan-
tum and classical networks, we have used the binary cross
entropy loss for the calculation of the cost function C (Eq.
(8)). Additionally, the results were assessed with an accu-
racy function, which is defined as the percentage of properly
classified images.

Figure6 illustrates the accuracy progression during the
training for the MNIST data set. The classical network
achieves a prediction accuracy of 90% in approximately 5
epochs, and the final accuracy stabilizes at around 93%. On
the other hand, the quantum network attains a final accuracy
of approximately 85%. This experiment demonstrates that
the quantum network is capable of learning the MNIST
number recognition task successfully. However, the classi-
cal architecture, with a comparable number of parameters,
achieves better results and requires fewer epochs compared
to the quantum network.

4 Methods

The quantum network was implemented using the Straw-
berry Fields package (Killoran et al. 2019) that allows the
user to easily simulate CV circuits.1 It also provides a back-
endwritten inTensorFlow (Abadi et al. 2015),whichmakes it
possible to use its already implemented functions to optimize
the network parameters. For this purpose, we use the ADAM
algorithm, which is commonly applied to find the optimal
parameters of the network (Zhang 2018). ADAMmerges two
techniques: adaptive learning rates and momentum-based
optimization. The initial learning rate was 0.01 (quantum)
and 0.001 (classical) for the time series prediction (Task
1) and 0.01 (quantum and classial) for the classification of
MNIST handwritten digits (Task 2). The data was processed
in batches of 16 for Task 1, which allowed us to speed up the
calculation without losing much precision. For Task 2, batch
size was 1. The hyperparameters were chosen empirically.

Since the quantum CV computations are done in an
infinite-dimensional Hilbert space, the dimensionality of the
system needs to be truncated to be able to be modeled on

1 Code is available in the repository: https://github.com/
StobinskaQCAT/CVQRNN

123

Page 6 o f 1631

https://github.com/StobinskaQCAT/CVQRNN
https://github.com/StobinskaQCAT/CVQRNN


Quantum Machine Intelligence (2023) 5:31

Fig. 4 Progress of training on the data generated with Bessel function
J0(x), for CV-QRNN (top row) and LSTM networks (bottom row).
Blue points represent the reference data, orange points are predictions

based on T = 4 previous points, and the gray ones are the forecasted
values. Vertical dashed line marks the point where the data was split for
training (left) and testing (right) sequences

a classical computer. The highest accessible Fock state is
called a cutoff dimension. In our simulations, we have used
the cutoff dimension of 6. Furthermore, we added the reg-
ularization term of the form LT = η (1 − Trρ)2 to the cost
function, where Trρ is the trace of the state after the last layer
has been processed, and η is a weight empirically chosen to
be 10 (Killoran et al. 2019).

The implementation of classical LSTM has been real-
ized using the TensorFlow package (Abadi et al. 2015). We
use the layer tf.keras.layers.LSTM, which takes as a
parameter the dimensionality of the hidden state. We set this
parameter to match the number of trainable parameters in
CV-QRNN, to make both implementations comparable. The
remaining arguments of the LSTM implementation were left
at default values.

The calculations were performed with two hardware plat-
forms. The time series prediction task (Task 1) was realized
on a laptop with CPU Intel Core i5-10210U (8 cores) run-
ning at 4.2GHz, and 16 GB of RAM. The calculations took
between 1 and 24h for CV-QRNN training over 50 epochs,

depending on the data input length. The training for the
MNIST data classification (Task 2) was realized with a clus-
ter with CPU Intel Xeon E5-2640 v4 processors, 120 GB of
RAM, and Titan V GPUs equipped with 128 GB of memory.
It took approximately 2 days for 25 epochs and 1000 images
of 49 pixels each.

5 Discussion

We performed extensive numerical simulations of CV-
QRNNwith a CVquantum simulator software and compared
its performance to the state-of-the-art implementation of
classical LSTM. Our simulations showed that CV-QRNN
possesses features that make it highly advantageous in time
series processing compared to the classical network. The
quantumnetwork arrived at its optimal parameter values (cost
function below 10−5) within 100 epochs, while a comparable
classical network achieved the same goal after 200 epochs,
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Fig. 5 The cost function C (Eq. (7)) after 50 epochs of training CV-
QRNN for different lengths of input sequence T . The median values
for 5 separate runs are depicted by an orange line, while the boxes
represent the data between the first and third quartile. The whiskers
indicate the range between minimum and maximum values of the data
points. For T = 18 and T = 20, 10 separate runs were analyzed.
Training sequences were generated with Bessel function, as described
in the text. The choice of T = 4 in our numerical simulations results
from the observation that for larger lengths, the gain is not so largewhile
the computing resources and time grows exponentially

and therefore, the speed gain achieved 200%. Similar results
were obtained for other sets, presented in Appendix 2.

FasterRNN training is a hot topic currently investigated by
AI researchers (García-Martín et al. 2019), who notice that it
becomes amore important goal than achieving high accuracy.
High requirements for computing power and energy con-
sumption in largemachine learningmodels constitute serious
roadblocks for their deployment. They directly translate

Fig. 6 Accuracy (the percentage of properly classified outputs) com-
puted for CV-QRNN (blue line, training data; light gray, testing) and
LSTM (orange line, training; dark gray, testing), as a function of the
number of epochs in the task of the classification of the MNIST data set
(Task 2). Shaded regions represent the standard deviation while solid
lines are the average for 5 runs of the simulation. The classical network
achieves the accuracy above 90% in about 5 epochs, and final accuracy
stabilizes around 93%. The quantum network final accuracy is around
85%

into large operational costs, but also into an environmental
footprint, and therefore, they must be resolved. Therefore,
the computation speedup merged with lower environmental
influence is an unbeatable advantage of quantum platforms
which directly address the limitations faced by classical solu-
tions.

Our work opens possible prospects for future research
in the development of quantum RNNs. It also underlines
the importance of the CV quantum computation model. The
quantum platform we chose makes our solution highly com-
pelling, because the CV architecture we propose can be
implemented with existing off-the-shelf quantum photonic
hardware, which operates at room temperature. To develop
such a platform, one needs lasers, which produce coher-
ent sources of light, and basic elements (squeezers, phase
shifters, beam splitters), which are already routinely imple-
mented in photonic chips and are characterized by very
low losses. Homodyne detection achieves very high effi-
ciency and is implemented with photodiodes and electronics.
To obtain suitable nonlinearity, required for the activation
function, we used the tensor product structure of the quan-
tum circuit together with the measurement, which freed us
from using additional nonlinear elements. One of the unbeat-
able advantages of this platform is true quantum operation,
without the need of performing measurements of the refer-
ence qubits or qumodes inside each algorithm iteration to
implement internal rules of the hidden layer. However, mea-
surement of selected qumodes and use of this output for a
subsequent iteration are perfectly doable. A similar approach
was already demonstrated in the coherent Ising machine and
is planned for its quantum successor (Inagaki et al. 2016;
Yamamura et al. 2017; Honjo et al. 2021). There, a very long
optical fiber loop acted as a delay line to synchronize elec-
tronic and photonic paths of the circuit.

A natural next step for our project would be to repeat the
computations with real quantum hardware instead of a simu-
lator. This is the problem faced by many scientific papers in
the domain of quantum machine learning, as they usually do
not rely on one of a few available hardware configurations.
For example, previously studied quantumRNN architectures
such as QLSTM or QGRU relied on unphysical operations
such as copying of a quantum state, which could not be
achieved with real quantum hardware.

There are also several open questions that would be worth
answering in future work. One of them is the framework in
which a comparison between classical andquantumnetworks
would be possible in a fair way. In our work, we used the
criterion of the same number of parameters; however, there
are approaches that focus on provable advantages of a quan-
tum network (Gyurik and Dunjko 2022; Huang et al. 2022).
Moreover, our simulations, due to the availability of limited
computational resources and exponential scaling of require-
ments, were performed only for a small number of qumodes.
Therefore, in future research, wewould like to verify if a sim-
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ilar quantum advantage is still present for a larger network.
The faster training of the quantum network compared to its
classical counterpart can also be investigated by applying
the concept of effective dimension introduced in Abbas et al.
(2021). By utilizing the quantum Fisher information matrix,
which provide an insight into the curvature of the network’s
parameter landscape, the effective dimension offers a means
to understand this phenomenon. This approach has the poten-
tial to facilitate a qualitative and equitable assessment of the
trainability of various models in future research. Lastly, it
would be particularly interesting to study CV-QRNN per-
formance with real-world data such as hurricane intensity
(Giffard-Roisin et al. 2018), where a clear data pattern is not
obvious.
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Appendix 1. Noise influence

We analyzed the influence of noise on the predictions
returned by CV-QRNN in Task 1. Two types of noise were
investigated. The first was caused by losses in the channels
and was estimated in the following way: let â be a bosonic
mode and β ∈ [0, 1] be the loss parameter; then the lossy
channel is described by

â′ = Trb̂

(√
1 − β â + √

β b̂
)

, (9)

where 1 − β is energy transitivity. For β = 0, we obtain the
original mode â, and for β = 1, we lose all the informa-
tion. The dependence of final cost function on parameter β

is shown in Fig. 7a.

The other type of noise is located in the data itself. To
model it, we added uniformly distributed random values to
the time series, Uniform(−ε, ε), where ε is a parameter. The
dependence of final cost function on the parameter ε is pre-
sented in Fig. 7b.

Importantly, we did not observe significant change in the
prediction for a network with a channel loss up to 0.2. The
cost function for β = 0.4 is twice as big as for no noise at
all. The network still performs well, even the forecasting of
multiple data points (cf. Fig. 7a). In the case of the noisy data,
we observed no influence up to ε = 0.01. With ε = 0.03, we
obtained the value of the loss function, which is almost an
order of magnitude larger than with no loss at all. Figure7b
also shows that for ε > 0.03 the network loses its ability to
forecast.

(a)

(b)

Fig. 7 The influence of the noise on the cost function C (Eq. (7)):
a for noise in the channel parametrized by β and b for noise in the
data, parametrized by ε. Both parameters are described in Appendix 1.
Shaded region shows the standard deviation, while solid lines depicts
a mean of 5 runs of the simulation. In the small boxes, the prediction
of the network for the parameter shown by dashed arrow are presented.
For clarity, we have omitted legends, but the colors are the same as in
Fig. 4
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Appendix 2. Additional data sets

Here, we present results for other data sets: sine wave
(Figs. 8a and 9), sum of two sine waves with period 2π
and π (Figs. 8b and 10), triangle wave (Figs. 8c and 11),
and exponentially damped cosine wave (Figs. 8d and 12).

We depict the cost function during the training of the net-
work in Fig. 8. The prediction and forecasting ability is
presented in Figs. 9, 10, 11, and 12 for data sets described
previously. For these data sets, we found similar results as
for the Bessel function, which was described in the main
text.

(a) (b)

(c) (d)

Fig. 8 Cost functionsC (Eq. (7)) during the training of the network for different data sets: a sine wave, b composition of 2 sine waves with different
periods, c triangle wave, d exponentially damped cosine wave
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Fig. 9 Progress of training on the data generated with sine function
sin(x), for CV-QRNN (top row) and LSTM networks (bottom row).
Blue points represent the reference data, orange points are predictions

based on T = 4 previous points, and the gray ones are the forecasted
values. Vertical dashed line marks the point where the data was split for
training (left) and testing (right) sequences
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Fig. 10 Progress of training on the data generated with function
1
2 sin(x) + 1

2 sin(2x), for CV-QRNN (top row) and LSTM networks
(bottom row). Blue points represent the reference data, orange points

are predictions based on T = 4 previous points, and the gray ones are
the forecasted values. Vertical dashed line marks the point where the
data was split for training (left) and testing (right) sequences
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Fig. 11 Progress of training on the data generated with triangle wave
function, for CV-QRNN (top row) and LSTM networks (bottom row).
Blue points represent the reference data, orange points are predictions

based on T = 4 previous points, and the gray ones are the forecasted
values. Vertical dashed line marks the point where the data was split for
training (left) and testing (right) sequences

123

Page 13 of 16 31



Quantum Machine Intelligence (2023) 5:31

Fig. 12 Progress of training on the data generated with function
exp(− x

10 ) · cos(x) (so called damped oscillation), for CV-QRNN (top
row) and LSTM networks (bottom row). Blue points represent the ref-
erence data, orange points are predictions based on T = 4 previous

points, and the gray ones are the forecasted values. Vertical dashed line
marks the point where the data was split for training (left) and testing
(right) sequences
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