
QuantumMachine Intelligence
https://doi.org/10.1007/s42484-023-00107-2

BRIEF REPORT

Quantum Advantage Seeker with Kernels (QuASK): a software
framework to speed up the research in quantummachine learning

Francesco Di Marcantonio1 ·Massimiliano Incudini2,4 · Davide Tezza3,4 ·Michele Grossi1

Received: 30 June 2022 / Accepted: 8 March 2023
© The Author(s) 2023, corrected publication 2023

Abstract
Exploiting the properties of quantum information to the benefit of machine learning models is perhaps the most active field of
research in quantum computation. This interest has supported the development of a multitude of software frameworks (e.g.
Qiskit, Pennylane, Braket) to implement, simulate, and execute quantum algorithms. Most of them allow us to define quantum
circuits, run basic quantum algorithms, and access low-level primitives depending on the hardware such software is supposed
to run. For most experiments, these frameworks have to be manually integrated within a larger machine learning software
pipeline. The researcher is in charge of knowing different software packages, integrating them through the development
of long code scripts, analyzing the results, and generating the plots. Long code often leads to erroneous applications, due
to the average number of bugs growing proportional with respect to the program length. Moreover, other researchers will
struggle to understand and reproduce the experiment, due to the need to be familiar with all the different software frameworks
involved in the code script. We propose QuASK, an open-source quantum machine learning framework written in Python
that aids the researcher in performing their experiments, with particular attention to quantum kernel techniques. QuASK
can be used as a command-line tool to download datasets, pre-process them, quantum machine learning routines, analyze
and visualize the results. QuASK implements most state-of-the-art algorithms to analyze the data through quantum kernels,
with the possibility to use projected kernels, (gradient-descent) trainable quantum kernels, and structure-optimized quantum
kernels. Our framework can also be used as a library and integrated into pre-existing software, maximizing code reuse.

Keywords Software for quantum machine learning · Software · Quantum kernels · Quantum machine learning ·
Quantum computing

1 Introduction

Breakthroughs in quantum technologies have allowed the
construction of small-scale prototypes of quantum

B Massimiliano Incudini
massimiliano.incudini@univr.it

B Michele Grossi
michele.grossi@cern.ch

1 European Organization for Nuclear Research (CERN),
Geneva 1211, Switzerland

2 Dipartimento di Informatica, Università di Verona, Verona
34137, Italy

3 Dipartimento di Matematica, Università di Trento, Povo
38123, Italy

4 Data Reply s.r.l., Turin 10126, Italy

computers (Madsen et al. 2022; Dumitrescu et al. 2022;
Huang et al. 2022), namely NISQ devices (Preskill 2018).
Even though many sources of noise may corrupt the execu-
tion on these devices (Pelofske et al. 2022), we are able to
run a certain class of algorithms (Bharti et al. 2022) which
compromises the strong theoretical speedup of fault-tolerant
quantum algorithms (Montanaro 2016) to achieve shorter,
less noisy computations. A large subset of the NISQ-ready
algorithms is dedicated to the development of machine learn-
ing models.

One of the most interesting technique among them are
the quantum classifiers (Schuld and Killoran 2019; Havlíček
et al. 2019; Mengoni and Di Pierro 2019): the function
f (x) = Tr[ρxρw], where ρx represents the encoding of
a data point x in a quantum state through the feature
map |0〉〈0| �→ U (x)|0〉〈0| = ρx and ρw represents the
weight vector encoded through the mapping |0〉〈0| �→

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-023-00107-2&domain=pdf
https://orcid.org/0000-0003-0634-4659
https://orcid.org/0000-0002-9389-5370
https://orcid.org/0000-0002-6564-5219
https://orcid.org/0000-0003-1718-1314

QuantumMachine Intelligence

W |0〉〈0| = ρw, can be interpreted as a linear1 model
(Schuld and Petruccione 2021). Such a function can be
immediately used to solve supervised learning tasks. By
choosing the weight mapping to be parametric W (θ), we
can train the parameters to minimize some loss function
usinggradient-descent-based techniques: such an approach is
named quantum neural network (Mitarai et al. 2018; Abbas
et al. 2021). However, the training phase of these models
could be affected by barren plateau (McClean et al. 2018;
Holmes et al. 2021), i.e. the flat loss landscape, where the
variance of the gradient vanishing exponentially fast with
respect to the number of qubits. Highly entangled states
(Marrero et al. 2021), noise (Wang et al. 2021), global mea-
surement (Arrasmith et al. 2021), and expressibility of the
feature map (Holmes et al. 2022) have been linked to the
appearance of barren plateau. To avoid such a problem,
Quantum Kernel Estimation (QKE) (Schuld and Killoran
2019; Havlíček et al. 2019; Mengoni and Di Pierro 2019)
algorithm can be used in a hybrid form - we implement a
quantum kernel function κ(x, x′) = Tr[ρxρx′], quantifying
the similarity between two encoded data points, with a classi-
cal machine learning algorithm. The training of the model is
classical and is expected to end successfully2 and efficiently
due to the representer theorem (Schölkopf et al. 2001). Clas-
sical kernel methods are a cornerstone of machine learning,
and have been applied to any sort of task including signal
processing (Pérez-Cruz and Bousquet 2004; Rojo-Álvarez
et al. 2018; Camps-Valls 2006), bioinformatics (Camps-Valls
2006; Ben-Hur et al. 2008), and image processing (Wang and
Qi 2014; Yang 2001).

A clear benefit in using quantum kernel estimation to
enhance machine learning applications has still to be found
(Schuld and Killoran 2022). Quantum kernels have been
shown to improve the performances of classical machine
learning algorithms for some problems, such as the predic-
tion of the output of quantum systems (Huang et al. 2021,
2022), and in learning fromdistributions basedon the discrete
logarithm (Liu et al. 2021). They have been applied to sev-
eral real-world, industrial scale problems such as anomaly
detection (Liu and Rebentrost 2018), fraud detection (Di
Pierro and Incudini 2021; Grossi et al. 2022; Kyriienko and
Magnusson 2022), the effectiveness of pharmaceutical treat-
ments (Krunic et al. 2022), and supernova classifications
(Peters et al. 2021). These approaches have been experimen-
tally tested on superconducting (Peters et al. 2021; Wang

1 The linearity of the model means that the model can be expressed as
linear transformation in the Hilbert space of the quantum system (e.g.
matrix multiplication for finite-dimensional Hilbert spaces). However,
the classifier is non-linear with respect to the space in which the original
data lie, for the effect of the feature map.
2 In some cases the quantum kernel values can concentrate around an
average value, requiring a large number of shots to be estimated (Kübler
et al. 2021; Thanasilp et al. 2022).

et al. 2021), optical (Bartkiewicz et al. 2020), and NMR
(Kusumoto et al. 2021) quantum devices, and their effec-
tiveness is usually assessed empirically.

Most of these experiments share, at least partially, a com-
mon structure: dimensionality reduction techniques, used to
limit the number of quantum resources needed for the com-
putation; the scaling of the input; the choice of the quantum
kernel; the evaluation of the quantum kernel. The researcher
is usually in chargeof developing a software prototype,which
requires the knowledge of many different software frame-
works and platforms: the ones dealing with the machine
learning tasks (Paszke et al. 2019;Chollet et al. 2015), and the
one dealing with quantum computing (Bergholm et al. 2018;
Anis et al. 2021; Broughton et al. 2020; Killoran et al. 2019;
Baidu 2020). As the prototype becomes larger, the probabil-
ity of introducing bugs in the code increases (Lipow 1982),
possibly leading to erroneous results (Fidler et al. 2017;
Botvinik-Nezer et al. 2020; Campos and Souto 2021). Well-
organized code has been shown to facilitate code reuse and
reproducibility (Trisovic et al. 2022; Mineault and Nozawa
2021). Minimizing the quantity of code needed to run an
experiment has clear benefit in speeding up the research,
reducing the time spent to learn, and put the software in a
production environment.

We propose QuASK (Quantum Advantage Seeker with
Kernel), a Python3 software framework unifying under a
single interface all the features to run experiment with
quantum kernels. QuASK can be run from the terminal
using a single command line which specifies how to oper-
ate on the given data. Within the same command, the
researcher can specify to analyze the data and subsequently
generate graphics. QuASK can also be used as a library,
to be integrated within an existing pipeline. Finally, the
open-source nature of the framework allows the user to
integrate further capabilities into the software, having them
immediately available through the command line interface.
QuASK is freely available at https://github.com/CERN-IT-
INNOVATION/QuASK and the documentation is available
at https://quask.readthedocs.io/en/latest/index.html.

2 Theoretical aspects of Quantum Kernels

A binary, symmetric function K : X × X → R is a kernel
function if positive definite (pd), i.e.
n∑

i=1

n∑

j=1

ci c j K (xi , x j) ≥ 0 (1)

for all x1, ..., xn ∈ X given the real3 coefficients c1, ..., cn ∈
R. Supposing k continuous, we can associate a linear Hilbert-

3 The above definition of real-valued kernel is true if we require also
the kernel matrix to be symmetric.

123

https://github.com/CERN-IT-INNOVATION/QuASK
https://github.com/CERN-IT-INNOVATION/QuASK
https://quask.readthedocs.io/en/latest/index.html

QuantumMachine Intelligence

Schmith integral operator

[Tg](x ′) =
∫

x∈X
K (x ′, x)g(x)dx . (2)

whose eigenfunctions {ei }∞i=1 form an orthonormal basis of
square-integrable functions, and the sequence of correspond-
ing eigenvalues {λi }∞i=1 is non-negative. In such a case,

K (x, x ′) =
∞∑

i=1

λi ei (x)ei (x
′) (3)

For x, x ′ ∈ X ⊆ R
d , some examples of kernels are:

Kl(x, x
′) = x · x ′ Linear (4)

Kp(x, x
′) = (x · x ′ + b)r Polynomial of degree r

(5)

Krbf(x, x
′) = exp(−α‖x−x ′‖) RBF or Gaussian (α>0)

(6)

Keq(x, x
′) = 1 − δx,x ′ Equality kernel (7)

while, for example, |x − x ′| is not a valid kernel due to the
lack of positive definiteness. Important class of kernels are
the translation-invariant kernels K (x, x ′) = �(x−x ′) given
thatX is a vector space (the Gaussian kernel is an instance of
such a family), and the group kernel K (x, x ′) = �(x−1x ′)
given X has a group structure. Kernels can form other ker-
nels: a non-negative linear combination of kernels, a product,
and the limit of a kernel sequence (if exists) are kernels too.
Keq is a valid non-continuous kernel, which can be obtained
as the limit for n → ∞ of exp{−n‖x − x ′‖}. A larger list of
kernels and their compositions can be found in (Rasmussen
and Williams 2005; Duvenaud 2014).

Positive definite kernels can be thought as a general-
ization of the notion of inner product due to the strong
relationship with the concept of Reproducing Kernel Hilbert
Space (RKHS). A space H = { f : X → R} of real-
valued functions over X is a RKHS if any linear functional
Lx : H → R, Lx (f) = f (x) is bounded in H (meaning
that if two functions are close in terms of norm, then they are
close also pointwise); or equivalently, for the Riesz represen-
tation theorem, it holds that ∀x ∈ X exists a unique Kx ∈ H
such that f (x) = Lx (f) = 〈 f , Kx 〉H, ∀ f ∈ H. For every
RKHSH there is a unique K such that K (x, x ′) = 〈Kx , Kx ′ 〉,
namely K is a reproducing kernel forH, and viceversa given
a K positive definite kernel there is a unique Hilbert space
of functions on X for which K is a reproducing kernel
(Aronszajn 1950). The mapping φ : X → H encoding a
data point within the RKHS is a feature map. Since

K (x, x ′) = 〈Kx , Kx ′ 〉 = 〈φ(x), φ(x ′)〉 (8)

we can interpret the application of K as calculating the inner
product over a different vector space than the original point
space X .

In supervised learning applications is common to use a
feature map φ to encode the data in higher dimensional
(Hilbert) space to find a linear separation of the transformed
data and by using the inverse map φ−1 we can recover a
complex, nonlinear decision boundary in the original space.
Due to the representer theorem, the linear pattern can be
found independently of the dimensionality of H: given the
data points {(x1, y1), ..., (xm, ym)}, the algorithms are fed
with the kernel Gram matrix Ki, j = [K (xi , x j)] of pairwise
kernel similarities and no other information about the data is
necessary for the classifier. Formally, the representer theorem
asserts the linear function

min
f ∈H

L(f) + λ‖ f ‖ (9)

that minimizes the empirical risk is always in the form:

f (x) =
m∑

i=1

αi K (x, xi). (10)

The terms L is the loss function, e.g. the mean square error
L(f) = 1

m

∑m
i=1‖y − y′‖2. The term λ‖ f ‖, λ > 0 has

regularization purposes, i.e. penalizes high norm solutions
thus preferring smooth functions over non-smooth ones. The
determination of the {αi } values is a convex (efficient) opti-
mization problem.

Kernel methods can be applied to supervised learning
tasks using the kernel ridge regression algorithm (Murphy
2012), which is a straightforward generalization of linear
regression, and the support vector machine (SVM) (Cortes
and Vapnik 1995), which finds the linear classifier that maxi-
mizes themargin (i.e. theminimumdistance between the data
points and the boundary, on both sides). The SVM usually
finds a sparse solution, i.e. a classifier whose output depends
only on a few dataset items named support vectors. Kernel
methods can be applied also to unsupervised learning tasks.
Kernel PCA (Schölkopf et al. 1997) is the straightforward
extension of the principal component analysis algorithm.
It finds the components in the higher dimensional Hilbert
space that have larger variance. Kernels can be applied to
clustering techniques too, including the k-means algorithm
(MacQueen 1967).

Kernel function can be parameterized, i.e. depending on
one or more hyper-parameters that can be trained accord-
ing to some loss function or chosen using a grid search.
A different approach is the multiple kernel learning (Bach
et al. 2004), which consists of definingmultiple, fixed kernels
and learning the most effective linear combination of such
kernels.

123

QuantumMachine Intelligence

2.1 Quantum Kernels implementation

Any parametric quantum circuit implementing the unitary
transformation Uφ(θ) acting on the Hilbert space H of the
n-qubits quantum system can be used to implement a feature
map:

φ : X → H
|0 · · · 0〉 �→ Uφ(x)|0 · · · 0〉 = |φ(x)〉 (11)

Such a feature map allows using the quantum space as an
RKHS. In fact, we can obtain a kernel function sharing the
same structure of Eq.8 by encoding a pair of data points into
quantum states and calculating the inner product between
them:

K (x, x ′) = 〈φ(x)|φ(x ′)〉 (12)
= prob(measurement of the state U †

φ(x ′)Uφ(x)|0 · · · 0〉
using observable σ⊗n

z collapse to eigenstate |0 · · · 0〉).
(13)

Such a kernel can be concretely implemented using the over-
lap test circuit. The circuit structure is shown in Fig. 1a.
We can equivalently use the SWAP test whose circuit struc-
ture is shown in Fig. 1b. Thus, we estimate the value of
the kernel matrix Ki, j by executing, for each pair of data
points, Uφ multiple times (aka shots). This procedure con-
sists in performing multiple measurements which force the
quantum wavefunction to collapse, resulting in the fidelity
measure between the two encoded data points. The kernel
matrix can be finally fed to a kernel machine (e.g. SVM,
Kernel PCA). Moreover, given the parametric quantum cir-
cuit for the feature map Uφ and a second quantum circuit W
implementing the state |w〉 = W |0 · · · 0〉 corresponding to
the linear weights, the function

f (x) = 〈φ(x)|w〉 (14)

is a linear classifier.
Due to the large dimensionality of H, exponentially in

the number of qubits, the computation of the inner prod-
uct may be affected by the curse of dimensionality: any two
pairs of quantum states uniformly sampled in the Hilbert
space have a high probability to be almost orthogonal (Ball
et al. 1997). Each off-diagonal element of the Gram matrix
vanishes with the increasing dimension of H. If we think
to perform the QKE on a current NISQ hardware this small
value Ki j becomes indistinguishable from the inherently per-
vading noisemaking our classifier worthless. Such limitation
requires a number ofmeasurements to estimate a kernel func-
tion value that is polynomially in the dimensions of H, thus
exponentially in n. Therefore, we need to accurately design
our unitary transformation in order to avoid loosing quantum
states within the Hilbert space.

We can design an effective quantum transformation, i.e.
not affected by the curse of dimensionality, using several
techniques.

The first approach is the use of parametric quantum cir-
cuits that we know analytically are restricted to a small
subspace ofH′ ⊂ H, i.e. any parameter assignment x results
in U (x)|0 · · · 0〉 ∈ H′. The second approach is the use of a
bandwidth coefficient (Canatar et al. 2022), i.e. a small scalar
to be applied pointwise to the components of x , diminish-
ing the range of each component. The third approach is to
implement a projected or biased quantumkernel (Huang et al.
2021), which projects the quantum state to an approximate
classical representation through an observable O (the choice
of the observable is an educated guess). The quantum state
lives in a large Hilbert space, but the observable O usually
implies partial traces. The effect of a partial trace (present
in O) over, e.g. the k − th qubit, is to restrict the quantum
space to some smaller representation, thus projecting it to
the k − th qubit subspace. A projected kernel function could
take a gaussian form as follows:

k(x, x ′) = exp(−γ ‖〈0|Uφ(x)OU†
φ(x)|0〉 − 〈0|Uφ(x ′)OU†

φ(x ′)|0〉‖).
(15)

Fig. 1 Fig. 1(a)-(b) Fidelity test and SWAP test for Quantum Kernel Estimation where U is the feature map associated with the quantum kernel.
Figure1(c) Quantum circuit for the feature map associated with the projected kernel, the Hermitian observable H can be arbitrary

123

QuantumMachine Intelligence

The transformationUφ defining the quantum kernel influ-
ences dramatically the linear decision boundary to be found
in the feature space through classical optimization. In fact,
we can find an optimal4 form in an automatic fashion. The
approach proposed by Glick et al. (2021) suggests the uni-
tary transformation U (x; θ) should depend on both the data
point features x and on some trainable parameters θ . The
trainable parameters are then trained using stochastic gra-
dient descent-based algorithm to minimize a loss function.
Such an approachhas been shown tobe ineffective (Thanasilp
et al. 2022). A different approach to optimize the parametric
quantum circuit, choosing the basis gates at each point of the
circuit as a combinatorial optimization algorithm (possibly a
meta-heuristics) has been proposed by Incudini et al. (2022);
Altares-López et al. (2021).

To evaluate the performance of a quantum kernel, a fam-
ily of metrics has been introduced: geometric difference,
approximate dimension,model complexity, and target-kernel
alignment. The first three metrics constitute the central dis-
cussion of the Huang et al paper Huang et al. (2021). The
last one has several implementations already. The ground-
work can be found in Cristianini et al. (2001).

• The geometric difference compares classical and quan-
tum kernel feature spaces evaluating the separation in
performances of the two kernels. A large g compared
with the

√
N indicates there is a deviation between the

two kernel performances.
• The approximate dimension gives us an effective dimen-

sion of the quantum feature space generated by the
encoding of the training samples. Indeed, this quantity
helps us to understand the expressibility of the quantum
kernels. If the d saturates with N it means the quan-
tum states of the training data points are all orthogonal,
otherwise a small value of d tells us the Hilbert space
has not been fully exploited and the model has limited
expressivity.

• The model complexity represents a final test where we
find the complexity of a kernel including in the com-
putation the labels of data. This metric derives from a
prediction error generalization bound.

• The target-kernel alignment, as the model complexity,
captures the relation present between a kernel and the rel-
ative target function, that is, the labels. The final objective
of a kernel-based method is to approximate the label dis-
tribution with the data distribution in the feature space,
and a margin tries to quantify this relation.

4 A form which guarantees good accuracy and generalization, or that
satisfies some objective function as the metrics we refer to further in
this section.

3 Quantum software frameworks

In recent years, a variety of software and programming
languages have been developed to perform quantum compu-
tation.Most of the frameworks express quantumcomputation
in terms of quantum circuits (Feynman 1985), which is the
standard model de facto. They are usually able to apply a
universal set of basis gates, decompose a unitary matrix to
a quantum circuit, reverse a circuit, perform uncomputation
(e.g. to restore the original value of an auxiliary qubit), and
perform circuit transformation (e.g. replacing part of a circuit
with another one). Such frameworks allow the simulation on
the host computer, while others allow sending the quantum
circuit to some remote quantum hardware to be executed.
Some possible alternatives to the quantum circuit model are
the quantum lambda calculus (Van Tonder 2004), the quan-
tum Turing machine (Deutsch 1985), the adiabatic quantum
model (Farhi et al. 2000), the measurement-based quantum
computation (Raussendorf and Briegel 2001), the topologi-
cal quantum computation (Kitaev 2003), and the ZX calculus
(Coecke and Duncan 2011).

A comparison of frameworks using the quantum circuit
model is shown in Table 1. Most frameworks allow to import
and export of circuits in the OpenQASM format (Cross et al.
2017), an open-source specification for quantum circuits.
This facilitates the porting of quantum software among the
different platforms.

3.1 Quantummachine learning frameworks

PennyLane has been the first framework offering Quantum
Machine Learning capabilities. They include the possibil-
ity to train a parametric quantum circuit, whose gradient
can be calculated using the parameter-shift rule (Wierichs
et al. 2022) or with finite difference method. It allows the
integration of a quantum transformation as a layer in a neu-
ral network object defined in Keras (Chollet et al. 2015)
or PyTorch (Paszke et al. 2019) libraries. PennyLane has
also facilities to define a quantum kernel, whose fidelity cir-
cuit (Fig. 1a) is created automatically given the circuit for
a quantum embedding. Strawberry Field proposes the same
high-level capabilities for Continuous Variables formalism
of quantum computing, like photonic Quantum Computing.

Qiskit Quantum Machine Learning has similar features,
allowing us to embed quantum transformations within
PyTorch networks and calculate kernel matrices. TensorFlow
Quantum (Broughton et al. 2020) allows for rapid proto-
typing of hybrid-classical models due to its straightforward
integration with the Machine Learning library TensorFlow
(Abadi et al. 2015). Paddle Quantum allows for effortless
application of QNNs to define LOCC (Local Operations and
Classical Communication) protocols (Chitambar et al. 2014).
Moreover, it allows the simulation of some quantummachine

123

QuantumMachine Intelligence

Table 1 Comparison of relevant quantum computing frameworks

Vendor Name Ref Language S E QML

- ProjectQ Steiger et al. (2018) Imperative Yes No No

- QCL Ömer (2005) Imperative Yes No No

- QiBO Efthymiou et al. (2021) Python Yes No No

- Quipper Green et al. (2013) Domain specific (Haskell) Yes No No

- Quirk Gidney (2014) Drag-and-drop Yes No No

- SilQ Bichsel et al. (2020) Imperative Yes No No

Amazon Braket Amazon Web Services (2020) Python Yes Yes No

Baidu Paddle Quantum Baidu (2020) Python Yes No Yes

Google Cirq Cirq Developers (2022) Python Yes Yes No

Google TensorFlow Quantum Broughton et al. (2020) Python Yes Yes Yes

IBM Qiskit Anis et al. (2021) Python Yes Yes Yes

Microsoft Azure Quantum Microsoft (2020) Python, Q# Yes Yes No

Microsoft LIQUi|〉 Wecker and Svore (2014) Domain specific (F#) Yes No No

Quantinuum t|ket〉 Sivarajah et al. (2020) Python Yes Yes No

Rigetti Forest (pyQuil) Rigetti (2019) Python Yes Yes No

Xanadu PennyLane Bergholm et al. (2018) Python Yes Yes Yes

Xanadu Strawberry Field Killoran et al. (2019) Python Yes Yes Yes

Legend: S: Simulation on CPU, E: Execution on quantum devices, QML: has quantum machine learning facilities. Domain-specific languages are
embedded in the language denoted between parenthesis

learning algorithms defined in the measurement-based quan-
tum computation formalism.

4 Proposed approach

As described in Section 3, many different quantum machine
learning software exists, and most of them have few high-
level algorithmic capabilities. However, there are several
issues to address: many experiments require the interac-
tion between different software platforms, e.g. Qiskit with
PyTorch, requiring specific expert knowledge to be used. Fur-
thermore, experiments need to be compared with theoretical
results which are growing in the literature without, usually,
a common implementation baseline.

Therefore, we have designed QuASK, a unifying, easy-
to-use software framework that automates each phase of an
experiment: the selection of the dataset, the preprocessing,
the definition of the kernel, its implementation, and analysis.
QuASK can be used both as a standalone executable through
its command line interface and as a software library. The first
approach performs the experiment without writing a single
line of code. The second approach might be interesting if
the researcher needs to use both existing code routines. After
having accurately processed the data, and implemented them
to compute classical and quantum Gram matrices we have a
modest range of metrics (proposed in QuASK) to evaluate
the obtained kernel methods.

4.1 Running experiments through a command line
interface

We show how to use QuASK to perform an end-to-end
experiment. Once installed, the software is run with quask
< command >5. QuASK performs the sequence of opera-
tions illustrated in Fig. 2.

The experiment should start with the choice of a dataset.
In such a case, QuASK offers several classical datasets both
for regression and classification tasks.Moreover, some quan-
tum datasets are available, i.e. datasets whose features has be
encoded on a quantum system and modified by a unitary
transformation, such as the one used in Huang et al. (2021).
The output of the process is a pair of NumPy binary files
representing the feature data and the corresponding labels.

The dataset, which can be obtained by using the QuASK
command get-command or by using any dataset provided

5 It can be equivalently run with python3.x -m quask <

command > where x is the Python version installed on the researcher’
system.

123

QuantumMachine Intelligence

Fig. 2 Sequence of operations performed when analyzing a dataset using QuASK

by the user in NumPy format (a feature matrix X.npy, X ∈
R
d×n , and a label vector y.npy, y ∈ R

1×n), can be prepro-
cessed classically before being fed to the quantum machine
learning algorithm. Several preprocessing techniques are
available. Firstly, the researcher can vertically slice the
dataset, keeping only a certain range of labels. Specifically,
the software prompts the researcher to simplify the classifica-
tion task by restricting it to binary classification. However, it
is worth noting that most kernel-based predictors are able to
handle both binary and multi-class classification problems.
Secondly, the user can apply dimensionality reduction tech-
niques. These are important especially in the NISQ setting
due to the lack of resources. The techniques available are
PCA for numerical data and FAMD for mixed numerical and
categorical data.6 These choices aremotivated by the fact that
PCA is a widely used dimensionality reduction technique,
while FAMD is a new method specifically tailored to han-
dle categorical data. The user can extend QuASK to include
further dimensionality reduction techniques. Thirdly, it is
possible to fix the possible imbalanceness of the classes using
randomundersampling or randomoversampling.When load-
ing, the script already shows some statistics about the dataset,
both for classification and regression tasks, which can guide
the user through the preprocessing. The output of the process
is the four files X_train, y_train, X_test, y_test
which can now be fed to some kernel machine.

At this point, the quantum kernel is built on the processed
dataset. There are several available techniques the researcher
can select from. The results of such an evaluation are the

6 FAMD, Factor Analysis for Mixed Data is implemented using Prince
library (available at https://github.com/MaxHalford/prince).

kernel Gram matrices corresponding to the training and test-
ing datasets.

The researcher can use optimized quantum kernels, i.e.
quantum kernels whose circuits have been chosen after
an optimization process. Such a process can be gradient-
descent (ADAM optimizer) or gradient-free (grid search
optimizer) based, in case we are optimizing the angles of the
quantum operations, or combinatorial-optimization based,
in case we are optimizing the generators of the quantum
transformations. Although some quantum machine learning
frameworks, such as PennyLane and Qiskit, already allows
gradient-descent optimization of any circuit (including quan-
tum kernels), no one offers the capabilities to adaptively
choose the generators of the transformation through com-
binatorial optimization.

Finally, the researcher can calculate the accuracy of the
kernel model using the training and testing Gram matrices
given as input. The output is a plot comparing the different
kernels. For each kernel matrix, the user specifies the label
that appears at the x-axis of the plot. If multiple instances are
specified with the same label these are interpreted as i.i.d.
random experiments and will contribute to the error bars.
Multiple metrics are defined.

123

https://github.com/MaxHalford/prince

QuantumMachine Intelligence

Fig. 3 Software stack describing the modularity of QuASK. QuASK
is written on top of PennyLane for defining the quantum circuit soft-
ware and Sci-Kit Learn. These frameworks, written in Python, allow
accessing basic machine-learning routines

4.2 Integrating QuASK in an existing code base

There might be cases in which the command line interface
of QuASK cannot be straightforwardly used for a certain
project. For example, the researcher might be forced to use
a particular preprocessing technique, or analyze the result
accordingly to a custom metric. Such cases can be addressed
by integrating QuASK with the existing code base. In fact,
QuASK provides a library of elements that can be integrated
with other projects. The software is organized into several
modules whose structure is shown in Fig. 3.

4.2.1 Download or generate datasets

Thequask.datasetsmodule facilitates the researcher in
choosing a suitable dataset, providing some of the most pop-
ular datasets from OpenML platform7 and custom datasets
generated also from quantum experiments (the latter allows
us to reproduce results in Huang et al. (2021)).

7 OpenML is an open platform for sharing datasets, available at https://
www.openml.org/

4.2.2 Evaluation metrics

The quality of a quantum kernel can be empirically tested
through the performance of a kernel machine with respect
to a certain dataset, by evaluating some metrics. The module
quask.metrics contains themetrics to compare and eval-
uate the kernels, including the kernel polarity (i.e. Frobenius
inner product between two Grammatrices), the target-kernel
alignment (Cristianini et al. 2001), the training and testing
accuracy of the Support Vector Machine with the precom-
puted kernel, the geometric difference (Huang et al. 2021)
(which can be used to find a potential quantum advantage),
and the model complexity (Huang et al. 2021).

4.2.3 Implement quantum kernels

The quantum kernel requires the definition of a feature map
φ which is implemented using a parameterized unitary trans-
formationUφ(x). TheQuantumKernel Estimation algorithm
(Havlíček et al. 2019) calculating the function k(x, x ′) =
〈φ(x)|φ(x ′)〉 is implemented through either the overlap test
(Fig. 1a) or the C-SWAP test (Fig. 1b). The projected quan-
tum kernel calculates classically the inner product between
two feature vectors φ(x1), φ(x2), each one being the out-
put of the quantum feature map φ(x) = 〈0|U †(x)HU (x)|0〉
(Fig. 1c). The feature map crosses the quantum space first
through U(x) and projects the data back in a classical rep-
resentation when measuring with the Hermitian operator H .
QuASK contains both some notable unitary transformations
U from the literature and the code to use such unitary trans-
formations as a kernel function through one of the three
methods described above. The user can define their own uni-
tary transformation and immediately get the kernel function.
QuASK is agnostic with respect to the software framework
used to define, simulate and execute the quantum circuits: we
have implemented some unitary transformations in Penny-
Lane. This allows also the use of the different functionalities
offered by the different frameworks. For example, noise-
less simulation with PennyLane can be speeded up using
JAX.8 The open-source nature of QuASK allows for easy
integration of other quantum computing frameworks in this
platform.

The module quask.kernels collect all the quan-
tum kernels defined within the platform. Most of the
quantum kernels available are parametric quantum trans-
formations in the form of Eq.12. Such a module can be

8 JAX is a high-performance linear algebra library.

123

https://www.openml.org/
https://www.openml.org/

QuantumMachine Intelligence

straightforwardly extended to include user-specified quan-
tum kernels. However, we can also have a more expressive
quantum transformation, parameterized by both the user fea-
tures and some trainable parameters, which can be adjusted
using gradient-descent-based techniques to minimize some
criteria. Such criteria can be one of the functions imple-
mented in the quask.metricsmodule. The user can take
advantage of the efficient optax optimization library.More-
over, we can use Structure Learning techniques (Incudini
et al. 2022) to optimize the generators of the transformation
using a combinatorial-optimization-based technique such as
Simulated Annealing (Kirkpatrick et al. 1983) or Genetic
Algorithms (Forrest 1996).

4.3 Execution on real hardware

As the software is built on top of PennyLane, QuASK offers
the same possibility of execution on real-world hardware. In
particular, with the Qiskit-PennyLane plugin9 it is possible
to run the quantum circuit on the IBM superconductor-based
quantum hardware, and with the Braket-PennyLane plugin10

it is possible to exploit Rigetti, IonQ, and Oxford Quantum
Circuit hardware. The execution on the NISQ hardware is
noisy and the results may largely deviate from the simulated
ones. The authors in Heyraud et al. (2022) have studied the
effect of noise on quantum kernels.

5 Conclusions

We have introduced QuASK, a tool supporting researchers
in creating powerful quantum kernels. The software takes
care of the most time-consuming and error-prone aspects of
the experimentation. It exploits theoretical metrics in QML,
providing users with an environment to easily assess cases
for potential quantum advantage. This package offers the
exciting perspective of testing these metrics on real-world
datasets. The QuASK project will be extended in future ver-
sions with a wider range of datasets and feature maps, both
classical and quantum.

Acknowledgements FDM was supported by ERASMUS+ internship
scholarship grant according to the EU regulation. MI is part of the
Gruppo Nazionale Calcolo Scientifico of Istituto Nazionale di Alta
Matematica Francesco Severi. MG is supported by CERN through the
Quantum Technology Initiative.

9 https://docs.pennylane.ai/projects/qiskit/en/latest
10 https://amazon-braket-pennylane-plugin-python.readthedocs.io/
en/latest.

Author Contributions All authors have contributed to the development
of QuASK platform, and wrote the manuscript.

Funding Open access funding provided by Universitá degli Studi di
Verona within the CRUI-CARE Agreement.

Data Availability The software is freely available at https://github.com/
CERN-IT-INNOVATION/QuASK. The documentation is available at
https://quask.readthedocs.io/en/latest/index.html.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest Massimiliano Incudini and Davide Tezza are
employees of Data Reply.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado
GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp
A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C,
Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker
P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P,
Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org. https://www.tensorflow.org/

AbbasA, Sutter D, Zoufal C, LucchiA, Figalli A,Woerner S (2021) The
power of quantum neural networks. Nat Comput Sci 1(6):403–409

Altares-López S, Ribeiro A, García-Ripoll JJ (2021) Automatic design
of quantum feature maps. Quantum Sci Technol 6(4):045015

Amazon Web Services (2020) Amazon Braket. https://aws.amazon.
com/braket/

Anis MS, Abby-Mitchell Abraham H et al (2021) Qiskit: An Open-
source Framework for Quantum Computing. https://doi.org/10.
5281/zenodo.2573505

Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math
Soc 68(3):337–404

Arrasmith A, Cerezo M, Czarnik P, Cincio L, Coles PJ (2021) Effect of
barren plateaus on gradient-free optimization. Quantum 5:558

Bach, FR, Lanckriet GR, Jordan MI (2004) Multiple kernel learning,
conic duality, and the SMO algorithm. In: Proceedings of the
Twenty-first International Conference on Machine Learning. p 6

123

https://docs.pennylane.ai/projects/qiskit/en/latest
https://amazon-braket-pennylane-plugin-python.readthedocs.io/en/latest
https://amazon-braket-pennylane-plugin-python.readthedocs.io/en/latest
https://github.com/CERN-IT-INNOVATION/QuASK
https://github.com/CERN-IT-INNOVATION/QuASK
https://quask.readthedocs.io/en/latest/index.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505

QuantumMachine Intelligence

Baidu (2020) Paddle Quantum. https://github.com/PaddlePaddle/
Quantum

Ball K et al (1997) An elementary introduction tomodern convex geom-
etry. Flavors of Geometry 31(1–58):26

Bartkiewicz K, Gneiting C, Černoch A, Jiráková K, Lemr K, Nori F
(2020) Experimental kernel-based quantum machine learning in
finite feature space. Sci Rep 10(1):1–9

Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G (2008)
Support vector machines and kernels for computational biology.
PLoS Comput Biol 4(10):1000173

Bergholm V, Izaac J, Schuld M, Gogolin C, AlamMS, Ahmed S, Arra-
zola JM, Blank C, Delgado A, Jahangiri S et al (2018) Pennylane:
automatic differentiation of hybrid quantum-classical computa-
tions. arXiv:1811.04968

Bharti K, Cervera-Lierta A, Kyaw TH, Haug T, Alperin-Lea S, Anand
A, Degroote M, Heimonen H, Kottmann JS, Menke T, Mok W-K,
Sim S, Kwek L-C, Aspuru-Guzik A (2022) Noisy intermediate-
scale quantum algorithms. Rev Mod Phys 94:015004. https://doi.
org/10.1103/RevModPhys.94.015004

Bichsel B, Baader M, Gehr T, Vechev M (2020) SILQ: a high-level
quantum language with safe uncomputation and intuitive seman-
tics. In: Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2020,
pp. 286–300. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3385412.3386007

Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J,
Johannesson M, Kirchler M, Iwanir R, Mumford JA, Adcock RA
et al (2020) Variability in the analysis of a single neuroimaging
dataset by many teams. Nature 582(7810):84–88

Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV,
Massey P, Halavati R, Niu MY, Zlokapa A et al (2020) Tensorflow
quantum: a software framework for quantum machine learning.
arXiv:2003.02989

Campos J, Souto A (2021) Qbugs: A collection of reproducible bugs in
quantum algorithms and a supporting infrastructure to enable con-
trolled quantum software testing and debugging experiments. In:
2021 IEEE/ACM 2nd International Workshop on Quantum Soft-
ware Engineering (Q-SE). IEEE, pp 28–32

Camps-Valls G (2006) Kernel Methods in Bioengineering, Signal
and Image Processing. IGI Global, https://doi.org/10.4018/978-
1-59904-042-4

Canatar A, Peters E, Pehlevan C, Wild SM, Shaydulin R (2022)
Bandwidth enables generalization in quantum kernel models.
arXiv:2206.06686

Chitambar E, LeungD,Mančinska L, OzolsM,Winter A (2014) Every-
thing you always wanted to know about LOCC (but were afraid to
ask). Commun Math Phys 328(1):303–326

Chollet F et al (2015) Keras. GitHub. https://github.com/fchollet/keras
Coecke B, Duncan R (2011) Interacting quantum observables: categor-

ical algebra and diagrammatics. New J Phys 13(4):043016
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297
Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola J (2001) On

kernel-target alignment. Advances in neural information process-
ing systems 14

Cross AW, Bishop LS, Smolin JA, Gambetta JM (2017) Open quantum
assembly language. arXiv:1707.03429

Deutsch D (1985) Quantum theory, the church-turing principle and the
universal quantum computer. Proceedings of the Royal Society
of London A Mathematical and Physical Sciences 400(1818):97–
117

Developers C (2022) Cirq. https://doi.org/10.5281/zenodo.6599601
Di Pierro A, Incudini M (2021) Quantum machine learning and fraud

detection. Protocols. Strands, and Logic. Springer, Cham, Ger-
many, pp 139–155

Dumitrescu PT, Bohnet JG, Gaebler JP, Hankin A, Hayes D, Kumar
A, Neyenhuis B, Vasseur R, Potter AC (2022) Dynamical
topological phase realized in a trapped-ion quantum simulator.
Nature 607(7919):463–467

Duvenaud D (2014) Automatic model construction with Gaussian pro-
cesses. PhD thesis, University of Cambridge

Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A,
García-Martín D, Garcia-Saez A, Latorre JI, Carrazza S (2021)
Qibo: a framework for quantum simulation with hardware accel-
eration. Quantum Science and Technology 7(1):015018

Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computa-
tion by adiabatic evolution. arXiv preprint quant-ph/0001106

Feynman RP (1985) Quantum mechanical computers. Optics News
11(2):11–20

Fidler F, Chee YE, Wintle BC, Burgman MA, McCarthy MA, Gordon
A (2017) Metaresearch for evaluating reproducibility in ecology
and evolution. Bioscience 67(3):282–289

Forrest S (1996)Genetic algorithms.ACMComputingSurveys (CSUR)
28(1):77–80

Gidney C (2014) Quirk. GitHub. Available at: https://github.com/
Strilanc/Quirk

Glick JR, Gujarati TP, Corcoles AD, Kim Y, Kandala A, Gambetta JM,
Temme K (2021) Covariant quantum kernels for data with group
structure. arXiv:2105.03406

Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quip-
per: a scalable quantumprogramming language. In: Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp 333–342

Grossi M, Ibrahim N, Radescu V, Loredo R, Voigt K, Von Altrock
C, Rudnik A (2022) Mixed quantum-classical method for fraud
detection with quantum feature selection. arXiv:2208.07963

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow
JM, Gambetta JM (2019) Supervised learning with quantum-
enhanced feature spaces. Nature 567(7747):209–212

Heyraud V, Li Z, Denis Z, Le Boité A, Ciuti C (2022) Noisy quantum
kernel machines. Phys Rev A 106(5):1

Holmes Z, Arrasmith A, Yan B, Coles PJ, Albrecht A, Sornborger AT
(2021) Barren plateaus preclude learning scramblers. Phys Rev
Lett 126(19):190501

Holmes Z, Sharma K, Cerezo M, Coles PJ (2022) Connecting ansatz
expressibility to gradient magnitudes and barren plateaus. PRX
Quantum 3(1):010313

Huang H-Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H,
McClean JR (2021) Power of data in quantum machine learning.
Nature Communications 12(1). https://doi.org/10.1038/s41467-
021-22539-9

Huang H-Y, BroughtonM, Cotler J, Chen S, Li J, MohseniM, Neven H,
Babbush R, Kueng R, Preskill J et al (2022) Quantum advantage
in learning from experiments. Science 376(6598):1182–1186

Huang H-Y, Broughton M, Cotler J, Chen S, Li J, Mohseni M, Neven
H, Babbush R, Kueng R, Preskill J, McClean JR (2022) Quantum
advantage in learning fromexperiments. Science 376(6598):1182–
1186. https://doi.org/10.1126/science.abn7293

IncudiniM,Martini F, Di PierroA (2022) Structure learning of quantum
embeddings. arXiv:2209.11144

Killoran N, Izaac J, Quesada N, Bergholm V, Amy M, Weedbrook
C (2019) Strawberry Fields: a software platform for photonic
quantum computing. Quantum 3:129. https://doi.org/10.22331/q-
2019-03-11-129. arXiv:1804.03159

Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220(4598):671–680

Kitaev AY (2003) Fault-tolerant quantum computation by Anyons. Ann
Phys 303(1):2–30

Krunic Z, Flöther FF, Seegan G, Earnest-Noble ND, Shehab O (2022)
Quantum kernels for real-world predictionsbased on electronic

123

https://github.com/PaddlePaddle/Quantum
https://github.com/PaddlePaddle/Quantum
http://arxiv.org/abs/1811.04968
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1145/3385412.3386007
http://arxiv.org/abs/2003.02989
https://doi.org/10.4018/978-1-59904-042-4
https://doi.org/10.4018/978-1-59904-042-4
http://arxiv.org/abs/2206.06686
https://github.com/fchollet/keras
http://arxiv.org/abs/1707.03429
https://doi.org/10.5281/zenodo.6599601
https://github.com/Strilanc/Quirk
https://github.com/Strilanc/Quirk
http://arxiv.org/abs/2105.03406
http://arxiv.org/abs/2208.07963
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1126/science.abn7293
http://arxiv.org/abs/2209.11144
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.22331/q-2019-03-11-129
http://arxiv.org/abs/1804.03159

QuantumMachine Intelligence

health records. IEEE Transactions on Quantum Engineering 3:1–
11

Kübler J, Buchholz S, Schölkopf B (2021) The inductive bias of quan-
tum kernels. Advances in Neural Information Processing Systems
34

Kusumoto T, Mitarai K, Fujii K, KitagawaM, Negoro M (2021) Exper-
imental quantum kernel trick with nuclear spins in a solid. npj
Quantum Information 7(1):1–7

Kyriienko O, Magnusson EB (2022) Unsupervised quantum machine
learning for fraud detection. arXiv:2208.01203

LipowM(1982)Number of faults per line of code. IEEETrans Software
Eng 4:437–439

Liu N, Rebentrost P (2018) Quantum machine learning for quantum
anomaly detection. Phys Rev A 97:042315. https://doi.org/10.
1103/PhysRevA.97.042315

LiuY,ArunachalamS, TemmeK (2021)A rigorous and robust quantum
speed-up in supervised machine learning. Nat Phys 17(9):1013–
1017

MacQueen J (1967) Classification and analysis of multivariate obser-
vations. In: Berkeley Symposium on Mathematical Statistics and
Probability. pp 281–297

Madsen LS, Laudenbach F, Askarani MF, Rortais F, Vincent T,
Bulmer JF, Miatto FM, Neuhaus L, Helt LG, Collins MJ et al
(2022) Quantum computational advantage with a programmable
photonic processor. Nature 606(7912):75–81

Marrero CO, KieferováM,Wiebe N (2021) Entanglement-induced bar-
ren plateaus. PRX. Quantum 2(4):040316

McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018)
Barren plateaus in quantum neural network training landscapes.
Nat Commun 9(1):1–6

Mengoni R, Di Pierro A (2019) Kernel methods in quantum machine
learning. Quantum Mach Intell 1(3):65–71

Microsoft (2020) Azure Quantum SKD. https://learn.microsoft.com/
en-us/azure/quantum

Mineault P, Nozawa K (2021) patrickmineault/codebook: 1.0.0. Zen-
odo. https://doi.org/10.5281/zenodo.5796873

Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit
learning. Phys Rev A 98(3):032309

Montanaro A (2016) Quantum algorithms: an overview. npj Quantum
Information 2(1):1–8

MurphyKP (2012)Machine Learning: a Probabilistic Perspective.MIT
press, Cambridge, MA, USA

ÖmerB (2005)Classical concepts in quantumprogramming. Int J Theor
Phys 44(7):943–955

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen
T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E,
DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang
L, Bai J, Chintala S (2019) Pytorch: An imperative style, high-
performance deep learning library. 8024–8035

Pelofske E, Bärtschi A, Eidenbenz S (2022) Quantum volume in prac-
tice: what users can expect from NISQ devices. arXiv:2203.03816

Pérez-Cruz F, Bousquet O (2004) Kernel methods and their potential
use in signal processing. IEEE Signal Process Mag 21(3):57–65

Peters E, Caldeira J, Ho A, Leichenauer S, Mohseni M, Neven H,
Spentzouris P, Strain D, Perdue GN (2021) Machine learning of
high dimensional data on a noisy quantum processor. npj Quantum
Information 7(1):1–5

Preskill J (2018) Quantum computing in the nisq era and beyond. Quan-
tum 2:79

Rasmussen CE, Williams CKI (2005) Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). MIT
Press, Cambridge, MA, USA

Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys
Rev Lett 86(22):5188

Rigetti (2019) Pyquil. http://pyquil.readthedocs.io/en/latest
Rojo-Álvarez JL, Martínez-Ramón M, Munoz-Mari J, Camps-Valls G

(2018)Digital Signal ProcessingwithKernelMethods. JohnWiley
& Sons, New York, NY, USA

Schölkopf B, Herbrich R, Smola AJ (2001) A generalized representer
theorem. In: International Conference on Computational Learning
Theory. Springer, pp 416–426

Schölkopf B, Smola A, Müller K-R (1997) Kernel principal compo-
nent analysis. In: International Conference on Artificial Neural
Networks. Springer, pp 583–588

Schuld M, Petruccione F (2021) Machine learning with quantum com-
puters. Springer, Cham, Germany

Schuld M, Killoran N (2019) Quantum machine learning in feature
Hilbert spaces. Phys Rev Lett 122(4). https://doi.org/10.1103/
physrevlett.122.040504

Schuld M, Killoran N (2022) Is quantum advantage the right goal for
quantum machine learning? PRX Quantum 3:030101. https://doi.
org/10.1103/PRXQuantum.3.030101

Sivarajah S, Dilkes S, Cowtan A, SimmonsW, Edgington A, Duncan R
(2020) t|ket〉: a retargetable compiler for NISQ devices. Quantum
Science and Technology 6(1):014003

SteigerDS,Häner T, TroyerM (2018) Projectq: an open source software
framework for quantum computing. Quantum 2:49

Thanasilp S, Wang S, Cerezo M, Holmes Z (2022) Exponential
concentration and untrainability in quantum kernel methods.
arXiv:2208.11060

Trisovic A, Lau MK, Pasquier T, Crosas M (2022) A large-scale study
on research code quality and execution. Scientific Data 9(1):1–16

Van Tonder A (2004) A lambda calculus for quantum computation.
SIAM J Comput 33(5):1109–1135

Wang G, Qi J (2014) Pet image reconstruction using kernel method.
IEEE Trans Med Imaging 34(1):61–71

Wang S, Fontana E, Cerezo M, Sharma K, Sone A, Cincio L, Coles
PJ (2021) Noise-induced barren plateaus in variational quantum
algorithms. Nat Commun 12(1):1–11

Wang X, Du Y, Luo Y, Tao D (2021) Towards understanding the power
of quantum kernels in the nisq era. Quantum 5:531

Wecker D, Svore KM (2014) Liqui|〉: a software design archi-
tecture and domain-specific language for quantum computing.
arXiv:1402.4467

Wierichs D, Izaac J, Wang C, Lin CY-Y (2022) General parameter-shift
rules for quantum gradients. Quantum 6:677

Yang M-H (2001) Face recognition using kernel methods. Advances in
neural information processing systems 14

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2208.01203
https://doi.org/10.1103/PhysRevA.97.042315
https://doi.org/10.1103/PhysRevA.97.042315
https://learn.microsoft.com/en-us/azure/quantum
https://learn.microsoft.com/en-us/azure/quantum
https://doi.org/10.5281/zenodo.5796873
http://arxiv.org/abs/2203.03816
http://pyquil.readthedocs.io/en/latest
https://doi.org/10.1103/physrevlett.122.040504
https://doi.org/10.1103/physrevlett.122.040504
https://doi.org/10.1103/PRXQuantum.3.030101
https://doi.org/10.1103/PRXQuantum.3.030101
http://arxiv.org/abs/2208.11060
http://arxiv.org/abs/1402.4467

	Quantum Advantage Seeker with Kernels (QuASK): a software framework to speed up the research in quantum machine learning
	Abstract
	1 Introduction
	2 Theoretical aspects of Quantum Kernels
	2.1 Quantum Kernels implementation

	3 Quantum software frameworks
	3.1 Quantum machine learning frameworks

	4 Proposed approach
	4.1 Running experiments through a command line interface
	4.2 Integrating QuASK in an existing code base
	4.2.1 Download or generate datasets
	4.2.2 Evaluation metrics
	4.2.3 Implement quantum kernels

	4.3 Execution on real hardware

	5 Conclusions
	Acknowledgements
	References

