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Abstract
We report on a consistent comparison between techniques of quantum and classical machine learning applied to the clas-
sification of signal and background events for the Vector Boson Scattering processes, studied at the Large Hadron Collider
installed at the CERN laboratory. Quantum machine learning algorithms based on variational quantum circuits are run on
freely available quantum computing hardware, showing very good performances as compared to deep neural networks run on
classical computing facilities. In particular, we show that such kind of quantum neural networks is able to correctly classify the
targeted signal with anAreaUnder the characteristic Curve (AUC) that is very close to the one obtainedwith the corresponding
classical neural network, but employing a much lower number of resources, as well as less variable data in the training set.
Albeit giving a proof-of-principle demonstration with limited quantum computing resources, this work represents one of the
first steps towards the use of near term and noisy quantum hardware for practical event classification in High Energy Physics
experiments.
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1 Introduction

The Vector Boson Scattering (VBS) process (Anders et al.
2018; Covarelli et al. 2021) is one of the rarest occurrences
stemming from the collision of the proton beams accelerated
in the Large Hadron Collider (LHC) at the CERN laboratory
in Genève. At the same time, it provides a unique test-bed
to investigate the electro-weak sector of the Standard Model
of particle physics, as for the scattering to be unitary it is
necessary to invoke the presence of a spontaneous symmetry
breaking, the mechanism theoretically originating the Higgs
boson. Therefore, a precise measurement of the VBS will
play a crucial role in the years to come at the LHC, as
well as at its high-luminosity extension (HL-LHC). Here, the
longitudinal component of the interaction will hopefully be
statistically accessible (Ballestrero et al. 2018; CMS 2016).
The specific process under investigation can be sketchedwith
a generic Feynman diagram, as represented in Fig. 1. It is
quite obvious from the representation that several particles
are produced in the collision and originate from different
sources in the kinematics of the process. Considering also
that such a scattering event has a low probability to occur,
it is evident that the data sets collected at the LHC by the
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Fig. 1 A leading-order representation of the VBS between two generic
vector bosons (V1 and V2) given in terms of Feynman diagrams; each
boson is irradiated from a quark of one of the two protons participating
in a LHC collision (the three valence quarks of each proton are repre-
sented as horizontal lines). The products are leptons (neutrinos, muons,
electrons or tau particles) and quark jets. The two irradiating quarks
(q3 and q4) get detected, while the remnant of each proton is lost in the
LHC beam pipe

ATLAS and CMS collaborations are and will be inevitably
contaminated by a huge amount of events mimicking the sig-
nal of interest. It becomes crucial, then, to develop suitable
methods to reduce the influence of background events that
hinder the visibility of theVBS of interest. To this end, classi-
cal machine learning (ML) algorithms have been developed
over the years allowing to perform trained event classifica-
tion in high energy physics (Carleo et al. 2019). In particular,
deep learning techniques have been applied to the problem
of kinematic reconstruction for polarization discrimination
in VBS (Grossi et al. 2020).

A new computational paradigm has been recently advanc-
ing, based on the merging of quantum computing and
machine learning, namely Quantum Machine Learning
(QML) (Biamonte et al. 2017). Initially thought as a theoret-
ical playground, mostly inspired by the original proposals
of simulating quantum physics with quantum mechanical
devices (Feynman 1982), quantum computing has more
recently become a reality thanks to fast progress in differ-
ent technological platforms, which has allowed to realize
working prototypes of programmable quantum processing
units based on either superconducting circuits or trapped ions
(Tacchino et al. 2020). In this context, the logical unit of
information is the quantum bit (qubit), i.e., a quantum sys-
tem with two internal basis states in which information can
be encoded in an arbitrary superposition of the two, while
operations are reduced to elementary single and two-qubit
quantumgates (Nielsen andChuang 2001). These computing
machines allow to envision strong computational advantages
over the classical paradigmsof information processing.How-
ever, currently available quantum computers are limited in
the number of qubits, as well as in the maximum number of
allowed operations, due to the noisy character of the process-
ing units (Moll et al. 2018). Nevertheless, even before fully

fault tolerant quantum computation is developed,1 the first
use cases employing the so-called Noisy-Intermediate Scale
Quantum (NISQ) computers (Preskill 2018) have started to
be applied in various fields. In particular, applications of
quantummachine learning toHighEnergy Physics have been
proposed as one of the most promising playgrounds for such
NISQ devices (Guan et al. 2021), and the first use cases
have already been put forward (Terashi et al. 2021; Wu et al.
2021a, b).

In this work we report the first QML study of the VBS,
specifically meant for the background reduction. We show
a systematic comparison between the performances of clas-
sical deep learning algorithms and modern quantum neural
networks developed on purpose for the present classification
task. For the latter, we have performed numerical simula-
tions employing the qasm_simulator of the IBM Quantum
Experience,2 as well as actual quantum computing runs
launched on the ibmq_athens quantum device freely accessi-
ble through the cloud.3 Our study shows that available NISQ
devices already reach performances comparable to classical
ML computations, with the aim of discriminating the rele-
vant signal from the unwanted noise in a large data set such
as the one emerging from the LHC.

2 Methods

2.1 Simulation of VBS scattering events

In order to meaningfully benchmark the performances of the
QML algorithm, we have performed a comparative study
with a classical ML algorithm suitably trained on the same
input data sets. The systematic study has been carried out
on a set of simulated LHC collisions, as acquired from
the CMS detector (Collaboration CMS et al. 2008): the
VBS signal has been produced at leading order with the
MadGraph5_aMC@NLOmatrix-element Monte Carlo gen-
erator (Alwall et al. 2014), version 2.4.2. Non-perturbative
effects such as parton showering and the underlying event
have been simulated with the Pythia8 software (Sjöstrand
et al. 2015), and minimum-bias pile-up events have been
overlapped with a frequency comparable to the one expected
during the LHC Run 2 of data taking. The simulation of the
detector behavior is performed with a dedicated description
of the CMS apparatus in the Geant4 package (Agostinelli
et al. 2003). The backgrounds are simulated using Phantom
and Madgraph. The largest contribution to the background
comes from W+jets that consist in the production of a

1 https://research.ibm.com/blog/ibm-quantum-roadmap.
2 https://quantum-computing.ibm.com/
3 Notice that this device was accessed continuously in the period rang-
ing from April 15, 2021 to May 16, 2021, and it is no longer available.
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W boson in association with jets of particles initiated by
quarks or gluons. Other minor background events were
included aswell, twovector bosons (VV), three vector bosons
(VVV), Drell-Yan, single top and t t̄ , Vector Boson Fusion
(VBF), vector boson with a real (Vγ ) or vitual (Vγ ∗) pho-
ton (Tumasyan A et al. 2022).

The components of each event of interest are recon-
structed with the software developed by the CMS Collabora-
tion (Sirunyan et al. 2017), yielding electrons (Khachatryan
et al. 2015), muons (Sirunyan et al. 2018), jets (Cacciari et al.
2012, 2008), andmissing transverse energy. In the same soft-
ware, the pile-up is subtracted as much as possible (Bertolini
et al. 2014), the detector response is calibrated (Khachatryan
et al. 2017), and jets classified according to their character-
istics (Sirunyan et al. 2018; Thaler and Van Tilburg 2011;
Larkoski et al. 2014; CMS 2013). Then, each event is char-
acterized by a set of variables describing the VBS topology
as well as the properties and kinematics of the final state par-
ticles. These featuresmay at a first approximation be grouped
in different categories, depending on whether they describe
the features of each of the vector boson decays, or those of
the two so-called tag-jets (q3 and q4 in Fig. 1), which are
used to identify generic VBS-like topologies.

2.2 Classical ML analysis

Deep Neural Network (DNN) models have been trained to
discriminate the signal from the background events in the
VBS sample. The discriminator architecture consists of a
feed forward neural network with Nl hidden layers, hav-
ing Nn nodes each, connected to a single node output.
The ReLu (Agarap 2019) activation function, defined as
ReLu(x > 0) = x, ReLu(x ≤ 0) = 0, is used for the
hidden layers, and the sigmoid, σ(x) = 1/(1 + e−x ), for
the output node. For the results presented in this work, all
the models have been optimized by minimizing the binary
cross-entropy loss with the stochastic gradient descent tech-
nique, implemented with the Adam optimizer (Kingma and
Ba 2014). Among the possible choices for classicalML algo-
rithms to be employed as a benchmark, we opted for the most
commonly chosen approach within the CMS collaboration,
which is particularly suited in this case owing to the sig-
nificant amount of jets and complicated variables set to be
handled, for which DNNs turn out to be an optimal choice
thanks to their expressivity.

The choice of the DNN input variables is implemented
with an a posteriori optimization. Firstly, a model is trained
with a large subset of the available variables. Then, a
technique called SHAP (SHapley Additive exPlanations)
(Lundberg and Lee 2017; Shapley 1953), developed in the

field of explainable machine learning, is applied to rank the
average contribution of each input variable to the discrimi-
nation power of the model. The variables of least impact are
removed, and the procedure is repeated until a further reduc-
tion in the number of inputs worsens the model performance.
This procedure is made possible by the fast and computation-
ally cheap training procedure of simple DNNs. Among the
most important variables, as identified by the SHAP tech-
nique and matching the physics expectations, are the mV BS

j j
variable, the Zeppenfeld variable (Rainwater et al. 1996) of
the lepton, and the number of jets in the event.

As an added information on the model complexity, we
hereby mention the number of weights used in the DNN
training, which is related to the number of nodes and lay-
ers. In our models the number of nodes ranged from around
5000 to 50,000.Hence, the runtime ranges from fewmillisec-
onds to few seconds on the available hardware (tests taken
in February 2021). Further details are given in Appendix A.

2.3 QML algorithm

In gate-based quantum computers, such as the ones realized
with superconducting qubits or ion traps, a computation is
described by a quantum circuit representation that explic-
itly reports the single- and two-qubit operations. Different
quantum computing learning models have been proposed,
most of them mimicking the functionalities of artificial neu-
ral networks (Mangini et al. 2021). Among the different
approaches, hybrid quantum-classical classifiers based on the
kernel method, so-called quantum support vector machines
(Schuld and Killoran 2019; Havlíček et al. 2019), have been
successfully applied to differentiate signal and background
events for the Higgs boson (Wu et al. 2021a, b). Here we
rather exploit the general concept of Parametrized Quantum
Circuits (PQC) as an effective model for a quantum neural
network, similarly in spirit to a previous QML application in
HEP (Terashi et al. 2021). In particular, the quantum algo-
rithm used in this work is based on a variational quantum
algorithm (McClean et al. 2016; Moll et al. 2018), belonging
to the more general class of PQC (Benedetti et al. 2019), in
which the algorithm is a function of a set of parameters (typi-
cally, rotation angles in single-qubit gates) to be optimized by
classical minimization procedures, such as gradient descent-
based learning.

The quantum circuits employed in this work are run on
registers containing up to 5 qubits, depending on the available
data set. Each qubit is associated to a variable describing the
events under examination, selecting for each configuration
the set of variables with the largest separating power between
signal and background based on a cross-entropy test of each
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variable distribution (see Ref. Nielsen and Chuang (2001),
Chapt. 11). Within the set of variables, the best five selected
after the cross-entropy test are, respectively: (i) the invariant
mass of the VBS jets pair, (ii) the energy of the leading VBS
jet, i.e., the jet with the largest transverse momentum (pT )
among the two VBS jets, (iii) the transverse momentum of
the leading VBS jet, (iv) the transverse momentum of the
hadronicW boson, (v) the energy of the trailing VBS jet, i.e.,
the jet with the lowest PT among the two VBS jets. In Fig. 2
we show the one-dimensional distributions of these variables.
While the VBS topology is well represented by this choice,
none of the selected variables contains information related
to the detailed leptonic kinematics. As a possible extension
of the present work, it would be interesting to include some
of these excluded variables, employing more qubits in the
register.

An example of the main structure of the whole PQC
employed in this work is represented in Fig. 3a, specifically

shown for the case of three input variables (i.e., three qubits
used for the variables encoding). The input variables (i.e, the
vector x of elements xi ) are encoded into the quantum register
through the unitary operation Umap, represented in Fig. 3b.
The variational part of the algorithm is given by the opera-
tor Uvar (w), represented in Fig. 3c for completeness. These
unitary operations are decomposed into basic elements, i.e.,
a combination of quantum gates that change the quantum
state of each qubit (Nielsen and Chuang 2001). Single-qubit
rotations are represented as Ri (w) operations, for i = x, y, z
(e.g., a rotation by an angle w1 around z is Rz(w1)). Entan-
glingoperations,which allow tophysically correlate different
qubits, depend on the specific quantum hardware employed.
In our case, the controlled-NOT (CNOT) gate (Nielsen and
Chuang 2001) is the native entangling operation available on
the IBMQuantum computers, and the corresponding unitary
operation is generically indicated asUent , which is explicitly
represented in Fig. 3d. Thanks to this entangling operation in

Fig. 2 One-dimensional plot of
the selected variables for the
Variational Quantum Circuit
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Fig. 3 (a) Global structure of
the PQC built for the case of
three input variables: starting
from the idle configuration of
the three qubits q0,1,2 of the
register (i.e., initialized in the
state |�0〉 = |0〉⊗3), represented
by three horizontal lines, input
variables x are encoded in the
quantum state through the Umap
operation. The latter is explicitly
shown in (b), while variational
parameters w are given through
the Uvar operation, explicitly
shown in (c), in which Ri (w),
with i = x, y, z, represent
single-qubit rotations around a
Cartesian axis in the Bloch
sphere representation. Results
are obtained through
measurements of the qubits on
the σz basis, and saved as bits of
information (i.e., 0 or 1) on a
classical register, c0,1, as
represented in (a) for the first
two qubits, q0 and q1. The
entangling operation employed,
Uent , is a combination of
Hadamard (H ) and CNOT gates,
as explicitly shown in (d) for the
case of three qubits, and then
generalized for larger registers

Fig. 4 Results from (a) classical
DNN and (b) QML
classification methods,
respectively, reporting the AUC
as a function of the number of
variables associated to each
event. Each classical result has
been obtained varying the DNN
architecture. Differently, the
results corresponding to any
fixed number of variables
concern the same quantum
circuit that was trained and
tested different times. The best
performance associated to each
quantum circuit is explicitly
highlighted in the plot

(a) Classical DNN (b) QML
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Fig. 5 Plot of the ROC curve (red line) whose associated AUC is the
best ever obtained from QML training, as compared to the best ROC
curve obtained from DNN training (green) and to the coin-flip curve
(blue line)

the general circuit of Fig. 3a, the third qubit (q2) affects the
computation outcome even without being directly measured.
We notice that the choice of qubit rotations used to give the
input values to the circuit (Fig. 3c) was aimed at capturing
any difference between signal and background probability
density functions. Hence, the circuit behavior depends on
the set of parameters w, which are updated during the train-
ing process, aimed at minimizing a loss function tuned to
the circuit configuration to optimally discriminate the sig-
nal from background events. As an example, in a quantum
circuit with two qubits, q0 and q1, the final values of their
measurements, z0 and z1 (with values 0 or 1), are averaged
8192 times (which is the maximum allowed with the avail-
able quantum computing devices) to yield z̄0 and z̄1. These
are then normalized by making use of the softmax function:

psignal ≡ ez̄0/(ez̄0 + ez̄1) ,

pbackground ≡ ez̄1/(ez̄0 + ez̄1) .

The latters are interpreted as the probability for each event
to be of type signal or background respectively. To obtain the
optimal parameters, wbest, the loss function is built as the
distance between the output function psignal and the ideal
classifier, whose evaluations give 1 for signal events and 0
for background events, based on the Kullback–Leibler (KL)
divergence (S. Kullback 1951). For a generic number N of

qubits, the variables are coupled starting from the previously
established ordering.Namely, the variablesmapped onqubits
q0 andq1 are coupled, aswell as the onesmapped on qubitsq2
and q3, and so on. If N is an odd number, the last qubit is just
not taken into account. Then, the same procedure described
for the two-qubit case was applied on each pair of qubits,
obtaining N mod 2 results, which were analyzed with a
weighted average, using the cross-entropy of the variables
in each pair as weights.

The loss function minimization was performed with
the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm (Spall 2012), since it conjugates fast per-
formances (since the loss function is evaluated only twice per
iteration) with stability against quantum errors (Spall et al.
1992). An example of the loss functionminimization process
for the PQC is explicitly reported in Fig. 7 in Appendix C.

3 Results

Both classical and quantum ML algorithm performances
have been evaluated with two different tests, their efficien-
cies being quantified by use of the Area Under the Receiving
Operating Characteristic (ROC) Curve (AUC). Typically, a
binary classifier attributes a value between 0 and 1 to each
event; the events with an assigned value larger than a fixed
threshold will be then classified as signal, while the others
as background. The Receiver Operating characteristic Curve
(ROC) is the graph representing the relation between the
False Positive Rate (FPR), on the horizontal axis, and the
True Positive Rate (TPR), on the vertical axis, for different
values of the threshold. The latter quantities are defined as
follows:

• FPR: estimated probability of a negative event to be clas-
sified as positive.

• TPR: estimated probability of a positive event to be cor-
rectly classified.

The threshold variation between 0 and 1 allows to deter-
mine theTPRassociatedwith any value of FPR. Since for any
fixed value of the FPRa better classification requires a greater
TPR, the Area Under ROC Curve (AUC) can be adopted as
an index for the overall classification efficiency. A classifier
is often applied in contexts where a particularly low FPR, or
a particularly high TPR, are required. In such cases, a more
specific study should be performed, with the threshold varied
over limited ranges of values. Since this is not the case, the
AUC general character is actually preferable. Alternative fig-
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ures of merit are reported in Appendix B, giving consistent
results.

The first test consists in varying the number of variables
used in the classification. First, in Fig. 4a we show the results
obtained from a classical DNN training including 104 train-
ing eventswith a number of variables associated to each event
ranging between 2 and 5.We test differentDNNarchitectures
(number of layers and number of nodes) for each number
of variables, and we obtain a limited spreading of results
(excluding the 2 variables case), as it is clearly seen in the
Figure.

For the QML case, the same task has been performed by
varying the number of qubits from 2 to 5. The corresponding
results obtained for the AUC, as well as the best AUC value,
are reported in Fig. 4b. For each number of variables, the
training procedure has been repeated 5 times in order to check
the spreading of results due both to the stochastic nature of
SPSA and to the errors of the NISQ hardware, starting from
the same training data set of 400 events and acting on a testing
set of 4000 independent events. Interestingly, the best QML
results are quantitatively close to the DNN ones. In addition,
for small variables number, in particular for n = 2, the QML
AUC is larger than the corresponding DNN one, indicating a
better efficiency ofQMLalgorithms.As an example, in Fig. 5
we explicitly show a plot of the false positive rate against the
true positive rate: the blue line represents the coin-flip case,
the red curve is the calculatedROC, i.e., the best one obtained
during the tests with the QML algorithm (corresponding to
the 5 variables best AUC in Fig. 4b), and the green curve is
the best ROC obtained with the DNN (corresponding to the
5 variables best AUC in Fig. 6a).

While several other evaluations have been performed (not
shown here), no general conclusion can be drawn from these

results since the AUC is larger in the QML approach as com-
pared to the DNN for n = 2, but it is lower for n = 3, which
was consistently obtained in all the evaluations performed.
However, it can be conjectured that themain source of fluctu-
ations observed in the tests for small numbers of eventsmight
be attributed to the SPSA, since hardware errors are less rel-
evant. The latter do not depend on the number of training
events, in particular they are not reduced on increasing the
size of the training set.While the training has been performed
on a simulator, the actual classification tests were performed
by using a real quantum device (ibmq_athens). This implies
that the parameters used to run the circuit on a real quantum
device are set to the values obtained by optimizing them to
perform a classification using a quantum computer simulator,
not the quantum hardware itself.Whenever possible, it might
be preferable in the future to directly optimize the training
parameters on the real quantum computing device used for
an optimal classification.

The second test performed in the present study consists
in varying the number of training events, while keeping the
number of variables fixed at either 3 or 5. First, we show
the results obtained with the DNN training, in Fig. 6a, for
different number of variables and hidden layers in the DNN.
We also performed the classical training on networks of dif-
ferent sizes, i.e., with 64 or 128 hidden nodes. The number
of training events considered ranges from a few hundreds to
about hundred thousands. It is quite evident that the AUC
value decreases on decreasing number of events, especially
below 1000. This is particularly true when considering the
training with 5 variables, less evident for the one considering
3 of them.

For what concerns the quantum algorithm, everything has
been kept equal to the first test except for the number of vari-

Fig. 6 Results from (a) classical
DNN and (b) QML
classification methods,
respectively, quantified using
the AUC and obtained with
different number of events
during the training phase. Each
color is associated to a different
structure of the classical DNN
or the QML approach. The best
performance associated to each
quantum circuit is explicitly
highlighted in the plot

(a) Classical DNN (b) QML
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ables, now fixed to 3 or 5, and the number of training events
is varied over the interval (100, 700) with values distributed
as Chebyshev nodes, such that they could be easily inter-
polated. Results are reported in Fig. 6b. There is an evident
spread of results in terms of number of training events, for
a fixed number of variables. With classical ML, the variance
of the results is much smaller as compared to its quantum
version. Considering the best AUC values determined with
the QML algorithm, we notice that the 3 qubits circuit shows
an increased AUC on increasing number of training events.
On the other hand, the results for the 5 qubit circuit seem
to have a much weaker dependence on the whole training
events number range considered. In our opinion, this is an
indication that the model saturates for a smaller number of
training events. Moreover, the best AUC value is obtained
with this QML algorithm by using less than 500 events for
training to have AUC> 0.75 (with 5 qubits), while the cor-
responding DNN requires a few thousand events to saturate
at its best value. The AUC values of the QML results, even if
calculated under the same conditions (e.g., the same number
of qubits or training events), are quite spread, because of the
stochastic nature of QML.

In summary, the QML algorithms developed in this study
shows comparable results to classical ML ones operating
in similar conditions, while using a smaller number of
events during the training. At the same time, with the num-
ber of training events fixed at a number of the order of a
few hundred, the QML algorithm outperforms its classical
counterpart.

4 Conclusion

We have reported on a systematic comparison between clas-
sical and quantum machine learning approaches applied to a
signal and background classification problem example from
the collider physics domain, studying the Vector Boson Scat-
tering processes. These kinds of interactions, occurring as a
consequence of proton-proton collisions at the LHC, are a
relevant benchmark of deep learning models because of the
high multiplicity of particles produced with respect to other
processes observed at particle colliders, and because of the
overwhelming background they are usually mixed with. We
have shown that a hybrid quantum-classical approach based
on parametrized quantum circuits is able to reach perfor-
mances similar to classically trained deep neural networks.
As a relevant figure of merit we considered the area under
the receiving operating characteristic curve, in relation to 5
kinematic variables simulated for the VBS process, suitably
chosen to best describe all features of the elementary parti-

cles collision. The samples used have been generated with a
realistic simulation based onMonteCarlo generators, includ-
ing non-perturbative effects and a description of the detectors
behavior. As a conclusion of the study, it has been shown that
the QML algorithm requires a limited number of variables to
be successfully trained, still giving good classification perfor-
mances as compared to the fully classical approach. Hence,
this hybrid algorithm can be envisioned for actual applica-
tions to the problem of HEP events classification already at
the level of current noisy quantum hardware.

Appendix A: Running time

The running complexity of a classical DNN can be measured
in terms of the number of its parameters, which depends
on the number of hidden layers and nodes for each layer.
For example, in the models used for this study the number
of parameters ranges from 65 (1 hidden layer, 16 nodes, 2
input features), to 50,433 (4 layers, 128 nodes, 5 input fea-
tures). The running time of these models is negligible both
on CPU and on GPU accelerators. Moreover, several inde-
pendent events can be evaluated in parallel with batching to
even decrease the time needed per event.

For what concerns the quantum algorithm, the quantum
machine used is shared between IBMQ users through cloud
quantum computing. This implies waiting lists whose dura-
tion strongly depends on the actual access to the cloud in a
givenmoment. For this reason, we believe the running time is
not a very significant parameter to characterize the quantum
circuit. Instead, it is more relevant to quantify the number
of single- (nS) and two-qubit (i.e., CNOT) gates (nCNOT )
composing the parametrized quantum circuit. In the follow-
ing, such numbers are estimated as a function of the number
of variables (nvar ).

nS = 8 · nvar + 2 · (nvar mod 2)

nCNOT = nvar + 6 · (nvar mod 2)

Appendix B: Classification accuracy: figures
of merit

Here we report a comparison between the best performing
PQC and classical DNN, by explicitly showing the following
figures ofmerit: accuracy rate, recall, precision, and F1 score.
The values obtained for the two best algorithms are reported
for both quantum and classical learning procedures in the
Table, with the threshold fixed in order to set FPR = 0.5
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in both cases. It is possible to give an explicit definition of
these quantities starting from the following items

Index DNN (5 variables, 3
layers, 32 nodes, 103

training events)

PQC (5 variables,
400 training events)

Accuracy rate 0.67 0.66
Recall 0.84 0.81
Precision 0.63 0.62
F1 score 0.72 0.70

• Positive (P): number of signal events;
• Negative (N): background events;
• True Positive (TP): number of correctly classified signal
events;

• True Negative (TN): number of correctly classified back-
ground events;

• False positive (FP): number of incorrectly classified
background events;

• FalseNegative (FN): number of incorrectly classified sig-
nal events.

Then:

Accuracy rate = T P + T N

P + N
(1)

Recall = T P

P
(2)

Precision = T P

T P + FP
(3)

F1 score = 2T P

2T P + FP + FN
(4)

The values reported have been obtained from the testing
data set. Overall, the QML accuracy is incredibly close to
the classical DNN, in all the figures of merit considered, as
a further confirmation of the main conclusions drawn in the
present study.

Appendix C: Loss function for PQC

We hereby report an example of the training obtained from
the loss function evaluation on a quantum circuit. We notice
that, as the training process proceeds, the loss function value
decreases until reaching a slowly converging plateau, which
most probably corresponds to the best performance that
can be reached from the quantum circuit. In fact, further
application of the training procedure would not significantly
improve the classification. The slow convergence towards
zero means that even with an infinite training process this
quantum circuit would not reach the performances of an ideal
classifier.

Fig. 7 Loss function evaluated for a 5 qubits quantum circuit
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