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Abstract

Generative models have the capacity to model and generate new examples from a dataset and have an increasingly diverse
set of applications driven by commercial and academic interest. In this work, we present an algorithm for learning a latent
variable generative model via generative adversarial learning where the canonical uniform noise input is replaced by samples
from a graphical model. This graphical model is learned by a Boltzmann machine which learns low-dimensional feature
representation of data extracted by the discriminator. A quantum processor can be used to sample from the model to train
the Boltzmann machine. This novel hybrid quantum-classical algorithm joins a growing family of algorithms that use a
quantum processor sampling subroutine in deep learning, and provides a scalable framework to test the advantages of
quantum-assisted learning. For the latent space model, fully connected, symmetric bipartite and Chimera graph topologies
are compared on a reduced stochastically binarized MNIST dataset, for both classical and quantum sampling methods.
The quantum-assisted associative adversarial network successfully learns a generative model of the MNIST dataset for
all topologies. Evaluated using the Fréchet inception distance and inception score, the quantum and classical versions of
the algorithm are found to have equivalent performance for learning an implicit generative model of the MNIST dataset.
Classical sampling is used to demonstrate the algorithm on the LSUN bedrooms dataset, indicating scalability to larger and
color datasets. Though the quantum processor used here is a quantum annealer, the algorithm is general enough such that
any quantum processor, such as gate model quantum computers, may be substituted as a sampler.

Keywords Quantum machine learning - Deep learning - Machine learning - Generative adversarial networks - Boltzmann
machine - Quantum Boltzmann machine - Quantum annealing

1 Introduction

The ability to efficiently and accurately model a dataset,
even without full knowledge of why a model is the way it
is, is a valuable tool for understanding complex systems.
Machine learning (ML), the field of data analysis algorithms
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that create models of data, is experiencing a renaissance
due to the availability of data, increased computational
resources, and algorithm innovations, notably in deep neural
networks (The R. S. 2017; Silver et al. 2016). Of particular
interest are unsupervised algorithms that train generative
models. These models are useful because they can be used
to generate new examples representative of a dataset.

A Generative Adversarial Network (GAN) is an algo-
rithm which trains a latent variable generative model with
a range of applications including image or signal synthe-
sis, classification and upscaling. The algorithm has been
demonstrated in a range of architectures, now well over 300
types and applications, from the GAN zoo (Isola et al. 2017,
Radford et al. 2015; Ledig et al. 2017). Two problems in
GAN learning are non-convergence, oscillating and unsta-
ble parameters in the model, and mode collapse, where the
generator only provides a small variety of possible sam-
ples. These problems have been addressed previously in
existing work including energy-based GANs (Zhao et al.
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2016) and the Wasserstein GAN (Arjovsky et al. 2017,
Gulrajani et al. 2017). Another proposed solution involves
replacing the canonical uniform noise prior of a GAN
with a prior distribution modelling low-dimensional fea-
ture representation of the dataset. Using this informed prior
may alleviate the learning task of the generative network,
decrease mode-collapse, and encourage convergence (Arici
and Celikyilmaz 2016).

This feature distribution is a rich and low-dimensional
representation of the dataset extracted by the discriminator
in a GAN. A generative probabilistic graphical model
can learn this feature distribution. However, given the
intractability of calculating the exact distribution of the
model, classical techniques often use approximate methods
for sampling from restricted topologies, such as contrastive
divergence, to train and sample from these models. Novel
means for sampling efficiently and accurately from less
restricted topologies could further broaden the application
and increase the effectiveness of these already powerful
approaches.

Quantum computing can provide proven advantages
for some sampling tasks; for example, it is known that
under reasonable complexity theory assumptions, quantum
computers can sample more efficiently from certain
classical distributions (Lund et al. 2017; Bremner et al.
2016). It is an open question in quantum computing as to
the extent to which quantum computers provide a more
efficient means of sampling from other, more practically
useful, distributions. On gate model quantum computers,
quantum sampling for machine learning has been explored
by a number of groups for arbitrary distributions (Benedetti
et al. 2019; Farhi and Neven 2018; Schuld et al. 2017)
and Boltzmann distributions (Verdon et al. 2019; Shingu
et al. 2020; Zoufal et al. 2020). In a quantum annealing
framework, there is literature on sampling from Boltzmann
distributions (Benedetti et al. 2017; Amin et al. 2016). Here,
we extend this exploration to the use of quantum processors
for Boltzmann sampling to the powerful framework of
adversarial learning. Specifically, we model the latent space
with a Boltzmann machine trained via samples from a
quantum annealer, though any classical or quantum system
for sampling from a parameterized distribution could be
used. Our experiments used the D-Wave 2000Q quantum
annealer, but the work is relevant for near-term quantum
processors in general.

Quantum annealing has been shown to sample from
a Boltzmann-like distribution on near-term hardware
(Benedetti et al. 2017; Amin et al. 2016) effectively enough
to train Boltzmann machines and to exhibit learning. In
the future, quantum annealing may decrease the cost of
this training by decreasing the computation time (Biamonte
et al. 2017), energy usage (Ciliberto et al. 2018), or improve

@ Springer

performance as quantum models (Kappen 2018) may better
represent some datasets.

Here, we demonstrate the Quantum Assisted Associative
Adversarial Network (QAAAN) algorithm (Fig. 1), a hybrid
quantum-assisted GAN in which a Boltzmann Machine
(BM) trains, using samples from a quantum annealer, a
model of a low-dimensional feature distribution of the
dataset as the prior to a generator. The model learned by
the algorithm is a latent variable implicit generative model
p(x | z) and an informed prior p(z), where z are latent
variables and x are data space variables. The prior will
contain useful information about the features of the data
distribution and this information will not need to be learned
by the generator. Put another way, the prior will be a model
of the feature distribution containing the latent variable
modes of the dataset.

2 Contributions

The core contribution of this work is the development of
a scalable quantum-assisted GAN which trains an implicit
latent variable generative model. This algorithm fulfills the
criteria for inclusion of near-term quantum hardware in
deep learning frameworks that can learn continuous variable
datasets: resistant to noise, small number of variables, in a
hybrid architecture. Additionally, in this work, we explore
different topologies for the latent space model. The purpose
of the work is to:

— Compare different topologies to appropriately choose a
graphical model, restricted by the connectivity of the
quantum hardware, to integrate with the deep learning
framework,

— Design a framework for using sampling from a quantum
processor in generative adversarial networks, which
may lead to architectures that encourage convergence
and decrease mode collapse,

— And lastly design a hybrid quantum-classical frame-
work which successfully tackles the problems of inte-
grating a quantum processor into scalable deep learning
frameworks, while exploiting the strengths of classi-
cal elements (handling a large number of continuous
variables) and the quantum processor (sampling hard
distributions).

These contributions extend previous work for integrat-
ing quantum processors into deep learning frameworks
(Khoshaman et al. 2018; Perdomo-Ortiz et al. 2017,
Benedetti et al. 2018; Benedetti et al. 2018). The Quantum-
Assisted Helmholtz Machine (QAHM) (Perdomo-Ortiz
et al. 2017; Benedetti et al. 2018) was one of the first
attempts to integrate quantum models into the latent space of
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Fig. 1 The inputs to the generator network are samples from a Boltz-
mann distribution. A BM trains a model of the feature space in the
generator network, indicated by the Learning. Samples from the quan-
tum annealer, the D-Wave 2000Q, are used in the training process for
the BM, and replace the canonical uniform noise input to the generator
network. These discrete variables z are reparameterized to continuous
variables ¢ before being processed by transposed convolutional layers.

deep learning architectures. However, the QAHM is based
on the wake-sleep algorithm, which faces two challenges:
the loss function is not well defined and the gradients do
not propagate between the inference and generative net-
works. The quantum variational autoencoder (Khoshaman
et al. 2018) tackles both of these challenges. We introduce
another algorithm which also handles these challenges and
has additional advantages, including high-fidelity images,
for which GANs are generally known to perform well.
Finally, after completing the work, a preprint was posted
that covers similar ideas on quantum-classical associa-
tive adversarial networks that was performed independently
from ours. In this work, the authors investigate a quantum-
classical associative model and sample the latent space with
quantum Monte Carlo (Anschuetz and Zanoci 2019).

3 Outline

First, there is a short background section, specifically
GANSs, quantum annealing, and Boltzmann machines. Then,
Section 5 describes closely related work. In Section 6, an
algorithm is developed to learn a latent variable generative
model using samples from a quantum processor to replace
the canonical uniform noise input. We explore different

Generated and real data are passed into the convolutional layers of the
discriminator which extracts a low-dimensional representation of the
data. The BM learns a model of this representation. An example flow
of information through the network is highlighted in green. In the clas-
sical version of this algorithm, MCMC sampling is used to sample
from the discrete latent space; otherwise, the architectures are identical

models, specifically complete, symmetric bipartite, and
Chimera topologies, tested on a reduced stochastically
binarized version of MNIST, for use in the latent space.
In Section 7, the results are detailed, including application
of the QAAAN and a classical version of the algorithm to
the MNIST dataset. The architectures are evaluated using
the Inception Score and the Frechét Inception Distance.
The algorithm is also implemented on the LSUN bedrooms
dataset using classical sampling methods, demonstrating the
scalability.

4 Background
4.1 Generative Adversarial Networks

Implicit generative models are those which specify a
stochastic procedure with which to generate data. In the case
of a GAN, the generative network maps latent variables z to
images which are likely under the real data distribution, for
example x = G(z), G is the function represented by a neural
network, X is the resulting image with z ~ ¢ (z), and g (z) is
typically the uniform distribution between 0 and 1, [0, 1].

Training a GAN can be formulated as a minimax
game where the discriminator attempts to maximize the
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cross-entropy of a classifier that the generator is trying to
minimize. The cost function of this minimax game is

V(D, G) = Ex~p(ollog(D(x))]
FE:~y(o[log(l — D(G(2))]. ey

Ey~p) is the expectation over the distribution of the
dataset, ,~4(,) is the expectation over the latent variable
distribution, and D and G are functions instantiated by a
discriminative and generative neural network, respectively,
and we are trying to find rnGin mla)lx V(D, G). The model

learned is a latent variable generative model Py,pge1(X | 2)-

The first term in Eq. 1 is the log-probability of the
discriminator predicting that the real data is genuine and the
second the log-probability of it predicting that the generated
data is fake. In practice, ML engineers will instead use
a heuristic maximizing the likelihood that the generator
network produces data that trick the discriminator instead of
minimizing the probability that the discriminator label them
as real. This has the effect of stronger gradients earlier in
training (Goodfellow et al. 2014).

GANs are lauded for many reasons: The algorithm is
unsupervised; the adversarial training does not require direct
replication of the real dataset resulting in samples that are
sharp (Wang et al. 2017); and it is possible to perform
the weight updates through efficient backpropagation and
stochastic gradient descent. There are also several known
disadvantages. Primarily, the learned distribution is implicit.
It is not straightforward to compute the distribution of the
training set (Mohamed and Lakshminarayanan 2016) unlike
explicit, or prescribed, generative models which provide
a parametric specification of the distribution specifying
a log-likelihood log P(x) that some observed variable x
is from that distribution. This means that simple GAN
implementations are limited to generation.

4.2 Boltzmann machines and quantum annealing

A BM is an energy-based graphical model composed of
stochastic nodes, with weighted connections between and
biases applied to the nodes. The energy of the network
corresponds to the energy function applied to the state
of the system. BMs represent multimodal and intractable
distributions (Roux and Bengio 2008), and the internal
representation of the BM, the weights and biases, can learn
a generative model of a distribution (Ackley et al. 1987).

A graph &4 = (7, &) with cardinality N describing a
Boltzmann machine with model parameters A = {@, b} over
logical variables ¥ = {z1, z2, ...zy} connected by edges &
has energy

Ey(z) = — Z bizi — Z ;jZi%j 2
zi€V (zi,zj)eé
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where weight w;; is assigned to the edge connecting
variables z; and z;, bias b; is assigned to variable z;
and possible states of the variables are z; € {—1, 1}
corresponding to “off” and “on,” respectively. We refer to
this graph as the logical graph. The distribution of the states
Zis

e BEL®@)

P(z) = — 3)

with B a parameter recognized by physicists as the
inverse temperature in the function defining the Boltzmann
distribution and Z = Y, e #E2x® the partition function,
where the sum is over all possible states.

BM training requires sampling from the distribution
represented by Eq. 3. For fully connected variants, it is an
intractable problem to calculate the probability of the state
occurring exactly (Koller et al. 2007) and is computationally
expensive to approximate. Exact inference of complete
graph BMs is generally intractable and approximate
methods including Gibbs sampling are slow. Generally,
applications will use deep stacked Restricted Boltzmann
Machine (RBM) architectures, which can be efficiently
trained with approximate methods, notably contrastive
divergence. Contrastive divergence and Gibbs sampling are
examples of Markov chain Monte Carlo (MCMC) methods.

A Markov chain describes a sequence of stochastic
states where the probability of any state in the chain
occuring is only dependent on the previous state. A
Monte Carlo method is one which uses repeated sampling
to make numerical approximations. For example, Gibbs
sampling involves taking some random initial state of nodes,
stochastically updating the state of a random node z, given
the current states of other nodes P(z, = 1|7 \ z,) =

SQB(X,, vz, @niZi + bn)), Where

S(x) =

1 +e ¥

Repeating this procedure many times evolves the Markov
chain to some equilibrium where samples of states are
approximately from the Boltzmann distribution (Eq. 3).

An RBM is a symmetric bipartite BM, shown in
Fig. 2c. It is possible to efficiently learn the distribution
of some input data spaces through approximate methods,
e.g., contrastive divergence (Carreira-Perpinan and Hinton
2005). Stacked RBMs form a Deep Belief Net (DBN) and
can be greedily trained to learn the generative model of
datasets with higher-level features with applications in a
wide range of fields from image recognition to finance
(Li et al. 2014). Training these types of models requires
sampling from the Boltzmann distribution.

Quantum annealing (QA) has been proposed as a method
for sampling from complex Boltzmann-like distributions.
It is an optimization algorithm exploiting quantum phe-
nomena to find the ground state of a cost function. QA
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Fig.2 a Complete, b chimera,
and ¢ symmetric bipartite
graphical models. These
graphical models are embedded
into the hardware and the nodes
in these graphs are not
necessarily representative of the
embeddings

has been demonstrated for a range of optimization prob-
lems (Biswas et al. 2017); however, defining and detecting
speedup, especially in small and noisy hardware implemen-
tations, is challenging (Rgnnow et al. 2014; Katzgraber et al.
2014).

In order to achieve this, the framework outlined in Eq. 2
can be mapped to an Ising model for a quantum system
represented by the Hamiltonian

Hy, = — Z hiG? — Z Jij67675. (5)
GieV

(62,&;)66”

where now variables z have been replaced by the Pauli-
z operators, &;, which return eigenvalues in the set
{—1, 1} when applied to the state of variable z;, physically
corresponding to spin-up and spin-down, respectively.
Parameters b; and w;; are replaced with the Ising model
parameters 4; and J;; which are conceptually equivalent. In
the hardware, these parameters are referred to as the flux
bias and the coupling strength, respectively.

The full Hamiltonian describing the dynamics of the D-
Wave 2000Q, equivalent to the time-dependent transverse
field Ising model, is

H(t) = AWHL + B(1)Hy. (©6)

The transverse field term H is

H =) 6. (7
srev

6% are the Pauli-x operators in the Hilbert space 2",

A(t) and B(t) are monotonic functions defined by the total
annealing time fax (Biswas et al. 2017). Generally, at the
start of an anneal, A(0) ~ 1 and B(0) =~ 0. A(¢) decreases
and B(t) increases monotonically with 7 until, at the end of
the anneal, A(tnax) ~ 0 and B(fmax) ~ 1. When B(¢) > 0,
the Hamiltonian contains terms that are not possible in the
classical Ising model, that is those that are normalized linear
combinations of classical states.

Each state found after an anneal comes from a
distribution, although it is not clear what distribution the
quantum annealer is sampling from. For example, in some
cases, the distribution is hypothesized to follow a quantum

Boltzmann distribution up to the “freeze-out region”—
where for some value of ¢ the dynamics of the system
slow down and diverge from the model (Eq. 8) (Amin
2015). If the freeze-out region is narrow then the distribution
can be modelled as the classical distribution of problem
Hamiltonian, I:Ix, at a higher unknown effective temperature

B

6_13* ﬁl
Pinx = ®)

where Z = Tr[e’ﬂ*Hl] and we have performed matrix
exponentiation. py.  is the model for the distribution. In
the case where the dynamics of the distribution do not slow
down and H (tmax) = ﬁ;» the Hamiltonian contains no
off-diagonal terms and Eq. 8 is equivalent to the classical
Boltzmann distribution, Eq. 3, at some temperature. § is a
dimensionless parameter which depends on the temperature
of the system, the energy scale of the superconducting flux
qubits, and open system quantum dynamics. However, it is
an open question as to when the freeze-out hypothesis holds
(Albash et al. 2012; Marshall et al. 2017).

5 Related work

This work can be framed as a quantum-classical hybrid
implementation of the associative adversarial network
(Arici and Celikyilmaz 2016). In this work, the authors
note, as outlined in the introduction, the training of a
GAN is prone to non-convergence (Barnett 2018), and
mode collapse (Thanh-Tung et al. 2018). This stability
of GAN training is an issue and there are many hacks
to encourage convergence, discourage mode collapse,
and increase sample diversity including using spherical
input space (White 2016), adding noise to the real and
generated samples (Arjovsky et al. 2017) and minibatch
discrimination (Salimans et al. 2016). We hypothesize that
using an informed prior will decrease mode collapse and
encourage convergence.

With respect to quantum classical models, QA has been
proposed, and in some cases demonstrated, as a sampling
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subroutine in ML algorithms: a quantum Boltzmann
machine (Amin et al. 2016); training a quantum variational
autoencoder (QVAE) (Khoshaman et al. 2018); a quantum-
assisted Helmholtz machine (Benedetti et al. 2018); deep
belief nets of stacked RBMs (Adachi and Henderson 2015).
Though related, this framework can be distinguished from
other efforts to incorporate gate-model quantum devices
into machine learning algorithms (Benedetti et al. 2019;
Farhi and Neven 2018; Schuld et al. 2017).

6 Quantum-assisted associative adversarial
network

In this section, the QAAAN algorithm and related
methods are outlined, including a novel way to learn the
feature distribution generated by the discriminator network
via a BM using sampling from a quantum annealer.
The QAAAN architecture is similar to the classical
Associative Adversarial Network proposed in Ref. Arici and
Celikyilmaz (2016), as such the minimax game played by
the QAAAN is

V(D’ G’ '0) = Exwpdata(x)[log D(x)]
+E;~p(pllog(1 — D(G(2)))]
+Ef~pr(pllog ol )

where the aim is now to find mgjn max mgx V(D, G, p),
P

with equivalent terms to Eq. 1 plus an additional term to
describe the optimization of the model p (Eq. 8). This
term conceptually represents the probability that samples
generated by the model p are from the feature distribution
py. py is the feature distribution extracted from the interim
layer of the discriminator. This distribution is assumed to be
Boltzmann, a common technique for modelling a complex
distribution.

The algorithm used for training p, a probabilistic
graphical model, is a BM. Sampling from the quantum
annealer, the D-Wave 2000Q, replaces a classical sampling
subroutine in the BM. p is used in the latent space of
the generator (Fig. 1), and samples from this model, also
generated by the quantum annealer, replace the canonical
uniform noise input to the generator network. Samples from
p are restricted to discrete values, as the measured values
of qubits are z € {—1,+1}. These discrete variables z
are reparameterized to continuous variables ¢ before being
processed by the layers of the generator network, producing
“generated” data. Generated and real data are then passed
into the layers of the discriminator which extracts the
low-dimensional feature distribution py. This is akin to
a variational autoencoder, where an approximate posterior
maps the evidence distribution to latent variables which
capture features of the distribution (Doersch 2016). The
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algorithm for training the complete network is detailed in
Fig. 3.

Below, we outline the details of the BM training in the
latent space, reparameterization of discrete variables, and
the networks used in this investigation. Additionally, we
detail an experiment to distinguish the performance of three
different topologies of probabilistic graphical models to be
used in the latent space.

6.1 Latent space

As in Fig. 1, samples from an intermediate layer of the
discriminator network are used to train a model for the
latent space of the generator network. Here, a BM trains this
model. The cost function of this BM is the quantum relative
entropy

S(ellpf) = TrlpIn p] — Tr[pIn py] (10)

equivalent to the classical Kullback-Leibler divergence
when all off-diagonal elements of p and p; are 0. This
measure quantifies the divergence of distribution p from
oy where py is the target feature distribution of features
extracted by the discriminator network and p is the model
trained by the BM, from Eq. 9. Though the distributions
used here are modelled classically, this framework can be
extended to quantum models using the quantum relative
entropy. Given this, it can be shown that the updates to the
weights and biases of the model are

AJyj = nBlziz)),, — (@izj),] (11)
Ay = nBlizi),, — (i) o). (12)

n is the learning rate, 8 is an unknown parameter, and (z) P
is the expectation value of z in distribution p.

Other implementations compute of similar models
compute the unknown f (Benedetti et al. 2016), the instance
dependent effective temperature. In this work to get around
the problem of using the unknown effective temperature
for training a probabilistic graphical model, we use a gray-
box model approach proposed in Benedetti et al. (2017). In
this approach, full knowledge of the effective parameters,
dependent on S, are not needed to perform the weight
updates as long as the projection of the gradient is positive
in the direction of the true gradient. The gray-box approach
ties the model generated to the specific device used to train
the model, though is robust to noise and is not required
to estimate 8 (Raymond et al. 2016). We find that under
this approach performance remains good enough for deep
learning applications.

Though we do not have full knowledge of the distribution
the quantum annealer samples from, we have modelled
it as a classical Boltzmann distribution at an unknown
temperature. This allows us to train models without the
having to estimate the temperature of the system, providing
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Algorithm 1 Quantum-assisted associative adversarial network training.

1: for iterations do
% Train the discriminator

Generate X? = G(¢) where XP = {xP,x?,...,xP
n

6p < 6p — Vo, ¥ (log D(x;) +log (D(xP)))

% Train the associative model
Generate ¢ , = D(X) where ¢ = {z0,25,...,2]}

n

e

% Train the generator
n
8: O < 967V9(;):(10g(D(x?)))

i

9: return Network G(z; 6)

Sample n Boltzmann distribution samples from p — ¢ = {z;,25, ...z, } using quantum annealer
Sample n training data examples X = {X,X2,...,X, } from the dataset

Update weights of BM via SGD with ¢ and ¢ via Equations 11 and 12

Fig.3 QAAAN training algorithm. p represents the distribution sam-
pled by the quantum annealer; therefore, p — ¢ represents sampling
a set of vectors z; from distribution p. The training samples, X, are
sampled from the datasets MNIST or LSUN bedrooms. Steps 5 and 8
are typical of GAN implementation, G(-) and D(-) are the functions

a simple approach to integrating probabilistic graphical
models into deep learning frameworks.

We set 8 = 1 and tune the learning rate without
knowledge of the true value of B. z are the logical variables
of the graphical model and the expectation values (z), are
estimated by averaging 1000 samples from the quantum
annealer. The quantum relative entropy is minimized by
stochastic gradient descent.

6.2 Topologies

We explored three different topologies of probabilistic
graphical models: complete, symmetric bipartite, and
Chimera, for the latent space. Their performance on learning
a model of a reduced stochastically binarized version
of MNIST (Fig. 4) was compared, in both sampling
via quantum annealing and classical sampling cases. The
complete topology is self-explanatory (Fig. 2a), restricted
refers to a symmetric bipartite graph (Fig. 2c), and the
sparse is the graph native to the D-Wave 2000Q, or Chimera
graph, where the connectivity of the model is determined by
the available connections on the hardware (Fig. 2b).

The models were trained by minimizing the quantum
relative entropy (Eq. 10), and evaluated with the L{-norm,

Ly-norm = Z ‘(ZiZj)pf_<ZiZj)p : (13)

zi,2j €V

Fig.4 Left to right: 2828
continuous, 6 x6 continuous,
6x6 stochastically binarized
example from the MNIST
dataset

representing the generator and discriminator networks, respectively.
For clarity, we have omitted implementation details arising from the
embedding a logical graph into the quantum annealer. Further details
on mapping to the logical space for samples from the quantum annealer
can be found in Section 6

The algorithm did not include temperature estimation as
discussed in the previous section, or methods to adjust intra-
chain coupling strengths for the embedding (Benedetti et al.
2017). The method used here makes a comparison between
the different topologies, though for best performance one
would want to account for the embedding and adjust
algorithm parameters, such as the learning rate, to each
topology.

This Hamiltonian was embedded in the D-Wave 2000Q,
a system with 2048 qubits, each with degree 6, i.e., other
than qubits on the edge of the graph each qubit is connected
to 6 other qubits. Embedding is the process of mapping
the logical graph, represented by Eq. 5, to hardware. If the
logical graph has degree > 6 or a structure that is not native
to the hardware, the logical graph can still be embedded in
the hardware via a 1-many mapping, that means one variable
z; is represented by more than one qubit. These qubits are
arranged in a “chain” (this term is used even when the set
of qubits forms a small tree). A chain is formed by setting
the coupling strength J;; between these qubits to a strong
value to encourage them to take a single value by the end,
but not so strong that it overwhelms the J;; and A; in the
original problem Hamiltonian or has a detrimental effect on
the dynamics. There is a sweet spot for this value. In our
case, we used the maximum value available on the D-Wave
2000Q, namely —1. At the end of the anneal, to determine
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the value of a logical variable expressed as a qubit chain
in the hardware a majority vote is performed: The logical
variable takes the value corresponding to the state of the
majority of qubits. If there is no majority, a coin is flipped
to determine the value of the logical variable.

In addition to these requirements, there are several non-
functioning, “dead,” qubits and couplers in the hardware.
These qubits or couplers were removed in all embeddings,
which had a negligible effect on the final performance. The
complete topology embedding was found using a heuristic
embedder (Cai et al. 2014). A better choice would be a
deterministic embedder, resulting in shorter chain lengths,
though when adjusting for the dead qubits the symmetries
are broken and the embedded graph chain length increases
to be comparable to that returned by the heuristic embedder.
The restricted topology was implemented using the method
detailed by Adachi and Henderson (2015). At a high
level, qubits corresponding to visible nodes are mapped to
vertical chains and qubits corresponding to hidden nodes
are mapped to horizontal chains . The Chimera topology
was implemented on a 2x2 grid of unit cells, avoiding
dead qubits. Learning was run over 5 different embeddings
for each topology and the results averaged. For topologies
requiring chains of qubits, the couplers in the chains were
setto —1.

6.3 Reparameterization

Samples from the latent space come from a discrete space.
These variables are reparameterized to a continuous space,
using standard techniques. There are many potential choices
for reparameterization functions and a simple example case
is outlined below. We chose a probability density function
pdf(x) which rises exponentially and can be scaled by
parameter o:

o« exp(—a(l —x))

p(x) = (14)

1 — exp(—2a)

The cumulative distribution function of this probability
density function is

1 r>1
F(r)y=1/", p(x)dx -l<r=l (15)
0 otherwise,
and
/r p(x) dx = exp(—al(l —r)) —exp(—2«x) (16)
1 —exp(—2w)

Discrete samples can be reparameterized by sampling
F(r) from % (0, 1] solving Eq. 16 for r. In the method
implemented in this work, the continuous variables ¢;,
Fig. 1, are —1 in the case when z; = —1 and sampled
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from pdf(x) (Eq. 6.3), when z; = 1. Then, the continuous
variables are input to the generator of the network.

The value of o was set to 4 the pdf for this and other
a are shown in Figure 5. The uncertainty in the evaluation
of performance was not accurate enough to determine
meaningful differences in the setting of «. We chose « to
intuitively set ¢; close to the discrete variables z;. Certainly,
further investigation into the type of reparameterization,
e.g., different functions and methods developed in other
works (Amin et al. 2016), will be needed to determine best
practices in the field for these types of models.

6.4 Networks

The generator network consists of dense and transpose
convolutional, stride 2 kernel size 4, layers with batch
normalization, and ReLLU activations. A ReLU activation
is a standard activation function used to avoid vanishing
gradients, where the derivative is 0 when the input is less
than O and 1 otherwise. The output layer is implemented
with a tanh activation. These components are standard
deep learning techniques found in textbooks, for example
(Goodfellow et al. 2016).

The discriminator network consists of dense, convolu-
tional layers, stride 2 kernel size 4, LeakyReLU activations.
The dense layer corresponding to the feature distribution
was chosen to have tanh activations in order that outputs
could map to the BM. The hidden layer representing o
was the fourth layer of the discriminator network with 100
nodes. When sampling the training data for the BM from
the discriminator, the variables given values from the set
{—1, 1} as in the Ising model, dependent on the activation

. o =1.00
o =2.00
3t EEE o =4.00

S

05 0.0 0.5 1.0
X

—-1.0

Fig. 5 The probability density function, p(x), for different values of
a. In this investigation, « = 4 was used, to distinguish strongly from
the uniform noise case
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of the node being greater or less than the threshold, set at O,
respectively.

We found the stability of the network was dependent
on the structure of the model and followed best practices
(Arjovsky et al. 2017; Goodfellow et al. 2014) to guide
the development. Though this model worked well, there is
scope to understand if there are alternate best practices for
models incorporating quantum devices into the latent space.

The networks were trained with an Adam optimizer
with learning rate 0.0002. The learning rate was set by
performing two sweeps. The first over the set {0.01,
0.001, 0.0001, 0.00001} and the second in the region
around the best performing (0.001). The best performing
was determined by evaluating the Inception Score and
the Frechét Inception Distance (FID), described further in
Section 7, after 100 iterations. High learning rates (0.01)
were unstable and the training diverged, whereas low
learning rates (0.00001) the training was stable but slow.
The labels were smoothed with noise.

For the sparse graph latent space used in learning the
MNIST dataset in Section 7, the BM was embedded in
the D-Wave hardware using a heuristic embedder. As there
is a 1-1 mapping for the sparse graph, it was expressed
in hardware using 100 qubits. An annealing schedule
of 1 us and a learning rate of 0.0002 were used. The
classical architecture that was compared with the QAAAN
was identical other than replacing sampling via quantum
annealing with MCMC sampling techniques.

We used D-Wave Systems Inc. provided Python API to
interact with the device. Qubits, biases, and weights can be
assigned through this API, which can be used to implement
details such as the embedding. Other experimental hyperpa-
rameters (number of samples/annealing schedule) can be set
with high-level functionality.

7 Results and discussion

For this work, we performed several experiments. First,
we compared three topologies of graphical models, trained
using both classical and quantum annealing sampling meth-
ods. They were evaluated for performance by measuring the
L-norm over the course of the learning a reduced stochas-
tically binarzied version of the MNIST dataset (Fig. 4).
Second, the QAAAN and the classical associative adver-
sarial network described in Section 6 were both used to
generate new examples of the MNIST dataset. Their per-
formance was evaluated used the inception score and the
FID. Finally, the classical associative adversarial network
was used to generate new examples of the LSUN bedrooms
dataset.

In the experiment comparing topologies, as expected, the
BM trains a better model faster with higher connectivity, but

I Complete
3601 ¥ Restricted
’k; I Sparse

) I
300+ \‘L

L{-norm

240 ‘;‘\\\\ [ l
W . %

. |

| !
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Fig. 6 Comparison of the convergence of different graphical topolo-
gies trained using samples from a quantum annealers on a reduced
stochastically binarized MNIST dataset. The learning rate used was
0.03. This learning rate produced the fastest learning with no loss in
performance of the final model. The learning was run 5 times over dif-
ferent embeddings and the results averaged. The error bars describe
the variance over these curves

when trained via sampling with the quantum annealer, the
picture is less intuitive (Figs. 6, 7). All topologies learned a
model to the same accuracy, at similar rates. This indicates
that there is a noise floor preventing the learning of a better
model in the more complex graphical topologies. For the
purposes of this investigation, the performance of the sparse
graph was demonstrated to be enough to learn an informed
prior for use in the QAAAN algorithm.
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100+ ! Restricted
I Sparse

[N BN %
320F !
‘\ 4

Li{-norm

210 ! %{&{F%*ILHL*H

160 i

T

Mo

7

0 60 120 180 210 300 360
Step

Fig. 7 Comparison of different graphical topologies trained using
MCMC sampling on a reduced stochastically binarized MNIST
dataset. The learning rate used was 0.001. This learning rate was
chosen such that the training was stable for each topology; we found
that the error diverged for certain topologies at other learning rates.
The learning was run 5 times and the results averaged. The error bars
describe the variance over these curves
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Given the results of the first experiment, the classical
associative adversarial network and the quantum-assisted
algorithm were evaluated with a sparse topology latent
space. The generated images are shown for both classical
and quantum versions in Figs. 8a and b, respectively.

We evaluated classical and quantum-assisted versions of
the associative adversarial network with sparse latent spaces
via two metrics, the inception score and the FID. Both

=N QAL |W|R|O
R[OOI\ |N|[n]D
\N|E|=| || (R

[V

V[0 (O |~ W [O] & |C [N S| W |ee
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Fig. 8 Example MNIST characters generated by a classical and b
quantum-assisted associative adversarial network architectures, with
sparse topology latent spaces
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metrics required an inception network, a network trained
to classify images from the MNIST dataset, which was
trained to an accuracy of ~ 95%. The Inception Score
(Eq. 17) attempts to quantify realism of images generated by
a model. For a given image, p(y|x) should be dominated by
one value of y, indicating a high probability that an image
is representative of a class. Secondly, over the whole set,
there should be a uniform distribution of classes, indicating
diversity of the distribution. This is expressed

IS = exp(Ex~op, DL (P (¥ [X) 12 (3))). (17)

The first criterion is satisfied by requiring that image-wise
class distributions should have low entropy. The second
criterion implies that the entropy of the overall distribution
should be high. The method is to calculate the KL distance
between these two distributions: A high value indicates
that both the p(y|x) is distributed over one class and
p(y) is distributed over many classes. When averaged
over all samples, this score gives a good indication of the
performance of the network. The inception scores of the
classical and quantum-assisted versions (with sparse latent
spaces) were ~ 5.7 and ~ 5.6, respectively.

The FID measures the similarity between features
extracted by an inception network from the dataset X and
the generated data G. The distribution of the features is
modelled as a multivariate Gaussian. Lower FID values
mean the features extracted from the generated images
are closer those for the real images. In Eq. 18, u are
the means of the activations of an interim layer of the
inception network and X are the covariance matrices
of these activations. The classical and quantum-assisted
algorithms (with sparse latent spaces) scored ~ 29 and
~ 23, respectively.

FID(X, G) = ||ux — pclls + Tr(Zx + g — 2¢/Tx Tg)
(18)

The classical implementation, with a sparse latent space,
was also used to generate images mimicking the LSUN
bedrooms dataset (Fig. 9). The Large Scale scene UNder-
standing (LSUN) (Yu et al. 2015) dataset are images of 10
scenes, where there are on average a million examples of
each scene. From this dataset, we only took examples of
one scene: bedrooms. This image set had around 300,000
images. This final experiment was only performed as a
demonstration of scalability, and no metrics were used to
evaluate performance.

7.1 Discussion

Though it is trivial to demonstrate a correlation between
the connectivity of a graphical model and the quality of
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the learned model (Fig. 7), it is not immediately clear
that the benefits of increasing the complexity of the latent
space can be detected easily in deep learning frameworks,
such as the quantum-assisted Helmholtz machine (Benedetti
et al. 2018) and those looking to exploit quantum models
(Khoshaman et al. 2018). The effect of the complexity
of the latent space model on the quality of the final
latent variable generative model was not apparent in our
investigations. Deep learning frameworks looking to exploit
quantum hardware supported training in the latent spaces
need to truly benefit from this application, and not iron out
any potential gains with backpropagation. For example, if
exploiting a quantum model gives improved performance on
some small test problem, it is an open question as to whether
this improvement will be detected when integrated into a
deep learning framework, such as the architecture presented
here.

Here, given the nature of the demonstration and a desire
to avoid chaining we use a sparse connectivity model.
Avoiding chaining allows for larger models to be embedded

Fig.9 Bedrooms from the
LSUN dataset generated with an
associative adversarial network,
with a fully connected latent
space sampled via MCMC
sampling

into near-term quantum hardware. Given the O (n2) scaling
of qubits to logical variables for a complete logical graph
(Choi 2011), future applications of sampling via quantum
annealing will likely exploit restricted graphical models.
Though the size of near-term quantum annealers has
followed Moore’s law trajectory, doubling in size every 2
years, it is not clear what size of probabilistic graphical
models will find mainstream usage in machine learning
applications and exploring the uses of different models will
be an important theme of research as these devices grow in
size.

There are two takeaways from the results presented
here. Though these values are not comparable to state-
of-the-art GAN architectures and are on a simple MNIST
implementation, they serve the purpose of highlighting
that the inclusion of a near-term quantum device is not
detrimental to the performance of this algorithm. Secondly,
we have demonstrated the framework on the larger, more
complex, dataset LSUN bedrooms (Fig. 9). This indicates
that the algorithm can be scaled.
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8 Conclusions
8.1 Summary

In this work, we have presented a novel and scalable
quantum-assisted algorithm, based on a GAN framework,
which can learn an implicit latent variable generative
model of complex datasets, such as LSUN, and compared
performance of different topologies

This work is a step in the development of algorithms
that use quantum phenomena to improve the learning
generative models of datasets. This algorithm fulfills the
requirements of the three areas outlined by Perdomo-Ortiz
et al. (Perdomo-Ortiz et al. 2017): Generative problems,
data where quantum correlations may be beneficial, and
hybrid. This implementation also allows for use of sparse
topologies, removing the need for chaining, requires a
relatively small number of variables (allowing for near-
term quantum hardware to be applied), and is resistant to
noise. However, there are aspects of this implementation
and model that limit the performance and increase the cost.
These are discussed below.

8.2 Limitations

Throughout the paper, several limitations to quantum
annealing devices and this method of integrating quantum
annealing devices to neural network models have been
mentioned. We collect these ideas here to highlight the areas
in which quantum annealers, and this implementation of a
hybrid quantum-classical model, may have to improve to
increase the usefulness of these methods.

Applications of quantum computing to quantum machine
learning have well-recognized limitations, such as bench-
marking these models against classical counterparts (Vinci
et al. 2020; Rgnnow et al. 2014; King et al. 2015; Vinci
and Lidar 2016). The approach presented in this paper has
several more specific limitations.

Firstly, the cost of embedding a logical graph in a
quantum annealer may be large in terms of the performance
of the model (Marshall et al. 2020). Specifically, it is
not clear whether how close the model of the distribution
sampled by the quantum annealer is to the real distribution
for an embedded graph. This problem may become more
obvious at larger model sizes. Higher connectivity of
quantum annealing devices will most likely be needed to
continue improving quantum-assisted model performance.
This is related to the problem proposed by the freeze-out
hypothesis (Amin 2015), where the samples may not come
from the distribution modelled.

Secondly, we did not determine the temperature of
the quantum annealer, under the gray-box assumption
(Benedetti et al. 2018). Better models for the behavior of the
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device and potentially heurisitics for mitigating their effects
would help further improve and understand these methods.

Finally, the key feature of this model is the learning
of the intermediate distribution between the discriminator
and the generator. Although we have highlighted this as a
potential avenue to solve some problems associated with
GAN:g, it is not clear if the integration of the discrete space
of the Boltzmann machine and the continuous space of the
classical aspects of the model will be able to match state-
of-the-art performance. Additionally, we chose a relatively
simple mapping of discrete to continuous variables, whereas
other methods, such as those described in related work
(Rolfe 2016; Amin et al. 2016), will most likely improve the
performance.

These effects, along with the noise of the quantum
device, result in the overall decreased performance of
the Boltzmann machine (as compared with classical
MCMC sampling) and the indistinguishability of the three
topologies (Fig. 6). Although the architecture still performs
well enough to model the higher dimensional LSUN
bedrooms dataset, they must be further understood and
addressed for these methods to continue to improve.

8.3 Further work

There are many avenues to use quantum annealing for
sampling in machine learning, topologies, and GAN
research. Here, we have outlined a framework that works on
simple (MNIST) and more complex (LSUN) datasets. We
highlight several areas of interest that build on this work.

The first is an investigation into how the inclusion
of quantum hardware into models such as this can be
detected. There are two potential improvements to the
model: Quantum terms improve the model of the data
distribution; or graphical models, which are classically
intractable to learn for example fully connected, integrated
into the latent spaces, may improve the latent variable
generative model learned. Before investing extensive time
and research into integrating quantum models into latent
spaces, it will be important to note that these improvements
are reflected in the overall model of the dataset. That
is, that backpropagation does not erase any latent space
performance gains.

There are still outstanding questions as to the distribution
the quantum annealer samples. The pause and reverse
anneal features on the D-Wave 2000Q gives greater control
over the distribution output by the quantum annealer, and
can be used to explore the relationship between the quantum
nature of that distribution and the quality of the model
trained by a quantum Boltzmann machine (Marshall et al.
2018). It is also not clear what distribution is the “best”
for learning a model of a distribution. It could be that
efforts to decrease the operating temperature of a quantum
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annealer to boost performance in optimization problems
will lead to decreased performance in ML applications,
as the diversity of states in a distribution decreases and
probabilities accumulate at a few low-energy states. There
are interesting open questions as to the optimal effective
temperature of a quantum annealer for ML applications.
This question fits within a broad area for research in ML
asking which distributions are most useful for ML and why.
As larger gate model quantum processors become available,
it will be interesting to evaluate a variety of quantum
algorithms beyond quantum annealing for sampling in this
framework.

For this simple implementation, the quantum sampling
sparse graph performance is comparable to the complete and
restricted topologies. Though in optimized implementations
we expect divergent performance, the sparse graph serves
the purpose of demonstrating the QAAAN architecture.
Additionally, we have highlighted sparse classical graphical
models for use in the architecture demonstrated on LSUN
bedrooms. Though they have reduced expressive power,
there are many more applications for current quantum
hardware; for example, a fully connected graphical model
would require in excess of 2048 qubits (the number
available on the D-Wave 2000Q) to learn a model of a
standard MNIST dataset, not to mention the detrimental
effect of the extensive chains. A sparse D-Wave 2000Q
native graph (Chimera) conversely would only use 784
qubits. This is a stark example of how sparse models
might be used in lieu of models with higher connectivity.
Investigations finding the optimal balance between the
complexity of a model, resulting overhead required by
embedding, and the affect on both on performance are
needed to understand how future quantum annealers
might be used for applications in ML. More generally,
understanding how the architectural, as well as algorithmic,
choices in near-term gate model devices affect performance
will enhance our understanding of quantum computings
impact on machine learning in the decades ahead.
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