
https://doi.org/10.1007/s42484-021-00046-w

RESEARCH ARTICLE

QDNN: deep neural networks with quantum layers

Chen Zhao1,2 · Xiao-Shan Gao1,2

Received: 23 November 2020 / Accepted: 19 March 2021
© The Author(s) 2021

Abstract
In this paper, a quantum extension of classical deep neural network (DNN) is introduced, which is called QDNN and consists
of quantum structured layers. It is proved that the QDNN can uniformly approximate any continuous function and has more
representation power than the classical DNN. Moreover, the QDNN still keeps the advantages of the classical DNN such as
the non-linear activation, the multi-layer structure, and the efficient backpropagation training algorithm. Furthermore, the
QDNN uses parameterized quantum circuits (PQCs) as the basic building blocks and hence can be used on near-term noisy
intermediate-scale quantum (NISQ) processors. A numerical experiment for an image classification task based on QDNN is
given, where a high accuracy rate is achieved.

Keywords Deep neural networks · Quantum machine learning · Hybrid quantum-classical algorithm · NISQ

1 Introduction

Quantum computers use the principles of quantum mechan-
ics for computing, which are more powerful than classical
computers in many computing problems (Shor 1994; Grover
1996). Many quantum machine learning algorithms, such as
quantum support vector machine, quantum principal com-
ponent analysis, and quantum Boltzmann machine, were
developed (Wiebe et al. 2012; Schuld et al. 2015a; Biamonte
et al. 2017; Rebentrost et al. 2014; Lloyd et al. 2014; Amin
et al. 2018; Gao et al. 2018), and these algorithms were
shown to be more efficient than their classical versions.

In recent years, DNNs (LeCun et al. 2015) became the
most important and powerful method in machine learning,
which were widely applied in computer vision (Voulodimos
et al. 2018), natural language processing (Socher et al.
2012), and many other fields. The basic unit of DNN is the
perceptron, which is an affine transformation together with
an activation function. The non-linearity of the activation
function and the depth give the DNN much representation

� Xiao-Shan Gao
xgao@mmrc.iss.ac.cn

1 Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences,
Beijing 100049, China

power (Hornik 1991; Leshno et al. 1993). Approaches were
proposed to build classical DNNs on quantum computers
(Killoran et al. 2019; Zhao et al. 2019; Kerenidis et al.
2020). They achieved quantum speed-up under certain
assumptions. But the structure of classical DNNs is still
used, and only some local operations are speeded up by
quantum algorithms. For instance, the inner product was
speedup using the swap test (Zhao et al. 2019).

Several quantum analogs of DNNs were proposed. In
Schuld et al. (2015b) and Cao et al. (2017), quantum analogs
of the perceptron are demonstrated. However, methods of
building complex DNNs with these quantum perceptrons
are not developed. In Wan et al. (2017), a quantum gen-
eralization of the feedforward neural network is proposed.
However, non-linearity is not introduced in this model.
In Tacchino et al. (2020), the non-linearity is introduced
with measurement, as a consequence, the training cost is
increased. In Steinbrecher et al. (2019), a quantum ana-
log of the DNN which can be run on optical quantum
devices was proposed. A quantum analog of deep convolu-
tional neural networks was proposed in Li et al. (2020). In
many of these approaches, the inputs or outputs are quan-
tum states, and hence the quantum random access memory
(QRAM) (Giovannetti et al. 2008; Aaronson 2015) is used.
However, QRAM is difficult to be implemented on noisy
intermediate-scale quantum (NISQ) (Preskill 2018) devices.
It is known that NISQ will be the only quantum devices that
can be used in the near-term, where only a limited number
of qubits without error-correcting can be used.

Quantum Machine Intelligence (2021) 3: 15

/ Published online: 26 April 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-021-00046-w&domain=pdf
http://orcid.org/0000-0003-2021-9395
mailto: xgao@mmrc.iss.ac.cn

Recently, parameterized quantum circuits (PQCs) were
widely considered, because PQCs can be efficiently imple-
mented on NISQ devices. Several NISQ quantum machine
learning models based on PQCs, such as quantum gener-
ative adversarial networks, quantum circuit Born machine,
and quantum kernel methods, were proposed (Lloyd and
Weedbrook 2018; Dallaire-Demers and Killoran 2018; Liu
and Wang 2018; Schuld and Killoran 2019; Havlı́ček et al.
2019; Benedetti et al. 2019). Several approaches are shown
that PQCs have the potential abilities in machine learn-
ing tasks including approximating functions (Mitarai et al.
2018), classification (Farhi and Neven 2018; Schuld et al.
2020), and data generating (Liu and Wang 2018; Situ
et al. 2020). PQCs are also called quantum neural net-
works (QNNs) because of its layerwise circuit structure, and
QNNs are used for machine learning tasks (Farhi and Neven
2018; Beer et al. 2020). Several different structures of the
PQC were proposed (Grant et al. 2018; Liu et al. 2019a;
Cong et al. 2019).

In this paper, we introduce the quantum deep neural
network (QDNN) which is a composition of multiple
quantum neural network layers (QNNLs). We prove that the
QDNN can uniformly approximate any continuous function
and has more representation power than the classical DNN.
Unlike other approaches of quantum analogs of DNNs, our
QDNN still keeps the advantages of the classical DNN such
as the non-linear activation, the multi-layer structure, and
the efficient backpropagation training algorithm. The inputs
and the outputs of the QDNN are both classical which
makes the QDNN more practical. Because the QNNL is
based on PQCs, the QDNN has the potential to be used on
NISQ processors. As shown in our experiments, a QDNN
with a small number (eight) of qubits can be used in image
classification. In summary, QDNN provides a new class of
neural networks which can be used in near-term quantum
computers and is more powerful than classical DNNs.

The structure of the QNNL is similar to that of the QNN.
There usually exists only one Hamiltonian in the model of
QNN while there exist multiple Hamiltonians in the QNNL
and a bias term will be added at the output. The multiple
dimensional output of the QNNL makes it possible to build
multi-layer structure in QDNN. We use QNNLs as building
blocks of the QDNN and we use multiple PQCs which
will be trained simultaneously. The universal approximation
property of QDNN comes from its multi-layer structure.
The QNN can be regarded as a special 1-layer QDNN and
has no universal approximation property.

Our paper is organized as follows. We define the QNNL
in Section 2.1. The definition of the QDNN and its training
algorithms are presented in Section 2.2. In Section 3, we
discuss the representation power and potential quantum
advantages of the QDNN. In Section 4, a numerical

experiment for an image classification task based on QDNN
is used to show the effectiveness of QDNN.

2 The QDNN

A DNN consists of a large number of neural network layers,
and each neural network layer is a non-linear function
f−→

W ,�b(�x) : Rn → R
m with parameters

−→
W , �b. In the classical

DNN, f−→
W ,�b takes the form of σ ◦ L−→

W ,�b, where L−→
W ,�b is

an affine transformation and σ is a non-linear activation
function. The power of DNNs comes from the non-linearity
of the activation function. Without activation functions,
DNNs will be nothing more than affine transformations.

However, all quantum gates are unitary matrices and
hence linear. So the key point of developing QNNLs is
introducing non-linearity.

2.1 Quantum neural network layers

We build QNNLs using the hybrid quantum-classical algo-
rithm scheme (McClean et al. 2016), which is widely used
in many NISQ quantum algorithms (Liu and Wang 2018;
Liu et al. 2019b). As shown in Fig. 1, a hybrid quantum-
classical algorithm scheme consists of a quantum part and
a classical part. In the quantum part, parameterized quan-
tum circuits (PQCs) are used to prepare quantum states with
quantum processors. In the classical part, parameters of the
PQCs are optimized using classical computers.

A PQC is a quantum circuit with parametric gates, which
is of the form

U(�θ) =
l∏

j=1

Uj(θj)

where �θ = (θ1, . . . , θl) are the parameters, each Uj (θj) is

a rotation gate Uj(θj) = exp(−i
θj

2 Hj), and Hj is a 1-qubit
or a 2-qubits gate such that H 2

j = I . For example, when Hj

is one of Pauli matrices {X, Y, Z}, Uj(θj) is the single qubit
rotation gates RX, RY , RZ .

As shown in Fig. 1, once fixed an ansatz circuit U(�θ)

and a Hamiltonian H , we can define the loss function of

Fig. 1 Hybrid quantum-classical scheme

Quantum Machine Intelligence (2021) 3: 15Page 2 of 915

the form L = 〈0|U†(�θ)HU(�θ)|0〉. Then, we can optimize
L by updating parameters �θ using optimization algorithms
(Schuld et al. 2019; Nakanishi et al. 2019). With gradient-
based algorithms (Schuld et al. 2019), one can efficiently
compute the gradient information ∂L

∂ �θ which is essentially
important in our model. Hence, we will focus on gradient-
based algorithms in this paper.

Now, we are going to define a QNNL, which consists of
3 parts: the encoder, the transformation, and the output, as
shown in Fig. 2.

(1) The encoder. For a classical input data �x ∈ R
n,

we introduce non-linearity to our QNNL by encoding
the input �x to a quantum state |ψ(�x)〉 non-linearly.
Precisely, we choose a PQC U(�x) with at most O(n)

qubits and apply it to an initial state |ψ0〉 to obtain a
quantum state

|ψ(�x)〉 = U(�x)|ψ0〉 (1)

encoded from �x. The PQC is naturally non-linear in
the parameters. For example, the encoding process

|ψ(x)〉 = exp
(
−i

x

2
X

)
|0〉

from x to |ψ(x)〉 is non-linear. Moreover, we can
compute the gradient of each component of �x
efficiently. The gradient of the input in each layer is
necessary when training the QDNN. The encoding step
is the analog to the classical activation step.

(2) The transformation. After encoding the input data,
we apply a linear transformation as the analog of the
linear transformation in the classical DNNs. This part
is natural on quantum computers because all quantum
gates are linear. We use another PQC V (

−→
W) with

parameters
−→
W for this purpose. We assume that the

number of parameters in V (
−→
W) is O(poly(n)).

(3) The output. Finally, the output of a QNNL will be
computed as follow. We choose m fixed Hamiltonians
Hj , j = 1, . . . , m, and output

�y =
⎛

⎜⎝
y1 + b1

...
ym + bm

⎞

⎟⎠ ,

yj = 〈ψ(�x)|V †(
−→
W)HjV (

−→
W)|ψ(�x)〉, bj ∈ R. (2)

Note that the expectation value of a Hamiltonian is a
linear function of the density matrix. Here, the bias
term �b = (b1, . . . , bm) is an analog of bias in classical
DNNs. Also, each yj is a hybrid quantum-classical

scheme with a PQC U(�x)V (
−→
W) and Hamiltonians Hj .

To compute the output efficiently, we assume that the
expectation value of each of these Hamiltonians can be
computed in O(poly(n, 1

ε
)), where ε is the precision. It is

easy to show that all Hamiltonians of the following form
satisfy this assumption

H =
O(poly(n))∑

i=1

Hi,

where Hi are tensor products of Pauli matrices or k-local
Hamiltonians.

In summary, a QNNL is a function

Q−→
W ,�b(�x) : Rn → R

m

defined by Eqs. 1) and 2, and shown in Fig. 2. Note that a
QNNL is a function with classic input and output, and can
be determined by a tuple

Q = (U, V, [Hj]j=1,...,m)

with parameters (
−→
W , �b). Notice that the QNNLs activate

before affine transformations while classical DNNLs acti-
vate after affine transformations. But this difference can be
ignored when considering multi-layers.

Fig. 2 The structure of a QNNL
Q �W,�b

Quantum Machine Intelligence (2021) 3: 15 Page 3 of 9 15

2.2 QDNN and its training algorithms

Since the input and output of QNNLs are classical values,
they can be implemented without the assumption of QRAM.
Furthermore, the QNNLs can be naturally embedded
in classical DNNs. A neural network consists of the
composition of multiple compatible QNNLs and classical
DNN layers is called quantum DNN (QDNN):

QDNN = L
l,
−→
W l, �bl

◦ · · · ◦ L
1,

−→
W 1, �b1

where each L
i,
−→
Wi, �bi

is a classical or a quantum layer from

R
ni−1 to R

ni for i = 1, . . . , l and {−→Wi, �bi, i = 1, . . . , l} are
the parameters of the QDNN.

We will use gradient descent to update the parameters.
In classical DNNs, the gradient of parameters in each
layer is computed by the backpropagation algorithm (BP).
Suppose that we have a QDNN. Consider a QNNL Q with
parameters �W, �b, whose input is �x and output is �y. Refer to
Eqs. 1 and 2 for details.

To use the BP algorithm, we need to compute ∂ �y
∂
−→
W

,
∂ �y
∂ �b

and ∂ �y
∂ �x . Computing ∂ �y

∂ �b is trivial. Because U, V are PQCs
and each component of �y is an output of a hybrid quantum-
classical scheme, both ∂ �y

∂
−→
W

and ∂ �y
∂ �x can be estimated by

shifting parameters (Schuld et al. 2019).

We can use Algorithm 2 to estimate the gradient in each
quantum layer.

Hence, gradients can be backpropagated through the quan-
tum layer, and QDNNs can be trained with the BP algorithm.

Gradient-based methods are used to train QDNNs. As
a consequence, if the circuits in the QNNL reach unitary
2-design, then there exist barren plateaus, which makes
the model untrainable (McClean et al. 2018). Thus, the
structure of QNNLs should not be randomly chosen.
There are several techniques to avoid barren plateaus. For
instance, we can use circuits with special structures and
local Hamiltonians (Cerezo et al. 2020; Zhao and Gao
2021), or we can use certain initialization strategies and
introduce correlations between parameters to obtain large
gradients (Grant et al. 2019; Volkoff and Coles 2021).

3 Representation power of QDNNs

In this section, we will consider the representation power of
the QDNN. We will show that QDNN can approximate any
continuous function similar to the classical DNN. Moreover,
if quantum computing can not be classically simulated
efficiently, the QDNN has more representation power than
the classical DNN.

3.1 Universal approximation property of QDNNs

The universal approximation theorem ensures that DNNs
can approximate any continuous function (Cybenko 1989;
Hornik 1991; Leshno et al. 1993; Pinkus 1999). Since the
class of QDNNs is an extension of the class of classical
DNNs, the universal approximation theorem can be applied
to the QDNN trivially. Now, we show that QDNNs with only
QNNLs also have the universal approximation property.
Consider two cases

– DNN with only QNNLs.
– DNN with QNNLs and affine layers.

In the first case, let us consider a special type of
QNNLs which can represent monomials (Mitarai et al.
2018). Consider the circuit

U(x) = RY (2 arccos(
√

x)) =
(

x −√
1 − x2√

1 − x2 x

)
(3)

Quantum Machine Intelligence (2021) 3: 15Page 4 of 915

and the Hamiltonian H0 = |0〉〈0|. The expectation value
of 〈0|U†(x)H0U(x)|0〉 is the monomial x for x ∈ [0, 1].
For multivariable monomial x = x

m1
1 · · · xmk

k , we use the
circuit

U(x) =
[
⊗m1

j1=1RY (2 arccos(
√

x1))
]

⊗ · · · ⊗
[
⊗mk

jk=1RY (2 arccos(
√

xk))
]

(4)

and the Hamiltonian H0 = |0 . . . 0〉〈0 . . . 0|, where ⊗ is the
tensor product and

⊗mk

jk=1RY (2 arccos(
√

xk))

=
mk︷ ︸︸ ︷

RY (2 arccos(
√

xk)) ⊗ · · · ⊗ RY (2 arccos(
√

xk)) .

Similarly, the expectation value of

〈0 . . . 0|U†(x)H0U(x)|0 . . . 0〉 is x
m1
1 · · · xmk

k

for x1, . . . , xk ∈ [0, 1].
With the above results and Stone-Weierstrass theorem

(Stone 1948), we can deduce the following theorem.

Theorem 1 The QDNN with only QNNLs can uniformly
approximate any continuous function

f : [0, 1]k → R
l .

Now, let us consider the second case. As the affine
transformation can map the hypercube [0, 1]k to [a1, b1] ×
· · ·× [ak, bk] for any ak < bk . Hence we have the following
result.

Corollary 1 The QDNN with QNNLs and affine layers can
uniformly approximate any continuous function

f : D → R
l ,

where D is a compact set in R
k .

Also, the QNNL can be used as a non-linear activation
function. For example, we consider a QNNL Qac with the
input circuit

⊗m
j=1RY (xj)

and the Hamiltonian

Hj = I ⊗ · · · ⊗ I ⊗ |0〉〈0| ⊗ I ⊗ · · · ⊗ I,

where the projection is on the j th qubit for j = 1, . . . , m.
By simple computation, we have

Qac(

⎛

⎜⎝
x1
...

xm

⎞

⎟⎠) =
⎛

⎜⎝
cos(x1)

...
cos(xm)

⎞

⎟⎠ . (5)

By the universal approximation property (Leshno et al.
1993; Kratsios 2019), neural networks with non-polynomial
activation functions can approximate any continuous func-
tion f : R

k → R
l . Thus, the QDNN with QNNLs and

affine layers can approximate any continuous function.
Similar to the classical case, QDNNs with one quantum

layer can approximate any continuous function (Hornik
1991). However, if we restrict the number of parameters
to be polynomial, then there exist functions which can
be approximated with large-depth DNNs and cannot be
approximated by small-depth neural networks (Eldan and
Shamir 2016; Daniely 2017; Vardi and Shamir 2020), and
this is the reason to use multilayer QDNNs.

3.2 Quantum advantages

According to the definition of QNNLs in Eq. 2, each
element of the outputs in a QNNL is of the form

yj = bj + 〈ψ0|U†(�x)V †(
−→
W)HjV (

−→
W)U(�x)|ψ0〉. (6)

In general, estimation of 〈ψ0|U†(�x)V †(
−→
W)HjV (

−→
W)U(�x)

|ψ0〉 on a classical computer will be difficult by the follow-
ing theorem.

Theorem 2 Estimation (6) with precision c < 1
3 is BQP-

hard, where BQP is the bounded-error quantum polynomial
time complexity class.

Proof Consider any language L ∈ BQP. There exists a
polynomial-time Turing machine which takes x ∈ {0, 1}n as
input and outputs a polynomial-sized quantum circuit C(x).
Moreover, x ∈ L if and only if the measurement result of
C(x)|0〉 of the first qubit has the probability ≥ 2

3 to be |1〉.
Because {RX, RZ, CNOT} are universal quantum gates,

C(x) can be expressed as a polynomial-sized PQC: Ux(�θ) =
C(x) with proper parameters. Consider H = Z⊗I⊗· · ·⊗I ,
then

〈0|Ux(�θ)HUx(�θ)|0〉 ≤ −1

3
(7)

if and only if x ∈ L, and

〈0|Ux(�θ)HUx(�θ)|0〉 ≥ 1

3
(8)

if and only if x /∈ L.

Given inputs, computing the outputs of classical DNNs is
polynomial time. Hence, functions represented by classical
DNNs are characterized by the complexity class Ppoly. On
the other hand, computing the outputs of QDNNs is BQP-
hard in general according to Theorem 2. The functions
represented by QDNNs are characterized by a complexity
class that has a lower bound BQP/poly. Here, BQP/poly is the
problems which can be solved by polynomial sized quantum

Quantum Machine Intelligence (2021) 3: 15 Page 5 of 9 15

circuits with bounded error probability (Aaronson et al.
2005). Under the hypothesis that quantum computers cannot
be simulated efficiently by classical computers, which is
generally believed, there exists a function represented by a
QDNN which cannot be computed by classical circuits of
polynomial size. Hence, QDNNs have more representation
power than DNNs.

4 Experimental results

We will use QDNNs to conduct a numerical experiment
for an image classification task. The data comes from the
MNIST data set. We built a QDNN with 3 QNNLs. The goal
of this QDNN is to recognize the digit in the image is either
0 or 1 as a classifier.

4.1 Experiment details

The data in the MNIST is 28 × 28 = 784 dimensional
images. This dimension is too large for the current quantum
simulator. Hence, we first resize the image to 8 × 8 pixels.
We use three QNNLs in our QDNN, which will be called
the input layer, the hidden layer, and the output layer,
respectively.

In the experiments, we use trainable QDNNs by adopting
local Hamiltonians and small depth structure. We set the
ansatz circuit to be the one in Fig. 3, which is similar to
the hardware efficient ansatz (Kandala et al. 2017) and has
small depth. Because of the small depth of the ansatz and
the local Hamiltonian, the QDNN is trainable (Cerezo et al.
2020). Also, the small depth makes the model possible to
be run on NISQ devices. The hyperparameters DT and DE

will be chosen depending on the problem to be solved.

4.1.1 Input layer

The input layer uses an 8-qubit circuit which accepts an
input vector x ∈ R

64 and outputs a vector �h1 ∈ R
24. The

structure in Fig. 3a is used, where DE = 2, DT = 5. We

denote Vin(
−→
W in) for

−→
W in ∈ R

136 to be the transformation
circuit in this layer.

Table 1 Settings of three layers

of Input Output # of parameters

qubits dimension dimension (transformation + bias)

Input layer 8 64 24 136 + 24

Hidden layer 6 24 12 84 + 12

Output layer 4 12 2 32 + 0

The output of the input layer is of the form

�h1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈ψ(�x,
−→
W in)|H1,X|ψ(�x,

−→
W in)〉

...

〈ψ(�x,
−→
W in)|H8,X|ψ(�x,

−→
W in)〉

〈ψ(�x,
−→
W in)|H1,Y |ψ(�x,

−→
W in)〉

...

〈ψ(�x,
−→
W in)|H8,Y |ψ(�x,

−→
W in)〉

〈ψ(�x,
−→
W in)|H1,Z|ψ(�x,

−→
W in)〉

...

〈ψ(�x,
−→
W in)|H8,Z|ψ(�x,

−→
W in)〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �bin ∈ R
24, (9)

where |ψ(�x,
−→
W in)〉 = Vin(

−→
W in)|ψ(�x)〉 and Hj,M denote the

result obtained by applying the operator M on the j -th qubit
for M ∈ {X, Y, Z}.

4.1.2 Hidden layer

The hidden layer uses 6 qubits. It accepts an vector �h1 ∈ R
24

and outputs a vector �h2 ∈ R
12. The structure shown in

Fig. 3b is used, with DE = 1, DT = 4. Because there are
30 parameters in the encoder, we set the last column of RZ

gates to be RZ(0). Similar to the input layer, the output of
the hidden layer is

�h2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈ψ(�h1,
−→
Wh)|H1,Y |ψ(�h1,

−→
Wh)〉

...

〈ψ(�h1,
−→
Wh)|H6,Y |ψ(�h1,

−→
Wh)〉

〈ψ(�h1,
−→
Wh)|H1,Z|ψ(�h1,

−→
Wh)〉

...

〈ψ(�h1,
−→
Wh)|H6,Z|ψ(�h1,

−→
Wh)〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �bh ∈ R
12. (10)

Fig. 3 Ansatz circuits in each QNNL. a The ansatz circuit of the encoder. b The ansatz circuit of the transformation. c. The structure of gate Ent

Quantum Machine Intelligence (2021) 3: 15Page 6 of 915

Fig. 4 Loss function

4.1.3 Output layer

The output layer uses 4 qubits. We use the structure in Fig. 3c
with DE = 1, DT = 2. Because there are 20 parameters in
the encoder, we set the last column of RZ and RX gates to
be RZ(0) and RX(0). The output of the output layer is

�y =
(
〈ψ(�h2,

−→
W out)|(|0〉〈0| ⊗ I ⊗ I ⊗ I)|ψ(�h2,

−→
W out)〉

〈ψ(�h2,
−→
W out)|(|1〉〈1| ⊗ I ⊗ I ⊗ I)|ψ(�h2,

−→
W out)〉.

)

(11)

Notice that we do not add bias term here, and it will output
a vector in R

2. Moreover, after training, we hope to see if
the input �x is from an image of digit 0, the output �y should

be close to

(
1
0

)
, otherwise it should be close to

(
0
1

)
.

In conclusion, the settings of these three layers are shown
in Table 1. Finally, the loss function is defined as

L = 1

|D|
∑

(�x,y)∈D
|QDNN(�x) − �y|2 , (12)

where D is the training set.

4.2 Experiments result

We used the Julia package Yao.jl (Luo et al. 2019) as
a quantum simulator in our experiments. All data were col-
lected on a desktop PC with Intel CPU i7-4790 and 4GB RAM.

Table 2 Training results
Training set Test set

nshots Loss Accurate rate Loss Accurate rate

100 0.15542687722068718 90.36% 0.15639276595744667 90.17%

1000 0.03284751330438213 98.32% 0.0294211153664303 98.91%

10000 0.020227478326095588 98.92% 0.017112455910165428 99.39%

∞ 0.015732338671740852 98.92% 0.013040602800738285 99.57%

All parameters were initialized randomly in (−π, π).
We use Adam optimizer (Kingma and Ba 2014) to update
parameters. We train this QDNN for 200 iterations with
batch size of 240. We set the number of samples when
evaluating the expectation value of Hamiltonian each time
to 100, 1000, 1000 and ∞. The hyper parameters of Adam
is set to be η = 0.01, β1 = 0.9, β2 = 0.999.

The values of the loss function on the training set during
training is shown in Fig˙ 4. The loss function and accurate
rate of this QDNN on both training set and test set after
training are shown in Table 2. It shows that when the number
of samples reaches 1000, we can train the QDNN with high
performance.

5 Discussion

We introduce the model of QNNL and built QDNN with
QNNLs. We proved that QDNNs have more representation
power than classical DNNs. We presented a practical
gradient-based training algorithm as the analog of BP
algorithms. As a result, the QDNN still keeps most of the
advantages of the classical DNNs. Because the model is
based on the hybrid quantum-classical scheme, it has the
potential to be realized on NISQ processors.

Since we use a classical simulator on a desktop PC for
quantum computation, only QDNNs with a small number
of qubits can be used and only simple examples can
be demonstrated. Quantum hardware is developing fast.
Google achieved quantum supremacy by using a super-
conducting quantum processor with 53 qubits (Arute et al.
2019). From Table 1, only 8 qubits are used in our exper-
iments described in the preceding section, so in principle,
our image classification experiment can be implemented
in Google’s quantum processor. However, due to the lack
of access to a real quantum computer, we are not able
to give simulation tests on how the QDNN works with
noises. With quantum computing resources, we can access
exponential dimensional feature Hilbert spaces (Schuld and
Killoran 2019) with QDNNs and only use polynomial-size
parameters. Hence, we believe that QDNNs will help us to
extract features more efficiently than DNNs.

Quantum Machine Intelligence (2021) 3: 15 Page 7 15of 9

Acknowledgements We thank Xiu-Zhe Luo and Jin-Guo Liu for
helping us in Julia programming.

Funding This work is partially supported by an NSFC grant no.
11688101 and an NKRDP grant no. 2018YFA0306702.

Code availability All codes and data are available on http://github.
com/ChenZhao44/QDNN.jl.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aaronson S, Kuperberg G, Granade C (2005) The complexity zoo
Aaronson S (2015) Read the fine print. Nat Phys 11(4):291–293
Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018)

Quantum boltzmann machine. Phys Rev X 8(2):021,050
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R,

Biswas R, Boixo S, Brandao FG, Buell DA et al (2019) Quantum
supremacy using a programmable superconducting processor.
Nature 574:505–510

Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R,
Scheiermann D, Wolf R (2020) Training deep quantum neural
networks. Nat Commun 11(1):1–6

Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized
quantum circuits as machine learning models. Quantum Sci
Technol 4(4):043,001

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S
(2017) Quantum machine learning. Nature 549(7671):195–202

Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum neuron:
an elementary building block for machine learning on quantum
computers. arXiv:1711.11240

Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2020) Cost-
function-dependent barren plateaus in shallow quantum neural
networks. arXiv:2001.00550

Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural
networks. Nat Phys 15(12):1273–1278

Cybenko G (1989) Approximation by superpositions of a sigmoidal
function. Math Control Signals Syst 2(4):303–314

Dallaire-Demers PL, Killoran N (2018) Quantum generative adversar-
ial networks. Physical Rev A 98(1):012,324

Daniely A (2017) Depth separation for neural networks. In: Kale
S, Shamir O (ed) Proceedings of the 2017 conference on
learning theory, proceedings of machine learning research, vol
65. PMLR, Amsterdam, pp 690–696. http://proceedings.mlr.press/
v65/daniely17a.html

Eldan R, Shamir O (2016) The power of depth for feedforward neural
networks. In: Feldman V, Rakhlin A, Shamir O (eds) 29th Annual
conference on learning theory, proceedings of machine learning
research, vol 49. pp 907–940. PMLR, Columbia University, New
York, New York, USA. http://proceedings.mlr.press/v49/eldan16.
html

Farhi E, Neven H (2018) Classification with quantum neural networks
on near term processors. arXiv:1802.06002

Gao X, Zhang Z, Duan L (2018) A quantum machine learning
algorithm based on generative models, vol 4

Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access
memory. Phys Rev Lett 100(16):160,501

Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V,
Green AG, Severini S (2018) Hierarchical quantum classifiers. npj
Quantum Inf 4(1):1–8

Grant E, Wossnig L, Ostaszewski M, Benedetti M (2019) An ini-
tialization strategy for addressing barren plateaus in parametrized
quantum circuits. Quantum 3:214

Grover LK (1996) A fast quantum mechanical algorithm for database
search. In: Proceedings of 28th annual ACM symposium on
theory of computing, STOC ’96. ACM, New York, pp 212-219.
https://doi.org/10.1145/237814.237866

Havlı́ček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow
JM, Gambetta JM (2019) Supervised learning with quantum-
enhanced feature spaces. Nature 567(7747):209

Hornik K (1991) Approximation capabilities of multilayer feed-
forward networks. Neural Netw 4(2):251–257. https://doi.org/
10.1016/0893-6080(91)90009-T, http://www.sciencedirect.com/
science/article/pii/089360809190009T

Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow
JM, Gambetta JM (2017) Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets. Nature
549(7671):242–246

Kerenidis I, Landman J, Prakash A (2020) Quantum algorithms
for deep convolutional neural networks. In: International confer-
ence on learning representations. https://openreview.net/forum?
id=Hygab1rKDS

Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd
S (2019) Continuous-variable quantum neural networks. Phys Rev
Res 1(3):033,063

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization.
arXiv:1412.6980

Kratsios A (2019) The universal approximation property: character-
izations, existence, and a canonical topology for deep-learning.
arXiv:1910.03344

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444

Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feed-
forward networks with a nonpolynomial activation function
can approximate any function. Neural Netw 6(6):861–867.
https://doi.org/10.1016/S0893-6080(05)80131-5. http://www.
sciencedirect.com/science/article/pii/S0893608005801315

Li Y, Zhou RG, Xu R, Luo J, Hu W (2020) A quantum deep
convolutional neural network for image recognition. Quantum Sci
Technol 5(4):044,003. https://doi.org/10.1088/2058-9565/ab9f93

Liu JG, Wang L (2018) Differentiable learning of quantum circuit born
machines. Phys Rev A 98(6):062,324

Liu JG, Zhang YH, Wan Y, Wang L (2019) Variational quantum
eigensolver with fewer qubits. Phys Rev Res 1(023):025.
https://doi.org/10.1103/PhysRevResearch.1.023025

Liu JG, Zhang YH, Wan Y, Wang L (2019) Variational quantum
eigensolver with fewer qubits. Phys Rev Res 1(023):025. https://
doi.org/10.1103/PhysRevResearch.1.023025

Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal
component analysis. Nat Phys 10(9):631

Quantum Machine Intelligence (2021) 3: 15Page 8 of 915

http://github.com/ChenZhao44/QDNN.jl
http://github.com/ChenZhao44/QDNN.jl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1711.11240
http://arxiv.org/abs/2001.00550
http://proceedings.mlr.press/v65/daniely17a.html
http://proceedings.mlr.press/v65/daniely17a.html
http://proceedings.mlr.press/v49/eldan16.html
http://proceedings.mlr.press/v49/eldan16.html
http://arxiv.org/abs/1802.06002
https://doi.org/10.1145/237814.237866
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
https://openreview.net/forum?id=Hygab1rKDS
https://openreview.net/forum?id=Hygab1rKDS
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.03344
https://doi.org/10.1016/S0893-6080(05)80131-5
http://www.sciencedirect.com/science/article/pii/S08936080058 01315
http://www.sciencedirect.com/science/article/pii/S08936080058 01315
https://doi.org/10.1088/2058-9565/ab9f93
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1103/PhysRevResearch.1.023025

Lloyd S, Weedbrook C (2018) Quantum generative adversarial
learning. Phys Rev Lett 121(4):040,502

Luo XZ, Liu JG, Zhang P, Wang L (2019) Yao.jl: Extensible, efficient
framework for quantum algorithm design. arXiv:1912.10877

McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018)
Barren plateaus in quantum neural network training landscapes.
Nat Commun 9(1):1–6

McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The
theory of variational hybrid quantum-classical algorithms. New J
Phys 18(2):023,023

Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum
circuit learning. Phys Rev A 98(032):309. https://doi.org/10.1103/
PhysRevA.98.032309

Nakanishi KM, Fujii K, Todo S (2019) Sequential minimal optimiza-
tion for quantum-classical hybrid algorithms. arXiv:1903.12166

Pinkus A (1999) Approximation theory of the mlp model in neural
networks. Acta Numerica 8:143–195. https://doi.org/10.1017/
S0962492900002919

Preskill J (2018) Quantum computing in the nisq era and beyond.
Quantum 2:79

Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support
vector machine for big data classification. Phys Rev Lett
113(13):130,503

Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019)
Evaluating analytic gradients on quantum hardware. Phys Rev A
99(3):032,331

Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric
quantum classifiers. Phys Rev A 101(3):032,308

Schuld M, Killoran N (2019) Quantum machine learning in feature
hilbert spaces. Phys Rev Lett 122(4):040,504

Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to
quantum machine learning. Contemp Phys 56(2):172–185

Schuld M, Sinayskiy I, Petruccione F (2015) Simulating a per-
ceptron on a quantum computer. Phys Lett A 379(7):660–
663. https://doi.org/10.1016/j.physleta.2014.11.061, https://www.
sciencedirect.com/science/article/pii/S037596011401278X

Shor PW (1994) Algorithms for quantum computation: Discrete
logarithms and factoring. In: Proceedings 35th annual symposium
on foundations of computer science. IEEE, pp 124–134

Situ H, He Z, Wang Y, Li L, Zheng S (2020) Quantum generative
adversarial network for generating discrete distribution. Inf Sci

Socher R, Bengio Y, Manning CD (2012) Deep learning for nlp
(without magic). In: Tutorial abstracts of ACL 2012. Association
for Computational Linguistics, pp 5–5

Steinbrecher GR, Olson JP, Englund D, Carolan J (2019) Quantum
optical neural networks. npj Quantum Inf 5(1):1–9

Stone MH (1948) The generalized weierstrass approximation theorem.
Math Mag 21(4):167–184. http://www.jstor.org/stable/3029750

Tacchino F, Barkoutsos P, Macchiavello C, Tavernelli I, Gerace
D, Bajoni D (2020) Quantum implementation of an artificial
feed-forward neural network. Quantum Sci Technol 5(4):044,010.
https://doi.org/10.1088/2058-9565/abb8e4

Vardi G, Shamir O (2020) Neural networks with small weights and
depth-separation barriers. In: Advances in neural information
processing systems, p 33

Volkoff T, Coles PJ (2021) Large gradients via correlation in
random parameterized quantum circuits. Quantum Sci Technol
6(2):025,008

Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018)
Deep learning for computer vision: a brief review. Comput Intell
Neurosci 2018

Wan KH, Dahlsten O, Kristjánsson H., Gardner R, Kim M (2017)
Quantum generalisation of feedforward neural networks. npj
Quantum Inf 3(1):1–8

Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting.
Phys Rev Lett 109(5):050,505

Zhao C, Gao XS (2021) Analyzing the barren plateau phenomenon
in training quantum neural network with the ZX-calculus.
arXiv:1802.06002

Zhao J, Zhang YH, Shao CP, Wu YC, Guo GC, Guo GP (2019)
Building quantum neural networks based on a swap test. Phys Rev
A 100(012):334. https://doi.org/10.1103/PhysRevA.100.012334

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Quantum Machine Intelligence (2021) 3: 15 Page 9 15of 9

http://arxiv.org/abs/1912.10877
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
http://arxiv.org/abs/1903.12166
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1016/j.physleta.2014.11.061
https://www.sciencedirect.com/science/article/pii/S0375960114 01278X
https://www.sciencedirect.com/science/article/pii/S0375960114 01278X
http://www.jstor.org/stable/3029750
https://doi.org/10.1088/2058-9565/abb8e4
http://arxiv.org/abs/1802.06002
https://doi.org/10.1103/PhysRevA.100.012334

	QDNN: deep neural networks with quantum layers
	Abstract
	Introduction
	The QDNN
	Quantum neural network layers
	QDNN and its training algorithms

	Representation power of QDNNs
	Universal approximation property of QDNNs
	Quantum advantages

	Experimental results*.2pt
	Experiment details*.2pt
	Input layer
	Hidden layer
	Output layer

	Experiments result

	Discussion
	Declarations
	References

