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Abstract
This work presents a novel realization approach to quantum Boltzmann machines (QBMs). The preparation of the required
Gibbs states, as well as the evaluation of the loss function’s analytic gradient, is based on variational quantum imaginary
time evolution, a technique that is typically used for ground-state computation. In contrast to existing methods, this
implementation facilitates near-term compatible QBM training with gradients of the actual loss function for arbitrary
parameterized Hamiltonians which do not necessarily have to be fully visible but may also include hidden units. The
variational Gibbs state approximation is demonstrated with numerical simulations and experiments run on real quantum
hardware provided by IBM Quantum. Furthermore, we illustrate the application of this variational QBM approach to
generative and discriminative learning tasks using numerical simulation.

Keywords Quantum machine learning · Variational quantum imaginary time evolution · Generative learning ·
Discriminative learning

1 Introduction

Boltzmann machines (BMs) (Ackley et al. 1985; Du and
Swamy 2019) offer a powerful framework for modelling
probability distributions. These types of neural networks use
an undirected graph structure to encode relevant informa-
tion. More precisely, the respective information is stored
in bias coefficients and connection weights of network
nodes, which are typically related to binary spin-systems
and grouped into those that determine the output, the visi-
ble nodes, and those that act as latent variables, the hidden
nodes. Furthermore, the network structure is linked to an
energy function which facilitates the definition of a proba-
bility distribution over the possible node configurations by
using a concept from statistical mechanics, i.e., Gibbs states
(Boltzmann 1877; Gibbs 1902). The aim of BM training

� Stefan Woerner
wor@zurich.ibm.com

Christa Zoufal
ouf@zurich.ibm.com

1 IBM Quantum, IBM Research – Zurich, Zurich, Switzerland

2 ETH Zurich, Zurich, Switzerland

is to learn a set of weights such that the resulting model
approximates a target probability distribution which is
implicitly given by training data. This setting can be for-
mulated as discriminative as well as generative learning
task (Liu and Webb 2010). Applications have been stud-
ied in a large variety of domains such as the analysis
of quantum many-body systems, statistics, biochemistry,
social networks, signal processing, and finance; see, e.g.,
(Torlai et al. 2018; Carleo et al. 2018; Carleo and Troyer
2017; Nomura et al. 2017; Anshu et al. 2020; Melko et al.
2019; Hrasko et al. 2015; Tubiana et al. 2019; Liu et al.
2013; Mohamed and Hinton 2010; Assis et al. 2018). How-
ever, BMs are complicated to train in practice because
the loss function’s derivative requires the evaluation of a
normalization factor, the partition function, that is gener-
ally difficult to compute. Usually, it is approximated using
Markov chain Monte Carlo methods which may require
long runtimes until convergence (Carreira-Perpinan and
Hinton 2005; Murphy 2012). Alternatively, the gradients
could be estimated approximately using contrastive diver-
gence (Hinton 2002) or pseudo-likelihood (Besag 1975)
potentially leading to inaccurate results (Tieleman 2008;
Sutskever and Tieleman 2010).

Quantum Boltzmann machines (QBMs) (Amin et al. 2018)
are a natural adaption of BMs to the quantum computing
framework. Instead of an energy function with nodes being
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represented by binary spin values, QBMs define the under-
lying network using a Hermitian operator, a parameterized
Hamiltonian:

Hθ =
p−1∑

i=0

θihi,

with θ ∈ R
p and hi = ⊗n−1

j=0 σj,i for σj,i ∈ {I, X, Y, Z}
acting on the j th qubit. The network nodes are hereby charac-
terized by the Pauli matrices σj,i . This Hamiltonian relates to
a quantum Gibbs state, ρGibbs = e−Hθ/(kBT)/Z with kB and
T denoting the Boltzmann constant and the system tempera-
ture, and Z = Tr

[
e−Hθ/(kBT)

]
. It should be noted that those

qubits which determine the model output are referred to as
visible and those which act as latent variables as hidden
qubits. The aim of the model is to learn Hamiltonian param-
eters such that the resulting Gibbs state reflects a given
target system. In contrast to BMs, this framework allows the
use of quantum structures which are potentially inaccessible
classically. Equivalently to the classical model, QBMs are
suitable for discriminative as well as generative learning.

We present here a QBM implementation that circumvents
certain issues which emerged in former approaches. The
first paper on QBMs (Amin et al. 2018) and several
subsequent works (Anschütz and Cao 2019; Kieferová and
Wiebe 2017; Kappen 2020; Wiebe and Wossnig 2019) are
incompatible with efficient evaluation of the loss function’s
analytic gradients if the given model has hidden qubits and

∃j :
[
Hθ,

∂Hθ

∂θj

]
�= 0.

Instead, the use of hidden qubits is either avoided, i.e.,
only fully visible settings are considered (Kieferová and
Wiebe 2017; Kappen 2020; Wiebe and Wossnig 2019),
or the gradients are computed with respect to an upper
bound of the loss (Amin et al. 2018; Anschütz and Cao
2019; Kieferová and Wiebe 2017), which is based on the
Golden-Thompson inequality (Thompson 1965; Golden
1965). It should be noted that training with an upper bound
renders the use of transverse Hamiltonian components, i.e.,
off-diagonal Pauli terms, difficult and imposes restrictions
on the compatible models.

Furthermore, we would like to point out that, in general,
it is not trivial to evaluate a QBM Hamiltonian with
a classical computer, i.e., using exact simulation with
quantum Monte Carlo methods (Troyer and Wiese 2005),
because the underlying Hamiltonian can suffer from the so-
called sign-problem (Hangleiter et al. 2020; Okunishi and
Harada 2014; Li et al. 2016; Alet et al. 2016; Li et al. 2015).
As already discussed in Ortiz et al. (2001), evaluations on
quantum computers can avoid this problem.

Our QBM implementation works for generic Hamiltoni-
ans Hθ with real coefficients θ and arbitrary Pauli terms

hi , and furthermore, is compatible with near-term, gate-
based quantum computers. The method exploits Variational
Quantum Imaginary Time Evolution (McArdle et al. 2019;
Yuan et al. 2019) (VarQITE), which is based on McLach-
lan’s variational principle (McLachlan 1964), to not only
prepare approximate Gibbs states, ρGibbs

ω , but also to train
the model with gradients of the actual loss function. Dur-
ing each step of the training, we use VarQITE to generate
an approximation to the Gibbs state underlying Hθ and to
enable automatic differentiation for computing the gradient
of the loss function which is needed to update θ . This varia-
tional QBM algorithm (VarQBM) is inherently normalized
which implies that the training does not require the explicit
evaluation of the partition function.

We focus on training quantum Gibbs states whose sam-
pling behavior reflects a classical probability distribution.
However, the scheme could be easily adapted to an approx-
imate quantum state preparation scheme by using a loss
function which is based on the quantum relative entropy
(Kieferová and Wiebe 2017; Kappen 2020; Wiebe and
Wossnig 2019). Hereby, the approximation to ρGibbs is fit-
ted to a given target state ρdata. Notably, this approach is
not necessarily suitable for learning classical distributions.
More precisely, we do not need to train a quantum state
that captures all features of the density matrix ρdata but only
those which determine the sampling probability. It follows
that fitting the full density matrix may impede the training.

The remainder of this paper is structured as follows.
Firstly, we review classical BMs and VarQITE in Section 2.
Then, we outline VarQBM in Section 3. Next, we illustrate
the feasibility of the Gibbs state preparation and present
QBM applications in Section 4. Finally, a conclusion and an
outlook are given in Section 5.

2 Preliminaries

This section introduces the concepts which form the basis of
our VarQBM algorithm. First, classical BMs are presented
in Section 2.1. Then, we discuss VarQITE, the algorithm
that VarQBM uses for approximate Gibbs state preparation,
in Section 2.2.

2.1 Boltzmannmachines

Here, we will briefly review the original concept of classi-
cal BMs (Ackley et al. 1985). A BM represents a network
model that stores the learned knowledge in connection
weights between network nodes. More explicitly, the connec-
tion weights are trained to generate outcomes according to
a probability distribution of interest, e.g., to generate sam-
ples which are similar to given training samples or to output
correct labels depending on input data samples.
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Typically, this type of neural network is related to an
Ising-type model (Ising 1925; Peierls 1936) such that each
node i corresponds to a binary variable zi ∈ {−1, +1}. Now,
the set of nodes may be split into visible and hidden nodes
representing observed and latent variables, respectively.
Furthermore, a certain configuration z = {v, h} of all
nodes—visible and hidden—determines an energy, which is
given as

Ez={v, h} = −
∑

i

θ̃izi −
∑

i,j

θij zizj ,

with θ̃i , θij ∈ R denoting the weights and zi representing the
value taken by node i. It should be noted that the parameters
θij correspond to the weights of connections between
different nodes. More explicitly, if two nodes are connected
in the network, then a respective term appears in the energy
function. The probability to observe a configuration v of the
visible nodes is defined as

pBM
v =

∑
n

e−Ez={v, h}/kBT

Z
, (1)

where kB is the Boltzmann constant, T the system
temperature and Z the canonical partition function

Z =
∑

z={v, h}
e−Ez/(kBT).

We would like to point out that BMs adopt a concept from
statistical mechanics. Suppose a closed system that is in
thermal equilibrium with a coupled heat bath at constant
temperature. The possible configuration space is determined
by the canonical ensemble, i.e., the probability for
observing a configuration is given by the Gibbs distribution
(Boltzmann 1877; Gibbs 1902) which corresponds to Eq. 1.

Now, the goal of a BM is to fit the target probability
distribution pdata with pBM . Typically, this training
objective is achieved by optimizing the cross-entropy

L = −
∑

v

pdata
v log pBM

v . (2)

In theory, fully connected BMs have interesting repre-
sentation capabilities (Ackley et al. 1985; Younes 1996;
Fischer and Igel 2012a), i.e., they are universal approxima-
tors (Roux and Bengio 2010). However, in practice they are
difficult to train as the optimization easily gets expensive.
Thus, it has become common practice to restrict the connec-
tivity between nodes which relates to Restricted Boltzmann
machines (RBMs) (Montúfar 2018). Furthermore, several
approximation techniques, such as contrastive divergence
(Hinton 2002), have been developed to facilitate BM train-
ing. However, these approximation techniques typically still
face issues such as long computation time due to a large
amount of required Markov chain steps or poor compat-
ibility with multimodal probability distributions (Murphy

2012). For further details, we refer the interested reader
to Hinton (2012), Fischer and Igel (2012b), and Fischer
(2015).

2.2 Variational quantum imaginary time evolution

Imaginary time evolution (ITE) (Magnus 1954) is an
approach that is well known for (classical) ground-state
computation (McArdle et al. 2019; Gupta et al. 2002; Auer
et al. 2001) but—as suggested by some prior literature on
ITE (Matsui 1998; Khalkhali and Marcolli 2008; Motta and
et al. 2020; McArdle et al. 2019; Yuan et al. 2019)—may
also be used for Gibbs state preparation.

Suppose a starting state |ψ0〉 and a time-independent
Hamiltonian H = ∑p−1

i=0 θihi with real coefficients θi and
Pauli terms hi . Then, the normalized ITE propagates |ψ0〉
with respect to H for time τ according to

|ψτ 〉 = C (τ) e−Hτ |ψ0〉,
where C (τ) = 1/

√
Tr

[
e−2Hτ |ψ0〉〈ψ0|

]
is a normalization.

The differential equation that describes this evolution is the
Wick-rotated Schrödinger equation:

d|ψτ 〉
dτ

= − (H − Eτ ) |ψτ 〉, (3)

where Eτ = 〈ψτ |H |ψτ 〉 originates from the normalization
of |ψτ 〉. The terms in e−Hτ , corresponding to small
eigenvalues of H , decay slower than the ones corresponding
to large eigenvalues. Due to the continuous normalization,
the smallest eigenvalue dominates for τ → ∞. Thus,
|ψτ 〉 converges to the ground state of H given that there
is some overlap between the ground and starting states.
Furthermore, if ITE is only evolved to a finite time, τ =
1/2 (kBT), then it enables the preparation of Gibbs states;
see Section 3.1.

As introduced in McArdle et al. (2019) and Yuan et al.
(2019), an approximate ITE can be implemented on a gate-
based quantum computer by using McLachlan’s variational
principle (McLachlan 1964). The basic idea of the method
is to introduce a parameterized trial state |ψω〉 and to project
the temporal evolution of |ψτ 〉 to the parameters, i.e., ω :
= ω(τ). We refer to this algorithm as VarQITE and, now,
discuss it in more detail.

First, we define an input state |ψin〉 and a quantum circuit
V (ω) = Uq

(
ωq

) · · · U1 (ω1) with parameters ω ∈ R
q to

generate the parameterized trial state

|ψω〉 := V (ω) |ψin〉.
Now, McLachlan’s variational principle

δ ‖(d/dτ + H − Eτ ) |ψω〉‖ = 0 (4)

determines the time propagation of the parameters ω(τ).
This principle aims to minimize the distance between

Page 3 of 15 7



Quantum Machine Intelligence (2021) 3: 7

the right-hand side of Eq. 3 and the change d|ψω〉/dτ .
Equation 4 leads to a system of linear equations for ω̇ =
dω/dτ , i.e.,

Aω̇ = C (5)

with

Apq (τ ) = Re
(

Tr
[

∂V †(ω(τ))
∂ω(τ)p

∂V (ω(τ))
∂ω(τ)q

ρin

])

Cp (τ) =− ∑
i

θiRe
(

Tr
[

∂V †(ω(τ))
∂ω(τ)p

hiV (ω (τ)) ρin

])
,

(6)

where Re (·) denotes the real part and ρin = |ψin〉〈ψin|.
The vector C describes the derivative of the system energy
〈ψω|H |ψω〉 and A is proportional to the classical Fisher
information matrix, a metric tensor that reflects the system’s
information geometry (Koczor and Benjamin 2019). To
evaluate A and C, we compute expectation values with
respect to quantum circuits of a particular form which is
illustrated and discussed in Appendix A.

This evaluation is compatible with arbitrary parameter-
ized unitaries in V (ω) because all unitaries can be written
as U (ω) = eiM(ω), where M (ω) denotes a parameter-
ized Hermitian matrix. Furthermore, Hermitian matrices can
be decomposed into weighted sums of Pauli terms, i.e.,
M (ω) = ∑

p mp (ω) hp with mp (ω) ∈ R and hp =
n−1⊗
j=0

σj,p for σj,p ∈ {I, X, Y, Z} (Nielsen and Chuang 2010)

acting on the j th qubit. Thus, the gradients of Uk (ωk) are
given by

∂Uk (ωk)

∂ωk

=
∑

p

i
∂mk,p (ωk)

∂ωk

Uk (ωk) hkp .

This decomposition allows us to compute A and C with
the techniques described in Somma et al. (2002), McArdle
et al. (2019), and Yuan et al. (2019). Furthermore, it should
be noted that Eq. 5 is often ill-conditioned and may, thus,
require the use of regularized regression methods; see
Section 4.1.

Now, we can use, e.g., an explicit Euler method to evolve
the parameters as

ω (τ) = ω (0) +
τ/δτ∑

j=1

ω̇
(
j δτ

)
δτ .

3 Quantum BoltzmannMachine algorithm

A QBM is defined by a parameterized Hamiltonian Hθ =∑p−1
i=0 θihi where θ ∈ R

p and hi = ⊗n−1
j=0 σj,i for σj,i ∈

{I, X, Y, Z} acting on the j th qubit. Equivalently to classical
BMs, QBMs are typically represented by an Ising model
(Ising 1925), i.e., a 2-local system (Bravyi et al. 2006)

with nearest-neighbor coupling that is defined with regard
to a particular grid. In principle, however, any Hamiltonian
compatible with Boltzmann distributions could be used.

In contrast to BMs, the network nodes, given by the
Pauli terms σj,i , do not represent the visible and hidden
units. These are defined with respect to certain sub-sets of
qubits. More explicitly, those qubits which determine the
output of the QBM are the visible qubits, whereas the others
correspond to the hidden qubits. Now, the probability to
measure a configuration v of the visible qubits is defined
with respect to a projective measurement 
v = |v〉〈v| ⊗ I

on the quantum Gibbs state

ρGibbs = e−Hθ/(kBT)

Z

with Z = Tr
[
e−Hθ/(kBT)

]
, i.e., the probability to measure

|v〉 is given by

pQBM
v = Tr

[

vρ

Gibbs
]

.

For the remainder of this work, we assume that 
v refers
to projective measurements with respect to the computa-
tional basis of the visible qubits. Thus, the configuration v

is determined by vi ∈ {0, 1}. It should be noted that this
formulation does not require the evaluation of the configu-
ration of the hidden qubits.

Our goal is to train the Hamiltonian parameters θ such
that the sampling probabilities of the corresponding ρGibbs

reflect the probability distribution underlying given classical
training data. For this purpose, the same loss function as
described in the classical case (see Eq. 2) can be used

L = −
∑

v

pdata
v log pQBM

v , (7)

where pdata
v denotes the occurrence probability of item v in

the training dataset.
To enable efficient training, we want to evaluate the

derivative of L with respect to the Hamiltonian parameters.
Unlike existing QBM implementations, VarQBM facilitates
the use of analytic gradients of the loss function given in
Eq. 7 for generic QBMs. The presented algorithm involves
the following steps. First, we use VarQITE to approximate
the Gibbs state; see Section 3.1 for further details. Then, we
compute the gradient of L to update the parameters θ with
automatic differentiation, as is discussed in Section 3.2.
The parameters are trained with a classical optimization
routine where one training step consists of the Gibbs state
preparation with respect to the current parameter values and
a consecutive parameter update, as illustrated in Fig. 1.

In the remainder of this section, we discuss Gibbs state
preparation with VarQITE in Section 3.1 and VarQBM in
more detail in Section 3.2.
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Fig. 1 The VarQBM training includes the following steps. First, we
need to fix the Pauli terms for Hθ and choose initial parameters
θ . Then, VarQITE is used to generate ρGibbs

ω and compute ∂ω/∂θ .

The quantum state and the derivative are needed to evaluate p
QBM
v

and ∂p
QBM
v /∂θ . Now, we can find ∂L/∂θ to update the Hamiltonian

parameters with a classical optimizer

3.1 Gibbs state preparation with VarQITE

The Gibbs state ρGibbs describes the probability density
operator of the configuration space of a system in thermal
equilibrium with a heat bath at constant temperature T

(Gibbs 2010). Originally, Gibbs states were studied in the
context of statistical mechanics but, as shown in (Pauli
1927), the density operator also facilitates the description of
quantum statistics.

Gibbs state preparation can be approached from different
angles. Hereby, different techniques not only have different
strengths but also different drawbacks. Some schemes
(Temme et al. 2011; Yung and Aspuru-Guzik 2012; Poulin
and Wocjan 2009) use quantum phase estimation (Abrams
and Lloyd 1999) as a subroutine, which is likely to require
error-corrected quantum computers. Other methods enable
the evaluation of quantum thermal averages (Motta and
et al. 2020; Brandão and Kastoryano 2019; Kastoryano
and Brandão 2016) for states with finite correlations.
However, since QBM-related states may exhibit long-range
correlations, these methods are not the first choice for the
respective preparation. A thermalization-based approach is
presented in Anschütz and Cao (2019), where the aim is to
prepare a quantum Gibbs state by coupling the state register
to a heat bath given in the form of an ancillary quantum
register. Correct preparation requires a thorough study of
suitable ancillary registers for a generic Hamiltonian as
the most useful ancilla system is not a priori known.
Furthermore, variational Gibbs state preparation methods
which are based on the fact that Gibbs states minimize the
free energy of a system at constant temperature have been
presented in Wu and Hsieh (2019) and Chowdhury et al.
(2020). The goal is to fit a parameterized quantum state

that minimizes the free energy. Here, the difficulty is to
estimate the von Neumann entropy in every step of the state
preparation. An algorithm which aims to enable efficient
von Neuman entropy estimation is given in Chowdhury et al.
(2020). However, it requires the application of quantum
amplitude estimation (Brassard et al. 2002), as well as
matrix exponentiation of the input state, and thus is not well
suited for near-term quantum computing applications.

In contrast to these Gibbs state preparation schemes,
VarQITE is compatible with near-term quantum computers,
and neither is limited to states with finite correlations nor
requires ambiguous ancillary systems. In the following,
we discuss how VarQITE can be utilized to generate an
approximation of the Gibbs state ρGibbs for a generic
n−qubit Hamiltonian Hθ = ∑p−1

i=0 θihi with θ ∈ R
p and

hi = ⊗n−1
j=0 σj,i for σj,i ∈ {I, X, Y, Z} acting on the j th

i

qubit.
First, we need to choose a suitable variational quantum

circuit V (ω), ω ∈ R
q , and set of initial parameters ω(0)

such that the initial state is

|ψ0〉 = V (ω (0)) |0〉⊗2n = |φ+〉⊗n (8)

where |φ+〉 = 1√
2

(|00〉 + |11〉) represents a Bell state. We

define two n-qubit sub-systems a and b such that the first
and second qubits of each |φ+〉 are in a and b, respectively.
Accordingly, an effective 2n-qubit Hamiltonian Heff = Ha

θ

+I b, where Hθ and I act on sub-system a and b, is consid-
ered. It should be noted that tracing out sub-system b from
|ψ0〉 results in an n-dimensional maximally mixed state:

Trb
[|φ+〉⊗n

] = 1

2n
I .

Now, the Gibbs state approximation ρGibbs
ω can be generated

by propagating the trial state with VarQITE with respect to
Heff for τ = 1/2 (kBT). The resulting state

|ψω〉 = V (ω (τ)) |0〉⊗2n

gives an approximation for the Gibbs state of interest

ρGibbs
ω = Trb [|ψ (ω (τ))〉〈ψ (ω (τ)) |] ≈ e−Hθ/(kBT)

Z

by tracing out the ancillary system b. We would like to point
out that the VarQITE propagation relates ω to θ via the
energy derivative C given in Eq. 6.

Notably, this is an approximate state preparation scheme
that relies on the representation capabilities of |ψω〉.
However, since the algorithm is employed in the context of
machine learning, we do not necessarily require perfect state
preparation. The noise may even improve the training, as
discussed, e.g., in (Noh et al. 2017).

McLachlan’s variational principle is not only the key
component for Gibbs state preparation. It also enables the
QBM training with gradients of the actual loss function for
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generic Pauli terms in Hθ , even if some of the qubits are
hidden. Further details are given in Section 3.2.

3.2 Variational QBM

In the following, VarQBM and the respective utilization
of McLachlan’s variational principle and VarQITE are
discussed. We consider training data that takes at most 2n

different values and is distributed according to a discrete
probability distribution pdata. The aim of a QBM is to train
the parameters of Hθ such that the sampling probability
distribution of the corresponding ρGibbs

ω = e−Hθ/(kBT)/Z for
|v〉, v ∈ 0, . . . , 2n − 1 with

pQBM
v = Tr

[

vρ

Gibbs
ω

]
,

approximates pdata. The QBM model is trained to represent
pdata by minimizing the loss, given in Eq. 7, with respect to
the Hamiltonian parameters θ , i.e.,

min
θ

L = min
θ

(
−

∑

v

pdata
v log pQBM

v

)
.

Now, VarQBM facilitates gradient-based optimization with
the derivative of the actual loss function

∂L
∂θi

=
∂

(
−∑

v
pdata

v log p
QBM
v

)

∂θi
= − ∑

v

pdata
v

∂p
QBM
v /∂θi

p
QBM
v

(9)

by using the chain rule, i.e., automatic differentiation. More
precisely, the gradient of L can be computed by using the
chain rule for

∂p
QBM
v

∂θi
= ∂p

QBM
v

∂ω(τ)
∂ω(τ)
∂θi

=
q−1∑
k=0

∂p
QBM
v

∂ωk(τ )
∂ωk(τ )

∂θi
. (10)

Firstly, ∂p
QBM
v /∂ωk (τ ) = ∂Tr

[

vρ

Gibbs
ω

]
/∂ωk (τ ) can be

evaluated with quantum gradient methods discussed in Farhi
and Neven (2018), Mitarai et al. (2018), Dallaire-Demers
and Killoran (2018), Schuld et al. (2019), and Zoufal et al.
(2019) because the term has the following form:

∂Tr
[
Ô|φ (α)〉〈φ (α) |

]
/∂α.

Secondly, ∂ωk (τ )/∂θi is evaluated by computing the
derivative of Eq. 5 with respect to the Hamiltonian
parameters:

∂Aω̇ (τ )

∂θi

= ∂C

∂θi

.

This gives the following system of linear equations:

A

(
∂ω̇ (τ )

∂θi

)
= ∂C

∂θi

−
(

∂A

∂θi

)
ω̇ (τ ) . (11)

Equation 11 is just as Eq. 5 prone to being ill- conditioned.
Thus, the use of regularization schemes may be required.

Now, solving for ∂ω̇ (τ ) /∂θi in every time step of the
Gibbs state preparation enables the use of, e.g., an explicit
Euler method to get

∂ωk(τ )
∂θi

= ∂ωk(τ−δτ )
∂θi

+ ∂ω̇k(τ−δτ )
∂θi

δτ

= ∂ωk(0)
∂θi

+
τ/δτ∑
j=1

∂ω̇k(jδτ )
∂θi

δτ .
(12)

We discuss the structure of the quantum circuits used to
evaluate ∂θi

A and ∂θi
C, in Appendix A.

In principle, the gradient of the loss function could also
be approximated with a finite difference method. If the num-
ber of Hamiltonian parameters is smaller than the number
of trial state parameters, this requires less evaluation cir-
cuits. However, given a trial state that has less parameters
than the respective Hamiltonian, the automatic differen-
tiation scheme presented in this section is favorable in
terms of the number of evaluation circuits. A more detailed
discussion on this topic can be found in Appendix B.

An outline of the Gibbs state preparation and evaluation
of ∂ωk (τ )/∂θi

with VarQITE is presented in Algorithm 1.

Now, using a classical optimizer, such as truncated
Newton (Dembo and Steihaug 1983) or Adam (Kingma and
Ba 2015), allows the parameters θ to be updated according
to ∂L/∂θ from Eq. 9. The VarQBM training is illustrated in
Fig. 1.

4 Results

In this section, the Gibbs state preparation with VarQITE
is demonstrated using numerical simulation as well as the
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quantum hardware provided by IBM Quantum (IBM Q
Experience 2020). Furthermore, we present numerically
simulated QBM training results for a generative and
a discriminative learning task. First, aspects which are
relevant for the practical implementation are discussed in
Section 4.1. Next, experiments of quantum Gibbs state
preparation with VarQITE are shown in Section 4.2. Then,
we illustrate the training of a QBM with the goal to generate
a state which exhibits the sampling behavior of a Bell state
(see Section 4.3), and to classify fraudulent credit card
transactions (Section 4.4).

4.1 Methods

To begin with, we discuss the choice of a suitable
parameterized trial state consisting of V (ω) and |ψin〉. Most
importantly, the initial state |ψin〉 must not be an eigenstate
of V (ω) as this would imply that the circuit could only act
trivially onto the state and |ψin〉 as well as V (ω (0)) must
be chosen such that the initial trial state suffices the form
given in Eq. 8. As there is currently little known about what
types of Hamiltonians map particularly well to what types
of trial states, this work employs generic hardware-efficient
Ansätze. These are chosen such that the number of hidden
nodes and the entanglement between the qubits are not too
large as these might lead to barren plateaus (Marrero et al.
2020). Furthermore, the state needs to be able to represent
a sufficiently accurate approximation of the target state. If
we have to represent, e.g., a non-symmetric Hamiltonian,
the chosen trial state needs to be able to generate non-
symmetric states. Numerical experiments indicate that
states which exhibit complex correlations require Ansätze
with higher depth, i.e., more parameters. Moreover, V (ω)

should not exhibit too much symmetry as this may lead to
a singular A which in turn causes ill-conditioning of Eq. 5.
Assume, e.g., that all entries of C are zero and, thus, that
Eq. 5 is homogeneous. If A is singular, infinitely many
solutions exist and it is difficult for the algorithm to estimate
which path to choose. If A is non-singular, the solution is
ω̇ = 0 and the evolution stops although we might have
only reached a local extreme point. Another possibility to
cope with ill-conditioned systems of linear equations are
least-squares methods in combination with regularization
schemes. We test Tikhonov regularization (Tikhonov et al.
1995) and Lasso regularization (Tibshirani 2011) with an
automatic parameter evaluation based on L-curve fitting
(Hansen 2000), as well as an ε-perturbation of the diagonal,
i.e., A → A+εI . It turns out that all regularization methods
perform similarly well.

The results discussed in this section employ Tikhonov
regularization. Furthermore, we use trial states which
are parameterized by Pauli-rotation gates. Therefore, the

gradients of the QBM probabilities with respect to the trial
state parameters

∂p
QBM
v

∂ωk (τ )
= ∂Tr

[

vρ

Gibbs
ω

]

∂ωk (τ )

can be computed using a π/2−shift method which is, e.g.,
described in Zoufal et al. (2019). All experiments employ
an additional qubit |0〉add and parameter ωadd to circumvent
a potential phase mismatch between the target |ψτ 〉 and the
trained state |ψ (ω (τ))〉 (McArdle et al. 2019; Yuan et al.
2019; Koczor and Benjamin 2019) by applying

RZ (ωadd) |0〉add.

Notably, the additional parameter increases the dimension
of A and C by 1. The effective temperature, which in
principle acts as a scaling factor on the Hamiltonian
parameters, is set to (kBT) = 1 in all experiments.

4.2 Gibbs state preparation

We verify VarQITE is able to generate suitable approxima-
tions to Gibbs states by illustrating the convergence of the
fidelity between the prepared and the target state for several
example Hamiltonians. This experiment is run for a one-
and a two-qubit Hamiltonian using simulation as well as an
actual quantum computer and for Hamiltonians with more
qubits using only a simulated backend. The results for the
latter are given in Appendix C.

The Gibbs state preparation for the following Hamiltoni-
ans

H1 = 1.0Z,

H2 = 1.0ZZ − 0.2ZI − 0.2IZ + 0.3XI + 0.3IX.

corresponding to

ρGibbs
1 =

(
0.12 0.
0. 0.88

)
,

ρGibbs
2 =

⎛

⎜⎜⎝

0.10 −0.06 −0.06 0.01
−0.06 0.43 0.02 −0.05
−0.06 0.02 0.43 −0.05
0.01 −0.05 −0.05 0.05

⎞

⎟⎟⎠

is executed for 10 time steps on an ideal simulator and
the ibmq johannesburg 20-qubit backend. The results are
computed using the parameterized quantum circuit shown in
Fig. 2. Notably, readout error-mitigation (Aleksandrowicz
and et al. 2019; Dewes et al. 2012; Stamatopoulos et al.
2020) is used to obtain the final results run on real quantum
hardware. Figure 3 depicts the results considering the
fidelity between the trained and the target Gibbs states for
each time step. It should be noted that the fidelity for the
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Fig. 2 The depicted circuits illustrate the initial trial state for the Gibbs
state preparation of a ρGibbs

1 and b ρGibbs
2 using VarQITE

quantum backend evaluations employs state tomography.
The plots illustrate that the method approximates the states,
we are interested in reasonably well and that also the real
quantum hardware achieves fidelity values over 0.99 and
0.96, respectively.

4.3 Generative learning

Now, the results from an illustrative example of a generative
QBM model are presented. More explicitly, the QBM is
trained to mimic the sampling statistics of a Bell state
(|00〉 + |11〉)/√2, which is a state that exhibits non-
local correlations. Numerical simulations show that the
distribution can be trained with a fully visible QBM which
is based on the following Hamiltonian:

Hθ = θ0ZZ + θ1IZ + θ2ZI .

We draw the initial values of the Hamiltonian parameters
θ from a uniform distribution on [−1, 1]. The optimization
runs on an ideal simulation of a quantum computer using
AMSGrad (Reddi et al. 2018) with initial learning rate 0.1,
maximum number of iterations 200, first momentum 0.7,
and second momentum 0.99 as optimization routine. The
Gibbs state preparation uses the initial trial state shown in
Fig. 4 and 10 steps per state preparation.

The training is run 10 times using different randomly
drawn initial parameters. The averaged values of the
loss function as well as the distance between the target
distribution pdata = [0.5, 0., 0., 0.5] and the trained
distribution pQBM with respect to the �1 norm are illustrated
over 50 optimization iterations in Fig. 5. The plot shows that
loss and distance converge toward the same values for all
sets of initial parameters. Likewise, the trained parameters
θ converge to similar values. Furthermore, Fig. 6 illustrates
the target probability distribution and for the best and worst
of the trained distributions. The plot reveals that the model
is able to train the respective distribution very well.

Fig. 3 Fidelity between trained and target Gibbs states with VarQITE
for a ρGibbs

1 and b ρGibbs
2 trained with an ideal simulator and real

quantum hardware, i.e., the ibmq johannesburg 20-qubit backend.
Each simulation uses 10 time steps

We verify the scalability of this method by training equiv-
alent QBM models for 3 and 4 qubit Greenberg-Horne-
Zeilinger (GHZ) states (Greenberger et al. 1989). The
respective results are presented in Appendix D.

4.4 Discriminative learning

QBMs are not only applicable for generative but also for
discriminative learning. We discuss the application to a
classification task: the identification of fraudulent credit
card transactions.

To enable discriminative learning with QBMs, we use
the input data points x as bias for the Hamiltonian weights.
More explicitly, the parameters of the Hamiltonian

Hθ (x) =
∑

i

fi (θ, x) hi (13)
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Fig. 4 We train a QBM to mimic the sampling behavior of a Bell
state. The underlying Gibbs state preparation with VarQITE uses the
illustrated parameterized quantum circuit to prepare the initial trial
state. The first two qubits represent the target system and the last two
qubits are ancillas needed to generate the maximally mixed state as
starting state for the evolution

are given by a function fi (θ, x) which maps θ and x to a
scalar in R. Now, the respective loss function reads:

L = −∑
x

pdata
x

∑
v

pdata
v|x log p

QBM
v|x

with

p
QBM
v|x = Tr

[

vρ (x)Gibbs

ω

]
,

where ρ (x)Gibbs
ω denotes the approximate Gibbs state

corresponding to Hθ (x). The model encodes the class labels
in the measured output configuration of the visible qubits
v of ρ (x)Gibbs

ω . Now, the aim of the training is to find
Hamiltonian parameters θ such that, given a data sample
x, the probability of sampling the correct output label from
ρ (x)Gibbs

ω is maximized.
The training is based on 500 artificially created credit

card transactions (Altman 2019) with about 15% fraudulent

Fig. 5 The figure illustrates the training progress of a fully visible
QBM model which aims to represent the measurement distribution
of a Bell state. The green function corresponds to the loss and the
pink function represents the distance between the trained and target
distributions with respect to the �1 norm at each step of the iteration.
Both measures are computed for 10 different random seeds. The points
represent the mean and the error bars the standard deviation of the
results

Fig. 6 The figure illustrates the sampling probability of the Bell
state (blue), as well as the best (pink) and worst (purple) probability
distributions achieved from 10 different random seeds

instances. To avoid redundant state preparation, the training
is run for all unique item instances in the dataset and the
results are averaged according to the item’s occurrence
counts. The dataset includes the following features: location
(ZIP code), time, amount, and Merchant Category Code
(MCC) of the transactions. To facilitate the training, the
features of the given dataset are discretized and normalized
as follows. Using k-means clustering, each of the first three
features are independently discretized to 3 reasonable bins.
Furthermore, we consider MCCs < 10, 000 and group them
into 10 different categories. The discretization is discussed
in more detail in Table 1. Furthermore, for each feature, we
map the values x to x′ = x−μ

σ
with μ denoting the mean

and σ denoting the standard deviation.
The complexity of this model demands a Hamiltonian

that has sufficient representation capabilities. We investigate
a diagonal Hamiltonian:

H
(0)
θ (x) = f

(2)
0 (θ, x) ZZ + f

(2)
1 (θ, x) ZI

+f
(2)
2 (θ, x) IZ,

(14)

a Hamiltonian with off-diagonal terms whose parameters
are fixed to 0.1

H
(1)
θ (x) = f

(1)
0 (θ, x) ZZ + f

(1)
1 (θ, x) ZI

+f
(1)
2 (θ, x) IZ + 0.1XI + 0.1IX,

(15)

and a Hamiltonian with parameterized off-diagonals

H
(2)
θ (x) = f

(2)
0 (θ, x) ZZ + f

(2)
1 (θ, x) ZI

+f
(2)
2 (θ, x) IZ + f

(2)
3 (θ, x)XI

+f
(2)
4 (θ, x) IX,

(16)

where f
(j)
i (θ, x) = →

θ
(j)

i · →
x corresponds to the dot

product of the vector corresponding to the data item
→
x and
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Table 1 The table discusses the binning of a transaction fraud dataset
which is used to train a discriminative QBM model

Feature Condition Value

Time 0AM–11AM 0

11AM–6PM 1

6PM–0AM 2

Amount Amount < $50 0

Amount in $50–150 1

Amount > $150 2

ZIP East 0

Central 1

West 2

MCC refers to the merchant category code and ZIP to zone improve-
ment plan. Notably, the given values are approximate

a parameter vector
→
θ

(j)

i of equal length. Additionally, the
first and second qubits of all systems correspond to hidden
and visible qubits, respectively.

The training uses a conjugate gradient optimization
routine with a maximum iteration number of 100.

The initial values for the Hamiltonian parameters are
drawn from a uniform distribution on [−1, 1].

Given a test dataset consisting of 250 instances, with
about 10% fraudulent transactions, the Gibbs states,
corresponding to the unique items of the test data, are
approximated using VarQITE with the trained parameters
θ and the trial state shown in Fig. 7. To predict the labels
of the data instances, we sample from the states ρGibbs

ω

and choose the label with the highest sampling probability.
These results are, then, used to evaluate the accuracy (Acc),
recall (Rec), precision (Pre), and F1 score. It should be noted
that we choose a relatively simple quantum circuit to keep
the simulation cost small. However, it can be expected that

Fig. 7 Given a transaction instance, the measurement output of
the QBM labels it as being either fraudulent or valid. The
underlying Gibbs state preparation with VarQITE uses the illustrated
parameterized quantum circuit as initial trial state. The first qubit is
the visible unit that determines the QBM output, the second qubit
represents the hidden unit, and the last two qubits are ancillas needed
to generate the maximally mixed state as starting state for the evolution

a more complex parameterized quantum circuit might lead
to further improvement in the training results.

The resulting values are compared to a set of standard
classifiers defined in a scikit-learn (Pedregosa et al. 2011)
classifier comparison tutorial (Classifier Comparison 2020)
as well as a classifier consisting of a restricted Boltzmann
machine and a logistic regression (RBM) (Restricted Boltz-
mann Machine for classification 2020); see Table 2. The
respective classifiers are used with the hyperparameters
defined in the tutorials. Neither the linear SVM nor the
RBM classifies any test data item as fraudulent, and thus,
the classifier sets precision and recall score to 0. The com-
parison reveals that all variational QBMs perform similarly
well to the classical classifiers considering accuracy and are
competitive regarding precision. In terms of recall and F1

score, the VarQBM models without off-diagonal elements
and with fixed off-diagonal elements perform well. Notably,
the addition of fixed-off diagonal terms in the Hamiltonian
seems not to improve the model performance compared to
a Hamiltonian without these terms in this case. Finally, the
VarQBM with trained off-diagonal elements achieves the
best results in terms of recall and F1 score.

Table 2 This table presents performance measures for scikit-learn
standard classifiers, as well as the trained variational QBM models

Model Acc Rec Pre F1

Nearest Neighbors 0.94 0.54 0.72 0.62

Linear SVM 0.90 0 0 0

RBF SVM 0.94 0.42 0.83 0.56

Gaussian Process 0.94 0.46 0.85 0.60

Gaussian Naive Bayes 0.91 0.42 0.56 0.48

Decision Tree 0.94 0.42 0.83 0.56

Random Forrest 0.93 0.29 1.00 0.45

Multi-layer Perceptron 0.94 0.38 0.9 0.53

AdaBoost 0.94 0.54 0.81 0.65

QDA 0.92 0.46 0.61 0.52

RBM 0.90 0 0 0

VarQBM(0) 0.93 0.50 0.67 0.57

VarQBM(1) 0.93 0.50 0.67 0.57

VarQBM(2) 0.95 0.58 0.88 0.70

The Nearest Neighbors classifier uses a 3 nearest neighbors vote. The
Linear and RBF Support Vector Machine (SVM) are based on a linear
and radial kernel, respectively. The Linear SVM uses a regularization
term of 0.25 and for the RBF SVM the kernel coefficient is set to
2. The maximum depth of the Decision Tree as well as the Random
Forrest is set to 5. Furthermore, the Random Forrest classifier uses 10
trees and uses 1 feature to search for the best spit. The Multi-layer
Perceptron uses �2 regularization with coefficient 1 and a maximum
iteration number of 1000. QDA refers to Quadratic Discriminant
Analysis. It should be noted that the remaining classifier properties are
default settings
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5 Conclusion and outlook

This work presents the application of McLachlan’s varia-
tional principle to facilitate VarQBM, a variational QBM
algorithm, that is compatible with generic Hamiltoni-
ans and can be trained using analytic gradients of the
actual loss function even if some of the qubits are hid-
den. Suppose a sufficiently powerful variational trial state,
the presented scheme, is not only compatible with local
but also long-range correlations and for arbitrary system
temperatures.

We outline the practical steps for utilizing VarQITE for
Gibbs state preparation and verify that it can train states
which are reasonably close to the target using simulation
as well as real quantum hardware. Moreover, applications
to generative learning and classification are discussed and
illustrated with further numerical results. The presented
model offers a versatile framework which facilitates the
representation of complex structures with quantum circuits.

An interesting question for future research to conduct is
a thorough analysis of trial state Ansätze which would help
to improve our understanding of the model’s representation
capabilities and enable more informed choices of Ansatz
states. Furthermore, QBMs are not limited to the presented
applications. They could also be utilized to train models
for data from experiments with quantum systems. This
is a problem that has recently gained interest; see
e.g., Gentile et al. (2020). Additionally, they might be
employed for combinatorial optimization. Classical BMs
have been investigated in this context (Spieksma 1995)
and developing and analyzing quantum algorithms for
combinatorial optimization is an active area of research
(Farhi et al. 2014; Barkoutsos et al. 2020). All in all,
there are many possible applications which still have to be
explored.

Appendix 1: Evaluation of A, C, and their
gradients

The elements of the matrix A and the vector C (see Eq. 6)
are of the following form:

Re
(
eiαTr

[
U†Vρin

])
(17)

with Re (·) denoting the real part and ρin = |ψin〉〈ψin|.
As discussed in McArdle et al. (2019), Yuan et al. (2019),
and Somma et al. (2002), such terms can be computed by
sampling the expectation value of an observable Z with
respect to the quantum circuit shown in Fig. 8.

Notably, the phase eiα in the first qubit is needed to
include phases which may occur from gate derivatives. In
our case, α needs to be set to 0 respectively π/2 when

Fig. 8 Quantum circuit to evaluate Re
(
eiαTr

[
U†Vρin

])
with ρin =

|ψ〉〈ψin|

computing the terms of A or C. More precisely, the first
qubit is initialized by an H gate for A and H followed by an
S gate for C. These phases come from the fact that the trial
states, used in this work, are constructed via Pauli rotations,
i.e., U (ω) = Rσl (ω) with σl ∈ {X, Y, Z}, which leads to

∂U (ω)

∂ω
= − i

2
σlRσl (ω) . (18)

Furthermore, this method can be applied for the evaluation
of ∂A/∂θ and ∂C/∂θ , i.e., the respective terms can be
written in the form of Eq. 17. More precisely,

∂θi
Ap,q (τ ) = ∑

s

∂ωs(τ )
∂θi

Re
(

Tr
[(

∂2V †(ω(τ))
∂ωp(τ)∂ωs(τ )

∂V (ω(τ))
∂ω(τ)q

+ ∂V †(ω(τ))
∂ω(τ)p

∂2V (ω(τ))
∂ωq(τ )∂ωs(τ )

)
ρin

])

and

∂θj
Cp =

−Re
(

Tr
[

∂V †(ω(τ))
∂ω(τ)p

hjV (ω (τ)) ρin

])

− ∑
i,s

θi
∂ωs(τ )

∂θj
Re

(
Tr

[(
∂V †(ω(τ))

∂ωp(τ)
hi

∂V (ω(τ))
∂ωs(τ )

+ ∂2V †(ω(τ))
∂ωp(τ)∂ωs(τ )

hiV (ω (τ))
)

ρin

])
.

Hereby, α must be set to π/2 for all terms in ∂A/∂θ and the
first term in ∂C/∂θ and 0 for the remaining terms in ∂C/∂θ .
This is achieved with the same gates as mentioned before.

Appendix 2: Complexity analysis

To compute the gradient ∂L/∂θ of the loss function, given
in Eq. 7, we could use either a numerical finite differences
method (Kardestuncer 1975), or the analytic, automatic
differentiation approach that is presented in this paper. In
the following, we discuss the number of circuits that have
to be evaluated for those gradient implementations for a
trial state with q parameters, an n-qubit Hamiltonian with
p parameters, and VarQITE for Gibbs state preparation
using t steps. In near-term quantum devices, the run of
every circuit requires compilation, queuing for a position
to be run on quantum hardware and, preferably, error
mitigation/correction. Thus, the number of circuits strongly
impacts the execution time and resources.
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Table 3 Comparing the number of circuits needed to train a QBM with
VarQITE using either finite differences or automatic differentiation

Method Number circuits

Finite Diff Θ (tqp(q + p))

Automatic Diff Θ
(
tq2(q + p)

)

The number of Hamiltonian parameters is p, the number of trial state
parameters is q, and the number of time steps during the Gibbs state
preparation is t

The number of circuits that need to be evaluated for
Gibbs state preparation with VarQITE are Θ

(
tq2

)
and

Θ (tqp) for A and C, respectively. Therefore, the overall
number of circuits is Θ (tq(q + p)). Now, computing the
gradient with forward finite differences reads:

∂L

∂θ
≈ L (θ + ε) − L (θ)

ε
,

for 0 < ε � 1. For this purpose, VarQITE must be run once
with θ and p times with an ε-shift which leads to a total
number of Θ (tpq(q + p)) circuits.

The automatic differentiation gradient, given in Eq. 9,
corresponds to:

∂L
∂θ

= −∑
v

q−1∑
k=0

pdata
v〈
v〉

∂〈
v〉
∂ωk

∂ωk

∂θ

with 〈. . .〉 = Tr
[
ρGibbs

ω . . .
]
. VarQITE needs to be run once

to prepare ρGibbs
ω . Furthermore, the evaluation of ∂ωk/∂θ

requires that ∂A/∂θ and ∂C/∂θ are computed for every step
of the Gibbs state preparation. This leads to Θ

(
tq2(q + p)

)

circuits. The resulting overall complexity of the number of
circuits is Θ

(
tq2(q + p)

)
. The results are summarized in

Table 3. Automatic differentiation is more efficient than
finite differences if q < p. For q > p, on the other
hand, focusing mainly on computational complexity, one
should rather use finite differences. Considering, e.g., a
k-local Ising model that corresponds to a Hamiltonian
with O

(
nk

)
parameters. Suppose that we can find a

reasonable variational n-qubit trial state with O (n) layers
of parameterized and entangling gates, which results in q =
O

(
n2

)
parameters, then automatic differentiation would

outperform finite differences for k > 2.

Appendix 3: Numerical Gibbs state
preparation

In order to verify that VarQITE enables approximate Gibbs
state preparation, we conduct exact simulation experiments

for Hamiltonians with n > 2 qubits. The states are prepared
for the following Hamiltonians:

H3 = 2. · ZZI + 1. · IZZ − 0.5 · IZI

H4 = 2. · ZZII + 1. · IZZI − 0.5 · IZIZ

H5 = 2. · ZZIII + 1. · IZZII − 0.5 · IZIIZ,

temperature kBT = 1 and a discretization of 10 time steps.
All Gibbs states are prepared using a shallow, depth 2 Ansatz
that consists of parameterized RY and RZ gates as well as
CX gates. Figure 9 illustrates the respective quantum circuit
for H3, whereby the given parameters prepare the initial
state. The states for H4 and H5 are prepared equivalently.

The effectiveness of VarQITE is confirmed with a plot
(see Fig. 10), of the fidelities between the trained and the
target Gibbs states throughout the simulated time evolution.
It should be noted that all final states approximate the targets
with fidelity > 0.936.

Appendix 4: Generative QBM training
for larger systems

To investigate the trainability of QBMs for larger systems,
we extend the learning setting discussed in Section 4.3 to
n = {3, 4} qubits. More explicitly, given a 3- and 4-qubit
Greenberger-Horne-Zeilinger (GHZ) state, a QBM model is
trained to represent the respective sampling probabilities of
these states:

pdata
3 = [0.5, 0., 0., 0., 0., 0., 0., 0.5]

pdata
4 = [0.5, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.5]

using Hamiltonians of the form

Hθ =
n−1∑

i=0

θiZi +
n−1∑

i=0

n−1∑

j=0

θijZiZj ,

where Zi acts on the ith qubit. The temperature is again
set to kBT = 1 and the time is discretized into 10 steps.
Optimizer and initial states are chosen equivalently to the
ones from Section 4.3. Notably, the number of qubits in
the Ansatz state shown in Fig. 4 needs to match to the
number of qubits in the respective Hamiltonian. Figure 11
illustrates the progress of the loss function as well as the
�1 norm between the trained and the target distributions for
30 training steps. Both measures show a good convergence
behavior and thus indicate that the method scales well.
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Fig. 9 This quantum circuit is used as Ansatz for the Gibbs state preparation of H3. The given parameter set prepares the initial state, i.e., tracing
out q3 to q5 results in a maximally mixed state

Fig. 10 This figure illustrates the fidelity between the state that is
prepared using VarQITE and the target Gibbs state preparation for H3,
H4, and H5 during each step of the simulated imaginary time evolution

Fig. 11 The figure illustrates the training progress of a fully visible
QBM model which aims to represent the measurement distribution
of a 3- and a 4-qubit GHZ state. The green and pink dots (crosses)
correspond to the loss and the distance, respectively, between the
trained and target distributions with respect to the �1 norm at each step
of the iteration for the 3 (4)qubit GHZ state
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Kieferová M, Wiebe N (2017) Tomography and generative training
with quantum Boltzmann machines. Phys. Rev. A 96:062327

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization.
In: Bengio Y, LeCun Y (eds) 3rd International Conference on
Learning Representations

Koczor B, Benjamin S (2019) Quantum natural gradient generalised to
non-unitary circuits. arXiv:1912.08660

Page 14 of 157    

https://quantumexperience.ng.bluemix.net/qx/experience
https://quantumexperience.ng.bluemix.net/qx/experience
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html
http://arxiv.org/abs/1910.03033
http://arxiv.org/abs/1910.03033
http://arxiv.org/abs/1903.01359
http://arxiv.org/abs/2004.07266
http://arxiv.org/abs/2002.00055
http://arxiv.org/abs/2002.00055
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1802.06002
http://arxiv.org/abs/2002.06169
http://arxiv.org/abs/1906.02309
http://arxiv.org/abs/1803.11278
http://arxiv.org/abs/1912.08660


Quantum Machine Intelligence (2021) 3: 7

Li Z-X, Jiang Y-F, Yao H (2015) Solving the fermion sign problem
in quantum Monte Carlo simulations by Majorana representation.
Phys. Rev. B 91:241117. https://doi.org/10.1103/PhysRevB.91.
241117

Li Z-X, Jiang Y-F, Yao H (2016) Majorana-time-reversal symmetries:
A fundamental principle for sign-problem-free quantum monte
carlo simulations. Phys Rev Lett 117:267002

Liu B, Webb GI (2010) Generative and discriminative learning. In:
Sammut C, Webb GI (eds) Encyclopedia of machine learning.
Springer US, Boston, MA

Liu F, Liu B, Sun C, Liu M, Wang X (2013) Deep learning approaches
for link prediction in social network services. Springer Berlin
Heidelberg, Berlin

Magnus W (1954) On the exponential solution of differential equations
for a linear operator. Commun Pur Appl Math 7(4):649–673
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