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quantum computation and machine learning has received a

considerable amount of attention. Using the circuit model

of computation, several quantum algorithms have been

designed that in principle provide quadratic to exponential

speedups on classical data (Biamonte et al. 2017; Ciliberto

et al. 2018).

A related area is concerned with developing novel

machine learning methods that operate on quantum data.

In general, any set of quantum states which encode

meaningful information can be considered quantum data.

To motivate this direction, we want to emphasize that

using quantum states as a storage medium for information

has been demonstrated to provide advantages in several

ways. For example, by coupling a quantum state with

another target system, we can obtain information about

the target system with increased sensitivity. Quantum

metrology allows for example for a quadratic improvement

over classical methods in terms of the statistical sampling

error, i.e., the scaling of the standard deviations in estimates

obtained through repeated measurements. Another example

is quantum sensing, which provides much higher sensitivity

for tasks like target detections in microwaves, i.e., quantum

radar (Barzanjeh et al. 2015), and in general, sensing

electric or magnetic fields (Degen et al. 2017). A

practical application for these methods is the reduction of

damage to pictures which are sensitive to the exposure of

light (Schaller and Schützhold 2006).
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Certain types of datasets are inherently quantum mechan-

ical. Such data could, for example, be the output of quantum

information processing procedures such as simulation of

quantum materials, or quantum chemistry more generally.

For such datasets, we conjecture the inherent advantage of

quantum computers to perform recognition and classifica-

tion tasks. For example, topological materials made in the

exotic topological phase have non-classical electronic prop-

erties and are promising materials to build fault-tolerant

quantum computers (Qi and Zhang 2011; Karzig et al.

2017). Predicting the phase of topological materials has

been a very challenging problem for classical approaches.

However, it has recently been shown that quantum neu-

ral networks could be used to recognize the phase of a

quantum state (Cong et al. 2019) and hence for predicting

this phase. In addition, the promised security of quantum

communication protocols and a surge of ideas in quan-

tum communication networks (Kimble 2008; Ren et al.

2017) further stimulates the research into areas dealing with

inherently quantum data.

In this work, we explore the general problem of

classifying quantum data. This problem can be seen as

an extension of the established field of quantum state

discrimination, which identifies a quantum state among

a set of a priori completely known candidate states. A

key challenge for the discrimination of quantum states

is that a deterministic discrimination is impossible when

the complex vectors representing the input states are non-

orthogonal, i.e., when their overlaps are non-zero. Quantum

state discrimination then allows finding the measurement

that optimally discriminates these states. Note that we

will use in the following input data and (quantum) states

interchangeably.

However, it is not possible to directly apply quantum

state discrimination to classify states, i.e., quantum data.

First, it is inappropriate to assume that one possesses the

complete knowledge of the input data a priori, which

are often only samples generated from a data collecting

process. Also, even with all the input data available

as quantum states, performing quantum tomography on

them is prohibitively expensive. In addition, quantum state

discrimination often fails to give the optimal discriminative

measurement in an analytically closed form, unless the

quantum states are already orthogonal or possess certain

symmetry properties (Barnett and Croke 2009). In case

it fails, one may use numerical optimization to find the

optimal measurement. However, the exponential growth

of the dimensionality of the density matrices renders the

numerical optimization also inefficient if performed on a

classical device.

Due to the limitations of quantum state discrimination, it

is natural to ask whether we can use a quantum computer

to help with the optimization procedure. Since fully error

corrected quantum computers are not available yet, a recent

stream of works proposed various applications for circuit

learning (Banchi et al. 2016; Wan et al. 2017; Innocenti

et al. 2018; Romero et al. 2017; Mitarai et al. 2018; Farhi

and Neven 2018; Verdon et al. 2017; Li and Benjamin 2017;

Grant et al. 2018; Schuld et al. 2018; Xu et al. 2019; Khatri

et al. 2019), which constitutes a form of quantum-classical

hybrid neural network that have been shown to be less prone

to the inherent errors of early-stage quantum hardware. In

this work, we similarly utilize a hybrid approach to learn

the design of a shallow quantum circuit for the classification

of quantum states. Concretely, this hybrid scheme consists

of a classical computer which interactively changes the

parameters of a quantum circuit in order to optimize the

output of the quantum computation. In other words, we train

a quantum circuit to classify the states correctly.

The approach we take is novel in two ways. First,

we use a quantum circuit ansatz that is designed for an

implementation on near-term devices (details available in

Appendix 1). This ansatz allows for a shallow circuit but is

still universal; i.e., it can perform any unitary transformation

allowed by quantum mechanics. It comprises gates from

a universal gate set consisting of C-NOT and single-

qubit gates, which is motivated by the fact that their

implementations are known for the current mainstream

experimental architectures. It is furthermore nearly optimal

in terms of the number of C-NOT gates, which is an

important feature for an implementation on near-term

devices. Second, unlike previous works on quantum state

discrimination, we focus on the generalization ability

of our circuit; i.e., we train the circuit on a specific

range of the parameters with the goal of maximizing its

generalization performance, and hence in a learning setting.

This distinguishes our work from the pure optimization

problem for the state discrimination task, i.e., optimizing the

circuit to distinguish only a concrete set of states. We show

here that this universal quantum circuit can be trained as a

discriminator for classification of non-orthogonal quantum

data which is sampled from various different probability

distributions. Our discriminator can achieve a near-zero

error rate by producing inconclusive signals.

2 Dataset and framework

In this work, we propose a novel approach for training a

universal quantum circuit to classify quantum data, which

is stored in qubits. In this section, we first introduce

the mathematical notation and description of quantum

data. We then specify the quantum data we use in this

work for classification. Next, we outline the approach we
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take to optimize a universal quantum circuit which is

used to classify the quantum data. We defer the detailed

decomposition of this quantum circuit to Appendix 1.

Mathematical descriptions Quantum data are collections of

quantum states which store useful information. For these

data, we may assume that their density matrices ρ are

parameterized by parameters a which follow a probability

distribution α specific to the carried information. Then, for

classification, we are normally presented with an unknown

quantum state ρx , which belongs to a family of quantum

states, each described mathematically by:

ρi(ai), ai ∼ αi, (1)

where i is the label for the corresponding family, and

ρi(ai) is the density matrix describing the quantum state

in the family i, parametrized by ai , and the parameters ai
are assumed to follow the probability distribution αi . The

purpose of a classifier is to identify the family x. Note that

to train the classifier, we draw samples of ρ(ai) according

to the distribution αi .

Transformations of quantum states are described by a

unitary matrix U , which transforms a quantum state ρ

according to the rule ρ → UρU†.

A measurement on the quantum state ρ is described by

a set of matrices {Mj }, which are Hermitian, positive semi-

definite, and sum to the identity. Here, j labels the possible

measurement outcomes, and the probability pj for the

measurement outcome j is given by pj = Tr(Mjρ). Such

a collection of matrices Mj is commonly called a positive-

operator valued measure (POVM). A common example of

POVM is a projection-valued measure (PVM). In the case

of a PVM, each Mj is a projector into some linear subspace

and differentMj are orthogonal to each other, i.e.,MjMi =
δijMj . With the help of ancilla qubits, any POVM could

be realized by a quantum circuit consisting of a series of

unitary matrices (transformations) and measurements in the

computational basis. Conversely, a quantum circuit which

consists of a parameterized set of gates and measurements

could also represent a range of different POVMs. There

exists a quantum circuit which could represent any POVM

with a fixed number of possible measurement outcomes.

Such a circuit is called a universal discriminator in this

paper, and the specific one we chose to use here is discussed

in Appendix 1.

Dataset For this work, we restrict our attention to the

classification of two families of quantum states stored in

a 2-qubit system. Our first family consists of pure states,

parametrized by a real number a ∈ [0, 1]:

ψ1(a) =
(
√

1 − a2, 0, a, 0
)

, ρ1 = |ψ1(a)〉〈ψ1(a)|. (2)

The second family consists of mixed states ρ2(b) where

b ∈ [0, 1]. Specifically,

ψ2/3 =
(

0,±
√

1 − b2, b, 0
)

,

ρ2(b) = 1
2
|ψ2〉〈ψ2| + 1

2
|ψ3〉〈ψ3|. (3)

The overlap between ψ1 and ψ2/3 is ab, indicating

that the two families of states are non-orthogonal. For the

case of a fixed a and b = 1√
2

, the maximal success

rate for unambiguously discriminating between ρ1 and ρ2

has been studied theoretically, and experimentally demon-

strated (Mohseni et al. 2004). The specific distributions we

have tested in our experiments are summarized in Table 1.

To generate the data for the training, validation, and test-

ing of our circuits, we randomly and independently sampled

points from the corresponding distributions.

Approach Overall, there are two major strategies to

cope with our inherent inability to perform deterministic

discrimination of quantum states: (a) Minimum-error

discrimination: In this strategy, the task is to minimize

the probability that the inevitable errors occur in the

classification. (b) Unambiguous discrimination: In this

strategy, the discriminator has one more output prediction

than the number of classes: the inconclusive outcome. The

task is to eliminate the error rate of the discriminator while

minimizing the probability of this inevitable inconclusive

outcome. A pure unambiguous discrimination with strictly

zero error rate is not guaranteed to be possible for

arbitrary quantum data. From the perspective of numerical

optimization, one hence needs to allow for some small but

non-zero errors.

In this work, we use a machine learning approach for

training a universal quantum circuit capable of giving any

quantum measurements with four possible measurement

outcomes mi2i1 , where i1, i2 ∈ {0, 1} are the measurement

outcomes of the first and the second qubits respectively. The

parameterization of this circuit is discussed in Appendix 1.

By assuming that input ρ1(a) produces the output m00

or m10, input ρ2 produces the output m01, and assuming

that m11 is the inconclusive output, this circuit acts as

a discriminator for our experiment datasets. Therefore,

we could trivially define various probabilities (success

probability Psuc, error probability Perr, and inconclusive

probability Pinc) with respect to the input (training) data

with known class label. For example, when ρ1 is the

input, the probability of detecting m01 is the Perr, and

the probability of detecting m11 is the Pinc. In this work,

we perform experiments on simulated quantum computers,

where these probabilities are available since the whole state

is stored and processed on a classical computer. We note

that on real quantum computers, these probabilities need to
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be estimated through repeated measurements up to some

precision, and require repeated data input.

To train the circuit, we use a heuristically motivated

loss function defined in Eq. 4, which is the averaged

absolute difference between the desired probabilities and

the measured probabilities. It contains hyperparameters αerr

and αinc to balance between the erroneous outcomes and the

inconclusive outcomes:

J =
∑

i

1

|Si |
∑

ai∈Si

|Psuc(ρi(ai))− 1|

+αerr

∑

i

1

|Si |
∑

ai∈Si

|Perr(ρi(ai))− 0|

+αinc

∑

i

1

|Si |
∑

ai∈Si

|Pinc(ρi(ai))− 0| . (4)

Here, we assume that for each family of quantum states,

we are given a set Si of training samples, where each class is

labelled by i. We denote with |Si | the cardinality of this set,

i.e., the number of samples in the training set Si , αerr is the

penalty for making errors, and αinc is the penalty for giving

inconclusive outcomes. Psuc(ρi)/Perr(ρi)/Pinc(ρi) are the

probabilities of giving a correct/erroneous/inconclusive

measurement outcome for the specific input quantum data

ρi . This loss function measures the performance of our

quantum circuit as a minimal-error discriminator (when

αerr < αinc) or as an unambiguous discriminator (when

αerr > αinc).

To train this circuit, we use the Adam optimization

algorithm (Kingma and Ba 2014), and we calculate the

gradients using the forward difference formula.

For our specific problem of classifying ρ1 and ρ2

as defined in Eqs. 2 and 3, we define an extra set of

success/erroneous/inconclusive rates in Eq. 5 to summarize

and compare the performance of different instances of the

training process:

Ps =
1

3
Ps(ρ1)avg +

2

3
Ps(ρ2)avg

=
1

3
Ps(ψ1)avg +

1

3
Ps(ψ2)avg +

1

3
Ps(ψ3)avg, (5)

where s stands for suc (successful), err (erroneous), or

inc (inconclusive). The subscript avg means that the

probabilities are calculated as the average value for all

samples of either the training set, or the test set (but not

both). The choice of weights ( 1
3
and 2

3
) in the Eq. 5 was made

to be consistent with the results in Mohseni et al. (2004).

3 Theoretical analysis

Here, we describe a theoretical result to which we will

compare our numerical results. In the general case, assume

we have a family (or class) of quantum data ρ(a), each one

parameterized by a and occurring with a probability P(a).

Assume in addition that we have a quantum measurement

described by a POVM with elements {Πi}i∈N, where i labels

different measurement outcomes. Then, the probability of

detecting measurement outcome i, averaged over any of the

input data ρ(a), is:

∫

Tr(Πiρ(a))P (a)da = Tr

[
∫

Πiρ(a)P (a)daa

]

= Tr

[

Πi

∫

ρ(a)P (a)da

]

= Tr [Πiρ] , (6)

where ρ =
∫

ρ(a)P (a)da, and the integration of the

matrix is done in an element-wise fashion. Therefore, if

Tr(Πiρ) = 0 for some i, then
∫

D
Tr(Πiρ(a))P (a) = 0 for

any subsetD with non-zero measure in the whole parameter

space of a. This is due to the fact that

Tr[Πiρ(a)]P(a) ≥ 0 for any parameter a.

The analysis above shows that the problem of unam-

biguously discriminating ρ1 =
∫

a
ρ1(a)P1(a)da and ρ2 =

∫

a ρ2(a)P2(a)db, is equivalent to the problem of unambigu-

ously discriminating the family ρ1(a), ∀a, from the family

ρ2(b), ∀b, where P1(a)/P2(b) is the probability of occur-

rence of ρ1(a)/ρ2(b). That is, if {Π1, Π2, Πinc} is a POVM

that unambiguously classifies all members of the two fam-

ilies ρ1(a) and ρ2(b), for all possible parameters, i.e., Πinc

corresponds to the inconclusive outcome with:

Tr(Π2ρ1(a)) = 0, ∀a,
Tr(Π1ρ2(b)) = 0, ∀b,

then Tr(Π1ρ2) = Tr(Π2ρ1) = 0, and vice versa. Using

this formalism, we can theoretically analyze the different

cases we described in Table 1 based on the works of Raynal

et al. (2003) and Barnett and Croke (2009), and the results

are displayed in Table 2. Note that these are average case

success probabilities.

Table 1 A summary of different test cases we classify in this work

Family 1 (ρ1(a)) Family 2 (ρ2(b))

Case 1 a ∈ [0, 1] b ∈ [0, 1]
Case 2 a ≈ 0.25 b ≈ 1√

2

Case 3 a ≈ 0.25 b ∈ [0, 1]
Case 4 a ∈ [0, 1] b ≈ 1√

2

Here, a(b) ∈ [0, 1] signifies that a(b) follows a uniform distribution

in [0, 1]. a(b) ≈ 0.25( 1√
2
) signifies that a(b) follows a normal

distribution with mean 0.25( 1√
2
), standard deviation 0.05, and which

is truncated in [0, 1]
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Table 2 A summary of maximal success rate when the error rate is

exactly 0 for the different test cases classified in this work

Family 1 (ρ1) Family 2 (ρ2) Psuc

Case 1 a ∈ [0, 1] b ∈ [0, 1] 0.67

Case 2 a ≈ 0.25 b ≈ 1√
2

0.64

Case 3 a ≈ 0.25 b ∈ [0, 1] 0.76

Case 4 a ∈ [0, 1] b ≈ 1√
2

0.55

They were calculated using Eq. 5 and obtained theoretically using

methods described in Section 3

4 Numerical results

In this work, we aim to train a universal discriminator to

discriminate different families of quantum data. Here, we

present the results of training the universal discriminator to

discriminate different distributions summarized in Table 1

on a quantum computer. The training is done by simulating

the evolution of the quantum system under the parametrized

circuits in a classical computer. To balance between

eliminating the error rate (Perr) while minimizing the

inconclusive rate (Pinc), we use a specific training strategy

described in the following. We first prioritize a smaller

inconclusive rate by starting with a zero penalty for

erroneous outcomes (αinc > αerr = 0), and then increase

the αerr in a step-wise manner until a certain objective

error rate is achieved. Similar optimization procedures

have been used in the context of variational auto-encoders

both in classical machine learning (Sønderby et al. 2016),

and in quantum machine learning applications (Rocchetto

et al. 2018). Using this scheme, we train our circuit to

unambiguously discriminate the two families of quantum

states and observe the convergence toward the theoretical

success rates for the discriminator obtained in Section 3

with an increasing amount of training data . Notably, we do

not observe any signs of overfitting despite the varying size

of the training dataset (Fig. 1a).

Trade-off between the error rate and the inconclusive rate

Here, we show that our model is able to obtain a much

higher success rate (Psuc) if we allow a slightly higher error

rate compared with the previous results. This hints at a

trade-off between the error rate (Perr ) and the inconclusive

rate (Pinc) which can be utilized in real-world applications.

Specifically, for the dataset “Case 4” in Table 1, we fix

the two penalties, αerr and αinc, during the training and

observed a gradual transition from unambiguous-like clas-

sification (characterized by a near-zero error probability)

to minimal-error–like classification (characterized by the

near-zero inconclusiveness) when we use varying penalties

(Fig. 2a–c) throughout the different trainings with random

initializations. Allowing a small error rate results then in

Fig. 1 Unambiguous classification of non-orthogonal quantum data

sampled from different probability distributions. The data is averaged

over 10 repeated trails starting with random initializations and the

bars indicate the standard deviations. The training, validation, and test

datasets are sampled from the corresponding distributions. The dataset

size indicates the size of the training and the validation dataset. The

test dataset is fixed and had a size of 104 samples for each family and

each distribution

a much higher success rate, which has not been predicted

theoretically. We note that introducing the penalty terms

αerr and αinc also makes the training process more stable

(Fig. 2a). Therefore, the hyperparameters αerr and αinc act

Quantum Machine Intelligence (2021) 3: 1 Page 5 of 11 1



Fig. 2 With different penalties, we observe a trade-off between the

error rate and the inconclusive rate. Compared with the point αerr =
αinc = 0 (bottom left corner), the added penalties improve the suc-

cess probability or the inconclusiveness respectively. a–c The gradual

transition from the unambiguous classification (near-zero error rate,

top left corner) to a minimal error classification (near-zero inconclu-

siveness, bottom right corner) with changes in the error penalty αerr

and the inconclusiveness penalty αinc. We observe that the gain in the

success rate is around 0.32 when we make a sacrifice of only 0.1 in

the error rate. We let a ∈ [0, 1], and average over 50 repeated trails

with random initializations. d Standard deviation for Psuc. With an

increasing standard deviation (closer to the diagonal line), the result

becomes increasingly unstable when the two penalties (αerr and αinc)

are closer in value. The standard deviations for Perr and Pinc show the

same pattern as for Psuc (not shown)

Fig. 3 Unambiguous

discrimination of data sampled

from different probability

distributions with higher success

rate. a Trained quantum circuits

are capable of classifying

quantum data which is sampled

from a variety of different mixed

probability distributions for

ρ1(a) and ρ2(b). The

classification is done in an

unambiguous manner (with error

rate < 0.01). b For comparison,

we include here the theoretical

result mentioned in Table 2
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as a form of regularization and could be adjusted to give a

higher success probability or a lower inconclusiveness rate

for the final model (Fig. 2).

Furthermore, similar trade-off effects exhibited in all

datasets are listed in Table 1. If we stop the training once the

error rate drops below 0.01, we can achieve a much higher

success rate than the theoretical case of exactly zero error

rate (Fig. 3).

5 Learning convergence from ensemble
measurements

We additionally perform experiments in which we estimate

the probabilities from repeated measurements on the

(simulated) quantum device. We find that the noise in

gradient calculation which is caused by these estimated

probabilities could be effectively countered by increasing

the number of repeated measurements, using a lower error

rate, and adjusting the step size in the forward difference

formula. The detailed discussion is available in Appendix 2.

Therefore, our study here appears to be feasible to be run on

error-corrected quantum devices. We leave open the effects

of machine noise (the noise caused by imperfect quantum

devices), and an actual implementation as future projects.

6 Conclusions

We have developed a quantum circuit learning approach

for the classification of quantum data. Specifically, we

have designed a heuristically motivated loss function and

used the stochastic optimization algorithm Adam in a

quantum-classical hybrid scheme to train a circuit to

perform quantum state discrimination. This training process

generalizes well for the discrimination tasks on new data,

i.e., states from the parameter range which have not been

seen during the training process. This distinguishes our

work from previous results on quantum circuit learning, in

particular the very recent study in Fanizza et al. (2018),

which only optimizes circuits for specific inputs. Note that

this prior work hence does not consider the generalization

ability and hence does not treat the actual learning problem,

which aims at optimization as well as generalization.

In our work, we observe a trade-off between the error

rates and the inconclusive rates when we penalize them

differently in the loss function. Although this experiment

is done on simulated quantum computers where exact

measurement probabilities are available, we show that

this optimization could be experimentally performed with

repeated measurements of the quantum states. We note that

the recent quantum methods for estimating the analytical

gradient via variations in the unitaries (Mitarai et al. 2018)

can be directly applied to training our circuits; therefore,

one can perform the optimization efficiently on near-term

quantum devices. Also, although the Adam optimization

algorithm is shown to be sufficient for the experiments

conducted in this paper, several optimization algorithms

specific to variational hybrid quantum-classical algorithms

have been proposed and may provide improvements in more

complicated cases (see for example Kübler et al. (2019)).

In this work, we have not addressed the issue of

scalability of classifying quantum states. However, we

expect most kinds of quantum data of interests will only

require polynomial-depth circuits for classifying them. For

example, it is likely that an ansatz based on the idea of

tensor networks (e.g., Grant et al. (2018) and Cong et al.

(2019)) can classify the different phases of ground states

of quantum many-body systems in polynomial depth. Also,

a scheme where one systematically increases the depth of

the ansatz circuit will help explore the required circuit

depth for classifying quantum data. A similar idea has been

explored in the context of variational quantum eigensolver

(Ostaszewski et al. 2019).

We believe that with the progress on technologies for

preservation and transportation of quantum states, we will

see many applications of a trained discriminative quantum

circuits introduced here. Quantum state discrimination by

itself plays a key role in quantum information processing

protocols and is used in quantum cryptography (Bennett

1992a), quantum cloning (Duan and Guo 1998), quantum

state separation, and entanglement concentration (Chefles

2000). Our work can provide improvements on these

traditional areas by producing a classifier that is resilient

to the statistical noise found in the actual communication.

For example, we can consider an improved version of the

B92 quantum key distribution protocol (Bennett 1992b) by

including the noise-induced randomness in its two quantum

keys and classify them with our discriminative circuit.

Furthermore, we can consider training a discriminative

quantum circuit used to construct quantum repeaters and

state purification units within quantum communication

networks. The training can take quantum data that have

noise specific to the communication networks and therefore

produces a discriminator that can recognize and filter those

noise to provide better performance. Our discriminator

can also be used to verify the output of other generative

models, such as the quantum version of Boltzmann

machines (Amin et al. 2018), or generative artificial neural

networks (Goodfellow et al. 2014; Lloyd and Weedbrook

2018).
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Appendix 1: Quantum circuits for POVM

This section describes the parametrization of the circuit

capable of performing any quantum measurement on 2-

qubit inputs with 4 possible measurement outcomes. This

circuit could be represented by the following circuit

diagram:

(7)

1.1 Cosine-sine decomposition

Here, we mention the cosine-sine decomposition of unitary

matrices, which will be frequently used in the following

sections. For every unitary matrix U ∈ C
2n×2n , it can be

decomposed as:

Un =
(

A0 0

0 A1

)(

C −S
S C

)(

B0 0

0 B1

)

(8)

where A0, A1, B0, B1 are unitary matrices of size

2n−1 × 2n−1, C and S are real diagonal matrices of size

2n−1 × 2n−1 satisfying . It can be written in the

following circuit equivalence diagram:

(9)

Here, a box represents the control part of a uniformly

controlled gate; see section IV of (Iten et al. 2015) for

details. In the circuit in Eq. 7, the first qubit is initiated to be

|0〉, so we have:

(10)

1.2 Decomposition of the circuit in Eq. 7

For a general measurement giving at most 4 measurement

outcomes, we have the following circuit representation:

(11)

The first V could be decomposed using the circuit

equivalence on page 5 of Iten et al. (2016) into:

where the R gate does not act on the second qubit.

Applying the cosine-sine decomposition gives:

The uniformly controlled V ′ and U can be merged and

put after the measurement of M1 as:

The first line of the circuit could be merged with the

second line as follows:

(12)
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And then we can apply the cosine-sine decomposition to

V ′′. Throwing away the last gate on the third and the fourth

qubits, we obtain:

(13)

The uniformly controlled rotations and the remaining

two-qubit unitary gates could be easily parametrized by

CNOTs and single-qubit rotations. For example, see Shende

et al. (2006) and Shende et al. (2004).

Appendix 2: Learning convergence from
ensemblemeasurements

Here, we simulate the process that a classical-quantum

hybrid scheme would implement utilizing a quantum device

and analyze its performance. These numerical simulations

can in principle be validated in a physical experiment,

where the measurement outcomes are used to infer the

different probabilities for the cost function. To have a good

estimation of the probabilities, and hence the cost function,

one has to make repeated measurements to train the model,

and we note that in particular better methods to evaluate

the analytical gradient are available on a shallow quantum

device (Mitarai et al. 2018). We first give a brief discussion

Fig. 4 The cost function after 5000 iterations. The result obtained

using exact probabilities is shown by the horizontal dashed line.

For a smaller step size (ε) for gradient calculations, we find that

more repetitions are required to give a consistent result. However, a

combination of ε = 10−2 and 105 repetitions gives a result which

well approximates the result obtained using exact probabilities. Here

repeat is the number of repeated measurements that are made each time

to calculate the cost function. The cost function values are averaged

over 50 repeated runs of the training process, and the bars indicate the

standard deviations

Fig. 5 Small learning rates with a high number of iterations

of the estimated number of repeated measurements which

are required to approximate the gradient. This follows the

treatment of Farhi and Neven (2018) (Section 3). Since

the gradients are calculated using the forward difference

formula:

df

dx
(x) =

f (x + ε)− f (x)

ε
+O(ε) (14)

The error in the calculation of f must be at most of the order

of O(ε2), in order to prevent dominating the total error. To

achieve this ideally with a 99% probability, one requires

Quantum Machine Intelligence (2021) 3: 1 Page 9 of 11 1



the number of repeated measurements to be of the order
1

(ε2)2
= 1

ε4 .1 For example, when ε = 10−3, the ideal number

of repetitions is given by 1012.

In practice, we do not use 1
ε4 measurements, since the

Adam optimization algorithm is designed with the noise of

the cost function taken into account. To give an estimate of

the number of repeated measurements which are required

for the convergence of the optimization process, we perform

two numerical experiments. We first look at the case when

the number of repeated measurements was large (≥ 103)

and ε = 10−2. We find that 105 repeated measurements

for each iteration are a robust configuration for a successful

convergence. Second, we use a small number of repeated

measurements but varied the learning rate and increased the

maximal number of iterations for Adam. Setting ε = 10−2

and taking only 100 repeated measurements, we observe

that the optimizations were successful with a large number

of iterations. In both experiments, the penalties are set to

αinc = 5 and αerr = 40.

Large number of repetitions Our results show that for a

fixed maximum number of iterations (5000) for Adam, a

combination of ε = 10−2 and 105 repeated measurements

gives robust results, i.e., the final cost function is close

to the value obtained with the exact probabilities (with an

error within 3%) and is stable (with a relative standard

deviation of 13%). A more detailed description of the trade-

off between repeated measurements and the stability of the

cost function is shown in Fig. 4.

Small learning rates and high number of iterations Our

numerical experiments further show that in the case of

using a small number of repeated measurements, lowered

learning rates could effectively counter the noisy brought

by the insufficient sampling. Although in this case, the

optimization requires a large number of iterations to finish.

For example, with only 100 repeated measurements, the

variance of cost function J1 after 20,000 iterations decreases

as we lower the learning rate (Fig. 5a). We could visually

observe the optimization process where the cost function

J1 slowly approach the optimal value in Fig 5b. Here, the

gradient step is taken as ε = 10−2.
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