
https://doi.org/10.1007/s42484-020-00017-7

RESEARCH ARTICLE

Implementation of a Hamming distance–like genomic quantum
classifier using inner products on ibmqx2 and ibmq 16 melbourne

Kunal Kathuria1 · Aakrosh Ratan2 ·Michael McConnell1 · Stefan Bekiranov1

Received: 27 August 2019 / Accepted: 01 May 2020
© The Author(s) 2020

Abstract
Motivated by the problem of classifying individuals with a disease versus controls using a functional genomic attribute as
input, we present relatively efficient general purpose inner product–based kernel classifiers to classify the test as a normal
or disease sample. We encode each training sample as a string of 1 s (presence) and 0 s (absence) representing the attribute’s
existence across ordered physical blocks of the subdivided genome. Having binary-valued features allows for highly efficient
data encoding in the computational basis for classifiers relying on binary operations. Given that a natural distance between
binary strings is Hamming distance, which shares properties with bit-string inner products, our two classifiers apply different
inner product measures for classification. The active inner product (AIP) is a direct dot product–based classifier whereas
the symmetric inner product (SIP) classifies upon scoring correspondingly matching genomic attributes. SIP is a strongly
Hamming distance–based classifier generally applicable to binary attribute-matching problems whereas AIP has general
applications as a simple dot product–based classifier. The classifiers implement an inner product between N = 2n dimension
test and train vectors using n Fredkin gates while the training sets are respectively entangled with the class-label qubit,
without use of an ancilla. Moreover, each training class can be composed of an arbitrary number m of samples that can be
classically summed into one input string to effectively execute all test–train inner products simultaneously. Thus, our circuits
require the same number of qubits for any number of training samples and are O(log N) in gate complexity after the states
are prepared. Our classifiers were implemented on ibmqx2 (IBM-Q-team 2019b) and ibmq 16 melbourne (IBM-Q-team
2019a). The latter allowed encoding of 64 training features across the genome.

Keywords Quantum classifier · Genomic classifier · Quantum machine learning · Quantum algorithms

1 Introduction

Quantum computing algorithms have been developed that
show great promise of making potentially significant
improvements upon existing classical equivalents, particu-
larly in the area of machine learning. Exponential speedups
have been predicted for implementing least squares fitting
(Wiebe et al. 2012), quantum Boltzmann machines (Amin

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s42484-020-00017-7) contains
supplementary material, which is available to authorized users.

� Stefan Bekiranov
sb3de@virginia.edu

1 Department of Biochemistry and Molecular Genetics,
University of Virginia, Charlottesville, VA, USA

2 Center for Public Health Genomics, University of Virginia,
Charlottesville, VA, USA

et al. 2018; Kieferová and Wiebe 2017), quantum principal
components analysis (Lloyd et al. 2014), and quantum sup-
port vector machines (Spagnolo et al. 2013) on a quantum
computer, over their classical counterparts (Biamonte et al.
2017). Quadratic speedups have been theoretically demon-
strated for Bayesian inference (Low et al. 2014; Wiebe
and Granade 2015), online perceptron (Kapoor et al. 2016),
classical Boltzmann machines (Wiebe et al. 2014b), and
quantum reinforcement learning (Dunjko et al. 2016; Bia-
monte et al. 2017). However, these speedups presume a
low-error rate, universal, quantum computer with hundreds
to thousands of qubits. In addition, the speedup of a subset
of these algorithms (e.g., quantum support vector machines)
requires quantum RAM (qRAM) (Giovannetti et al. 2008),
which would enable a quantum coherent mapping of a clas-
sical vector into a quantum state (Rebentrost et al. 2014),
but this does not currently exist. Recent progress has been
made in exploiting a relatively natural connection between
kernel-based classification and quantum computing (Schuld

QuantumMachine Intelligence (2020) 2: 7

Published online: 17 July 2020/

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-020-00017-7&domain=pdf
http://orcid.org/0000-0002-3177-4346
https://doi.org/10.1007/s42484-020-00017-7
mailto: sb3de@virginia.edu

et al. 2017; Havlı́cek et al. 2019; Schuld and Killoran 2019).
One set of approaches maps a large feature space to a quan-
tum state space in order to compute a kernel function on
a quantum computer which is then used to optimally clas-
sify input data using, for example, a support vector machine
(SVM) (Havlı́cek et al. 2019; Schuld and Killoran 2019).
In another set of approaches, variational quantum circuits
are used to directly classify the data in the large quan-
tum feature space on a quantum computer, similar to the
approach employed by an SVM (Schuld and Killoran 2019;
Havlı́cek et al. 2019). An even more direct and simple
implementation of kernel-based classification on quantum
computers exploit quantum interference of the training and
test vectors which when properly prepared as quantum
states execute distance-based classification upon measure-
ment (Schuld et al. 2017; Schuld et al. 2014a). An advantage
of these kernel-based approaches is that they can and have been
implemented on existing quantum computers. However, in
the case of the quantum interference circuit (Schuld et al.
2017), the distance measure was Euclidean-based and only
two training vectors could be used to execute the classifier
on a 5-qubit processor.

Motivated by the problem of classifying individuals with a
disease (e.g., Alzheimer’s disease) given single cell neuronal
genomic copy number variation (CNV) data (van den Bos
et al. 2016; McConnell et al. 2013; McConnell et al.
2017; Chronister et al. 2019), we developed a set of
quantum classifier circuits which exploit a biologically
relevant encoding of the training and test vectors that allow
us to take full advantage of the computational basis of
the quantum computer. Specifically, the training and test
vectors encode the presence and absence of a CNV in
a given genomic window with a 1 and 0, respectively,
in non-overlapping windows across the human genome
(i.e., they can be represented as binary strings). These
genomic windows, which are nothing but ordered physical
subdivisions of the genome, act as our feature dimensions
(more precisely, the CNVs in respective genomic regions
constitute the different features). The classification is based
directly on the highest inner product between the test and
training set of each class. This is possible because the
class label qubit (which is eventually measured) is directly
entangled with the training vectors, rendering the usual
ancilla qubit unnecessary. Furthermore, we take advantage
of many of the shared properties between a natural distance
measure between binary strings, the Hamming distance,
and the inner product between vectors composed of many
binary strings to arrive at the simplest implementation of a
near-term quantum disease-control classifier using genomic
input data. The classifier is broad in its scope and can be
applied to any situation amenable to using inner products
in a feature space composed of divisions of physical
space, time, etc., or of any correspondingly comparable

attributes as discussed in the following sections. Notably,
we are aware of two works which implement Hamming
distance–based classification schemes (Ruan et al. 2017;
Schuld et al. 2014b). In the former, k-nearest-neighbors
(kNN) classification is implemented based on the metric
of Hamming distance, which is essentially calculated by
storing the difference between binary vector components of
the test and training vectors in a register and adding up the
negative difference over the vector dimensions. Only the
nearest neighbors are used in classification, and the training
vectors farther than a threshold distance from the test are
neglected by the algorithm. Binary feature data is encoded
in bit-vector form, thus using n qubits to encode n features.
The Hamming distance between the test and each vector of
the training set is calculated and iteratively summed over
the n dimensions by adapting a circuit presented in Kaye
(2004) to enable correct classification. An actual circuit is
not implemented; however, the complexity was found to
be O(n3). In the latter work, another Hamming distance–
based kNN-like classifier using the same encoding scheme
as Ruan et al. (2017) is developed to address a pattern
recognition problem based on a proposal of Trugenberger
(2001). In this work, the Hamming distance between the
test and each training vector is eventually encoded as an
amplitude into a register containing a superposition of the
training vectors from each training set. The probability of
measuring the class label qubit (entangled set-wise to the
superposition above) in a particular state attempts to encode
a monotonic function (a sum of square cosines over the
training set) of the average Hamming distance of the test
vector to the training set of the measured class. Each term
of the said sum is certainly monotonic in its Hamming
distance but it is not shown how the sum itself is monotonic
in the average Hamming distance to the training vectors.
The algorithm weighs lower distances between the test and
potential neighbors more than higher ones, as with typical
distance-based kNN classification (Dudani 1976). The class
index measured with the highest probability is chosen to
classify the test vector. An actual circuit is not drawn.
Another somewhat related work is Wiebe et al. (2014a),
which is a nearest-neighbor classifier that also employs
the inner product in one approach to build half of its
classification metric, the Euclidean vector distance. It does
not implement the metric at the circuit level.

Our work executes an advance over the first two
approaches above, in various ways. It presents two
minimalistic, relatively efficient Hamming distance–based
(SIP) and dot product–based (AIP) classifiers containing
only two execution steps: data encoding and state overlap
via swap test. Taking advantage of binarized encoding
schemes (Schuld et al. 2015; Tacchino et al. 2019), single
sample training data is binarized in genomic subdivisions
and these binary training features are encoded as quantum

QuantumMachine Intelligence (2020) 2: 7Page 2 of 267

state coefficients in the computational basis (similar to
(Schuld et al. 2017) and detailed below), allowing us to
encode and operate on 2n binary-valued features with just
n qubits. The class qubit is straightaway entangled with the
training set with a minimal number of gates (2 in 14-qubit
example problem 1 in “Results”) during data encoding and
is measured at the end to directly reveal the correct class
for the test vector. No ancilla qubit is used, and the inner
product via swap test is coherently implemented using n

Fredkin gates while the above qubits are entangled leading
to O(n) complexity after state preparation. Moreover, the
formulation of SIP is that the presence and absence of
a CNV in a genomic region is encoded with a state
coefficient of +1 and −1, respectively, in the computational
basis, immediately yielding the total sum of bit matches
minus mismatches after state overlap (which we show is
equivalent to Hamming distance–based classification). As
ours is not a kNN-like classifier, there is no distance-
weighting bias in the algorithm and it is the simplest and
most efficient implementation of directly using the total
Hamming distance to the test as a classification measure that
we are aware of. Furthermore, in our approach, we allow
for the feature vector sum of the training set to be directly
encoded in initial state preparation, thus allowing for the
simultaneous evaluation of the similarity metric between
the test and all the training vectors in one state overlap
operation. Thus, in the process, we implement a linearized
version of Hamming distance over multiple training inputs
and use it for classification. Most importantly, we present
an actual circuit implementation of our classifiers on both
5-qubit and 14-qubit hardware. The actual gate depth is
O(n3) for n features (Ruan et al. 2017) or unclear (Schuld
et al. 2014b) due to lack of an actual circuit implementation,
but would be clearly greater when compared with our
implementation of 5-qubit example problem 1 on ibmqx2
using 37 gates to arrive at the pre-final measurement state
(including all swap operations necessary for the architecture
and the 18 gates necessary for the standard swap test
evaluation of state overlap (Online Resource 1)). Our
classifiers have utility well beyond the genomic domain,
as AIP can be used in any situation where a dot product
between test and train scores similarity and SIP can be used
in any situation which requires scoring the total bit-wise
similarity between binary-valued feature vectors.

In summary, our circuits are employed to execute binary
(disease/normal) classification of genomic samples on 5-
qubit (ibmqx2) and 14-qubit (ibmq 16 melbourne) architec-
tures using two different inner product metrics (Abraham
et al. 2019). Genomics is an exciting rapidly advancing field
that is much in need of effective machine learning solutions
to keep up with fast-growing technological advancements in
sequencing, the large amount of data generated, and the vast
array of different relevant data types. Development of these

and other near-term quantum algorithms will enable quan-
tum computation to solve demanding, data-driven problems
in genomics as we approach the development of powerful,
low-error rate, universal quantum computers.

2 Results and discussion

If one is interested in quantifying how well two arbitrary
binary strings (of equal length n) match with each other,
the most natural way would be to calculate their Hamming
distance. The Hamming distance is simply the sum of the
positional mismatches of the two bit strings. Thus, the
Hamming distance of identical strings is 0 and that of two
strings that are binary complements is n.

The Hamming distance has broad utility in solving
classification problems that can use binary or binarized
inputs representing a more complex event. Our classifier is
equivalent to a Hamming distance–based classifier provided
some caveats to the input data (see “Methods” for proof).
As a simple warm-up example without any technical
implementation details, we examine how our inner product–
based classifier can be applied to a schedule-matching
problem. There are certain time blocks in the day where
individuals are either available or not available, and the
goal is to determine which individual (or set of individuals)
a given “test” individual’s schedule matches best (so they
can find the most common time among all individual pairs
to work together on a new issue, for example). Each time
block is represented uniquely by a “block state” and a
coefficient/prefactor attached to each such state represents
a person’s availability during that time of day. For example,
if we had 8 time blocks, we would represent them with
3 qubits, where the block state |000〉 would represent the
first of these 8 blocks and the block state |111〉 would
represent the last block. Thus, the time blocks constitute the
feature space of the problem. In the simplest case, the state
coefficients would be binary themselves (1 indicating the
person’s availability and 0 indicating non-availability).

The prefactored block states for each individual are
vector-summed to yield that individual’s total state vector.
An inner product between two individuals’ state vectors
would then yield a score quantifying how well the two
individual schedules agree. A class is defined generally
as a collection of state vectors (henceforth referred to as
“training vectors”) satisfying a unique grouping property or
pattern. The training vectors of each class are summed to
yield its class vector. The classifier simultaneously executes
an inner product between the test input and each class
vector, which is equal to the sum of the inner products
between the test vector and each of the class’s training
vectors. Based on measurement probabilities, the classifier
then classifies the test input into the training class whose

QuantumMachine Intelligence (2020) 2: 7 Page 3 of 26 7

class vector yields the highest inner product with the test.
In general, the class vector is allowed to be a vector sum of
many individuals’ state vectors that belong to the same class
(and is prepared based on a classically precomputed sum for
the actual circuit). Let us suppose for this example that there
were 3 schedules in all, 2 training schedules represented by
vectors A and B each playing the role of a class vector for
its respective class, and 1 test input represented by vector T .
Suppose that there are 8 time blocks and individual A has an
opening only in the first time block, individual B only in the
second, and individual T in both the second and the third.
Thus, |A〉 = |000〉, |B〉 = |001〉 and |T 〉 = 1√

2
(|000〉 +

|001〉). We immediately see that 〈T |B〉 > 〈T |A〉; therefore,
the test vector is classified into the class of class vector
|B〉. This classification is implemented by our inner product
classifier. This problem is of course just one example of a
broad range of possible applications for this classifier.

The specific motivation for the development of our
classifier was a DNA copy number variation (CNV)-based
disease classification problem in genomics. The human
genome (which is a collection of chromosomes) can be
subdivided into smaller regional blocks in chromosomal
coordinate space. This is done effectively in the reference
genome, which is a consensus of a relatively small number
of individual’s genomes and is represented as one large
sequence of “A,” “T,” “C,” and/or “G” bases strung together
in a line. Each coordinate block of this reference genome is
marked for the presence or absence of a CNV as found in
a sequenced individual sample genome (any given sample
genome itself is not as well studied as the reference and
does not have a robust coordinate representation by itself,
and hence is “mapped” to the reference coordinate space).
For technical details, see for example Trapnell and Salzberg
(2009). A CNV in a given regional block indicates a

a

b

c

Fig. 1 Examples of feature-space vectors of single genomic samples
containing different CNV patterns. Each column in the genome rep-
resents a feature dimension or physical genomic region. “1” indicates
the presence of a CNV in a given region, and “0” indicates its absence.
(a) shows a case where there are two genomic regions (setup of 5-qubit
Example Problem 1), and (b) and (c) show 64 genomic regions (setup
of 14-qubit Example Problem 1 and 2 respectively). Ellipsis points in

a dimensional label imply that the vector has the same CNV value for
all the unindicated dimensions. Class-vector qubit states for the dis-
ease and normal classes, as well the test-vector qubit state, are written
with subscripts “D,” “N,” and “T” respectively in the computational
basis. They are all shown in the AIP framework for simplicity, though
the situation depicted in (c) is solved in the manuscript using the SIP
framework

QuantumMachine Intelligence (2020) 2: 7Page 4 of 267

deviation from the number of times (referred to as “copy
number”) the genomic string/sequence of that region in
the reference genome is expected to occur in the sample
genome. The default expected copy number of any region
is 2 (there are two copies of each chromosome inherited
by every individual from both parents). Copy number
variations are associated with a variety of phenotypes and
can be strongly correlated with various diseases (lafrate
et al. 2004). We looked at CNVs in neuronal cell samples
from healthy individuals as well as those affected by
Alzheimer’s disease (AD) and developed this classifier as
an attempt to classify genomes as healthy or containing AD.
This is in fact a very natural specific application for our
generic classifier in the regional/spatial domain.

2.1 Binary encoding of feature dimensions
intomulti-qubit states

Thus, the genome is divided into regional blocks (see Fig. 1)
and each block state represents exactly one such region in
order. Similar to above, if we subdivided the reference into
64 genomic regions, we would represent them with 6 qubits
where a block state of |000000〉 would represent the 1st

region, |000001〉 the 2nd region, |111110〉 the 63rd region,
and the block state |111111〉 would represent the 64th

region. Generally, the state |fnfn−1 . . . f2f1〉. represents the
1 + ∑n

i=1 fi2i−1 region where fi ∈ {0, 1}. Thus, we will
identify our ordered n-qubit computational “basis vectors”
(or block states) with basis vectors in feature space in order
to encode training and test vectors (referred to as “sample
vectors”) similar to Schuld et al. (2017).

2.2 The classificationmetrics

We employ two classification metrics: the active inner
product (AIP) and the symmetric inner product (SIP). First
we will list some common features shared by the two
metrics. Both metrics have the special merit of being able
to handle an arbitrary number of training samples/inputs
in the summed class vector form. This is because both
are linear: the sum of the inner products between the test
vector and each training vector is the same as the inner
product between the test vector and the class vector. This
means that in one mathematical operation arbitrarily many
inner products can be calculated between the test and
training vectors and summed together for each class. This
is the implementational advantage of our classifier over a
raw Hamming distance–based classifier (Ruan et al. 2017;
Schuld et al. 2014b), as the Hamming distance is not a
linear measure for multiple bit strings in the sense above and
would not allow for simultaneous calculation of arbitrarily
many mutual distances. This would make implementation
on an actual quantum computer a challenge. In fact, SIP

(and also AIP under certain conditions applicable to us) is
quite precisely the linearized version of Hamming distance
(see “Methods” for proofs). Given that the future realization
of quantum algorithms on quantum machines is at yet
open, speedup may be realized both from a combination
of classical and quantum processor calculations or from
purely quantum implementations. In the spirit of the former,
our circuits encode presummed training data. Due to
quantum superposition, the n-qubit swap test applied to 2
groups of n qubits can simultaneously evaluate the inner
product of two N =2n-dimensional vectors without the
need to store each vector component separately (in our
presummed formulation, this extends to arbitrarily many N-
dimensional inner products). The complexity of summing
m N-dimensional vectors classically is O(mN). Ignoring
state preparation, the inner product requires n Fredkin gates
(18n native IBM-Q gates in our implementation of the
Fredkin gate) and is therefore O(log N) in gate complexity.
Thus, assuming the sample vectors are relatively simple and
require O(1) gates for state preparation or the existence
of qRAM which would enable relatively efficient input
of sample quantum states, the overall complexity of the
combined classical and quantum operations is O(mN)

additions + O(log N) gates. The complexity of doing this
classically is O(mN) additions + O(N) multiplications
and additions to calculate the inner product. The relative
efficiency of computing the inner product on the quantum
computer compared with a classical computer is due to our
formulation of encoding each training sample containing
genomic attributes as binary-valued features, prior to
summing all such samples within a given class. We note that
our approach suffers from the general problem of efficiently
loading arbitrarily complex classical sample data into a
quantum computer (Biamonte et al. 2017; Aaronson 2015;
Ciliberto et al. 2018) which some groups are just beginning
to address (Cortese 2018).

Furthermore, due to our encoding of presence and
absence of CNVs as a state vector coefficient, the sample
vectors are easily represented in the computational basis
using only unitary (or zero-valued) prefactors for both
metrics. In fact, due to this formulation, our inner-product
metrics can efficiently apply to a broad category of
binary-level problems involving scoring of “matches minus
mismatches” or scheduling-like problems as we will shortly
see. Moreover, in our framework, there is no theoretical
limitation as to the number of dimensions/regions encoded
in feature space or the kind of binary-level/CNV-level
training data that can be encoded. We note that the
difference between the two classification metrics lies in
the initial state preparation and not in the inner product
implementation itself.

The classes of the training data are represented in
our case as disease and normal samples. If the data is

QuantumMachine Intelligence (2020) 2: 7 Page 5 of 26 7

separable in some sense, the training vectors for the disease
class will have a different regional block pattern for CNV
presence compared with those of the normal class. Given
a test sample and sufficient separable training data, both
the classifiers would classify the test sample into the
appropriate category, making disease diagnosis of unknown
random samples thus possible. As a technical note, the
CNV-level data at this initial stage of the classifier does
not allow for distinctions between genomic deletions and
duplications.

2.2.1 Metric 1: Active inner product

The active inner product (AIP) is defined as the total number
of times the same region in the test and training vectors for a
given class contains a CNV. In the computational basis, the
definition is naturally understood to be the inner product of
the normalized, sample state vectors. For example, if there
were a single sample divided into four genomic regions and
only the first 3 had a CNV each, its normalized state vector
|ψ1〉 would be:

|ψ1〉 = 1√
3

(|00〉 + |01〉 + |10〉) , (1)

where the state |11〉 is not present due to a coefficient of
0. And if there were a class with two samples including that
shown in Eq. 1 and:

|ψ2〉 = 1√
2

(|00〉 + |11〉) , (2)

corresponding to a CNV in the first and last regions,
the normalized class vector, which is the classically pre-
computed sum of the two sample vectors, encoded into
regions using our binary qubit encoding (Fig. 1) and
normalized, is given by:

|ψ〉 = 1√
7

(2|00〉 + |01〉 + |10〉 + |11〉) . (3)

We note that non-binary state coefficients in the class
vectors are the result of summing ≥ 2 normal or disease
samples classically and correspond to ≥ 2 CNVs occurring
in a given genomic region across samples. In this case, the
normalized class state encodes the occurrence of 2 CNVs in
the first region and 1 CNV in the second, third, and fourth
regions. In terms of the more general notation introduced in
subsection 2.1 that we will use later, Eq. 3 can be written as:

|ψ〉 =
∑

f 1,f 2∈{0,1}
cf 1f 2|f2f1〉, (4)

where c00 = 2√
7

and c01 = c10 = c11 = 1√
7
. The

inner product is calculated between the test vector and
the class vector (the vector sum of the training vectors in
each class) simultaneously for the two training classes by
overlapping their states via the swap test (Buhrman et al.

2001). The test sample is classified now into its rightful
class (implementation details shown shortly). We note that
AIP gives preference to “1-matches” over “0-matches.”

Though both AIP and SIP (described next) are well
suited for our genomic problem depending upon the context,
AIP is the naturally applicable metric for problems like
the schedule-matching problem. In fact, it happens to be
even better suited than the Hamming distance there. This
is because for that particular case one is interested in
scoring how well people’s availabilities match, which the
AIP renders by summing the total number of 1-matches
without any regard for the non-availabilities or 0-matches
(unlike Hamming distance). In fact, AIP is a dot product–
based kernel classifier broadly applicable to all problems
where vector dot products can be used to score similarity
between test and train. For our genomic problem, though
the Hamming distance is the natural classifier of choice,
AIP may be better suited for samples or diseases where the
existence of a CNV in the same region in different samples
is considered more significant than the absence of a CNV.
However, the data that we typically deal with is of such a
form that AIP turns out to be equivalent to the Hamming
distance as a classification metric, as previously mentioned
(see “Methods”).

2.2.2 Metric 2: Symmetric inner product

The symmetric inner product (SIP) is defined as the total
number of times the same region in the test and training vec-
tors for a given class “match” in terms of CNV presence,
minus the number of times they do not match. Broadly applied
to any binary-level matching problem, it is the total num-
ber of feature matches minus feature mismatches between
the test vector and the training set. “Matching” refers to two
vectors both having a CNV or not having a CNV in the same
region. In the SIP framework, the sample vectors are repre-
sented a bit differently in the computational basis compared
with the feature basis. For each sample vector, all block
states that correspond to genomic regions containing a CNV
are assigned a coefficient of 1 whereas regions not contain-
ing a CNV are assigned a coefficient of −1. For example,
the sample vector in Eq. 1 would be represented by:

|ψ1〉 = 1

2
(|00〉 + |01〉 + |10〉 − |11〉) (5)

The rest of the routine proceeds identically to the AIP rou-
tine. The reason for the coefficient −1 in the SIP is that it
introduces a penalty for unlike CNV events. Two non-CNV
regions or two CNV regions will both contribute +1 to the
inner product, but one CNV and one non-CNV region will
contribute −1 to the inner product to account for mis-
matches in regional CNV events. SIP is exactly equiva-
lent to Hamming distance as a classification measure (see

QuantumMachine Intelligence (2020) 2: 7Page 6 of 267

“Methods”) and is thus naturally well suited to CNV-based
genome classification and to all classification problems
based on scoring of binary-level matches and mismatches.

2.3 The inner product decision plane

The decision plane for both the active and the symmetric
inner product is the same. As shown in Fig. 2 for 2 feature
dimensions, the decision plane is the bisector plane of the
two class vectors, as the test vector is classified along with the
class vector with which it yields a higher dot product. This
of course means that its projection onto that vector is larger
than its projection onto the other class vector. For a higher
number of feature dimensions, the decision plane is the
bisecting hyperplane that is orthogonal to the plane in which
the class vectors lie. One advantage of this formulation is
that one effectively compares the test vector with arbitrarily
many training vectors for each class in one mathematical
operation, as these training vectors are summed together
into one final class vector for each class. This is possible
due to the linearity of the inner product metrics we
employ (more in the following section). As an aside, for
multiple class vectors, the decision boundary is not a simple
hyperplane and is elaborated upon in Online Resource 1.

2.4 The inner product circuit

The overall classical-quantum algorithm and all circuits proceed
in the same general way through the following succinct stages:

1. Classically sum m disease and normal sample binary
vectors each of which contain the CNV profiles (1
for presence or 0 for absence of a CNV in a given
genomic region) of each individual across N =

Fig. 2 Inner product decision plane in 2 feature dimensions. There are
two classes represented in red and green respectively. The class vector
for each class is the sum of the class’s respective training vectors,
shown with dotted lines. The decision plane, shown in blue, bisects the
two class vectors. The test vector will of course be classified according
to the side of the decision plane in which it is located. For simplicity,
only positive feature coordinates are shown

2n genomic regions to arrive at each feature-space
coefficient (ci

d1...dn
and ct1...tn below), which is the

number of disease or normal CNVs in a corresponding
genomic region divided by a disease or normal state
normalization constant. This forms the 2 class vectors,
each given by Eq. 7. The complexity of this operation is
O(mN).

2. Encode the feature-space data in the circuit while
entangling the class label qubit with the class vectors.
The complexity of this operation depends on the
complexity of the disease and normal train vectors
which can be arbitrarily complex (Biamonte et al. 2017;
Aaronson 2015; Ciliberto et al. 2018; Cortese 2018).
The circuit is now in state |ψ0〉.

3. Apply an “n-qubit swap” (n Fredkin or CSWAP gates),
sandwiched between two Hadamard gates on swapper
qubit as shown below, directly to n paired train and
test feature qubits, d1 and t1, d2 and t2, . . . dn and tn to
prepare a state that will enable calculation of the inner
product between the test and entangled class vectors.
The complexity of this operation is O(log N). The
circuit is now in state |ψf 〉.

4. Measure the relevant computational basis probabilities
of the swapper and class index qubits that encode the
final inner product result. This operation is O(1) (it is
based on the fixed precision of the state coefficients).

The state manipulation routines and circuits can be
formulated as generic functions of data parameters (see
“Methods”), but we utilize circuit optimizations as suitable
to the form of input data in any given problem. We will
now look at the different general components/stages of
the inner product circuit. In the state equations of this
section, we note that the order of the states on the R.H.S.
corresponds to the physical order of the qubits that the
states occupy on the real hardware (this will be relevant
for upcoming swap operations as part of the inner product
calculation). In addition, the subscript following a state
denotes the qubits’ functional role (as opposed to physical
qubit position above) and is written in order of the qubits
that compose the state vector. The class vector qubit(s) is
(are) labelled by the subscript “d,” the class index qubit by
“m,” the test vector qubit(s) by “t,” and the swapper qubit
by “s.” For example, the two-qubit state |00〉md denotes
that the left qubit in the state serves to encode the class
index and the right one serves to encode the class vector.
Furthermore, when |ψ〉 is used with a subscript, it represents
the state of the circuit when only the qubits referred to
by the subscript are considered (e.g., |ψ〉md). When |ψ〉
is used with a superscript (0 orf), it represents the post-
data encoding or final pre-measurement state of the overall
circuit respectively.

QuantumMachine Intelligence (2020) 2: 7 Page 7 of 26 7

We now write the generic state for all inner product circuits:

|ψ〉 =
M∑

i=1

|i〉m|di〉d |t〉t |s〉s 1√
M

, (6)

where |s〉s is the state of the swapper qubit, |i〉 indexes
the computational basis state representing the ith class,
|di〉d is the normalized class vector state for the ith class,
|t〉t is the state of the test vector, M is the total number
of classes, and 1√

M
is an overall normalization constant

stemming from the number of classes. The “s” etc. labels
used both in the subscript and state label itself are not
redundant as they serve different purposes and are retained
for clarity. Now, |di〉d can be specifically written as:

|di〉d =
∑

d1...dn∈{0,1}
ci
d1...dn

|dndn−1 . . . d2d1〉d , (7)

where the sum is over all dj ∈ {0, 1}, |dndn−1 . . . d2d1〉d
represent the training states which encode feature dimen-
sions into qubits as detailed in subsection 2.1, ci

d1...dn
’s are

the class vector coefficients associated with their respective
feature states as defined in subsection 2.2.1. As described in
subsection 2.2.1, the class states are normalized, 〈di |di〉 =

1, yielding
∑

d1...dn∈{0,1} |ci
d1...dn

|2 = 1. Similarly, the test
state |t〉t can be written as:

|t〉t =
∑

t1...tn∈{0,1}
ct1...tn |tntn−1 . . . t2t1〉t , (8)

where the sum is over all tj ∈ {0, 1}, |tntn−1 . . . t2t1〉t rep-
resent the test states which encode feature dimensions into
qubits and ct1...tn’s are the test vector coefficients associated
with their respective feature states. Again, the test state is
normalized, 〈t |t〉 = 1, giving

∑
t1...tn∈{0,1} |ci

t1...tn
|2 = 1.

Thus, n = log N qubits are required in general to index
N feature dimensions. A key point in the circuit is that the
role of an ancilla qubit is subsumed in the class index qubit.
Briefly, a useful role for an ancilla qubit is to weight a state
containing class qubits associated with the kth training data
point by the distance of that training point to test data when
it is measured (Schuld et al. 2017). Thus, measurement of
the class qubit in a given class is achieved with a probability
equal to the squared distance of the test data to the train-
ing data thereby executing quantum based classification (see
Schuld et al. (2017) for details). In our case, we only need 1
qubit (to index 2 input classes), which is now directly entan-
gled with the summed training vectors via the sum in Eq. 6.

Fig. 3 (a) The Generic Inner Product Circuit (the initial state of all
qubits is |0〉 as usual). The first stage is data-encoding, composed
of two state preparation routines executed in parallel. In the second
stage, the n-qubit swap test is applied on the test and class vector fea-
ture qubits with the swapper as control. It consists of 2 Hadamard
gates applied to the swapper around the n-qubit controlled swap gate

(consisting of n Fredkin gates as shown), followed by measurement
of the swapper. This measurement, along with the class label qubit
measurement, yields the inner products. (b) As a specific example,
gate components inside the “5-qubit entanglement routine” module are
shown here

QuantumMachine Intelligence (2020) 2: 7Page 8 of 267

Figure 3 shows the state processing stages (listed at the
top of this subsection) clearly for all circuits in general. In
the first stage of data encoding, we execute an entanglement
routine to encode the training class vector states and
entangle them with the class label qubit, as well as a test
vector state preparation routine as necessary. These two
routines are executed in parallel. All circuits have the same
feature space data encoding formulation presented before,
which allows for the encoding of 2n binary-valued features
in n qubits. The optimal encoding routines may vary from
circuit to circuit and will be specifically presented with
the example problems. Notably, while we will maintain
a general notation in this section, we develop and assess
classifiers that predict one of two classes (M = 2),
associated with a normal or disease sample in the case of our
genomics example. Following data encoding, the equivalent
of an “n-qubit swap test” is performed on the test and train
(class) vectors, which consists of a Hadamard gate applied
on the swapper qubit, followed by the n-qubit controlled
swap gate, and another Hadamard gate on the swapper

before the swapper qubit is measured. In turn, the n-
qubit controlled swap gate consists of n Fredkin (controlled
swap) gates which are used to perform n controlled swap
operations (with each Fredkin gate implemented as in
(Smolin and DiVincenzo 1996) by using 2 CNOTs around
the Toffoli gate, as presented in Schuld et al. (2017)). These
n Fredkin gates are applied sequentially to matched train
and test qubit feature components dj and tj (see Fig. 3(a)
and Fig. 5(a)). The n-qubit swap test effectively calculates
the inner product between the states contained in the qubits
it swaps (in our case the test vector and the class vectors).
Repeated measurement of the class index qubit in addition
to the swapper qubit as shown in Fig. 3(a) reveals the inner
products for the 2 classes with the test. From now on, we
will simply refer to the n-qubit swap test as the “swap test.”

More formally, we represent the state of the circuit after
the second stage of data encoding, |ψ0〉, by substituting
Eqs. 7 and 8 into Eq. 6, which shows the form of any generic
state. Placing all sums and the normalization constant to the
left and using the initial state of |0〉s of the swapper qubit:

|ψ0〉 = 1√
M

∑

t1...tn∈{0,1}

M∑

i=1

∑

d1...dn∈{0,1}
ct1...tnc

i
d1...dn

|ψ0
i,t1...tn,d1...dn,s〉, (9)

where
|ψ0

i,t1...tn,d1...dn,s〉 = |i〉m|tntn−1 . . . t2t1〉t |dndn−1 . . . d2d1〉d |0〉s . (10)

Equations 9 and 10 represent the overall state of the
circuit shown in Fig. 3 after entanglement and state

preparation. The Hadamard gate (Hs) is applied to the
swapper qubit and n Fredkin or CSWAP gates (CSWAP ⊗n)
are applied to swap the qubits |d1〉d and |t1〉t , |d2〉d and |t2〉t ,
. . . , |dn〉d and |tn〉t . The effect of these operations on the
states of the circuit shown in Eq. 10 is:

CSWAP ⊗nHs |ψ0
i,t1...tn,d1...dn,s〉 = 1√

2
(|i〉m|tntn−1 . . . t2t1〉t |dndn−1 . . . d2d1〉d |0〉s

+|i〉m|dndn−1 . . . d2d1〉d |tntn−1 . . . t2t1〉t |1〉s) (11)

Application of another Hadamard gate (Hs) to the swap-
per qubit, use of Eqs. 7–11 yields the overall state of the cir-

cuit after the last Hadamard gate operation and before mea-
surement of the swapper and class qubits shown in Fig. 3:

|ψf 〉 = HsCSWAP ⊗nHs |ψ0〉

= 1

2

(
M∑

i=1

|i〉m|di〉d |t〉t · 1√
M

+
M∑

i=1

|i〉m|t〉t |di〉d · 1√
M

)

|0〉s

+1

2

(
M∑

i=1

|i〉m|di〉d |t〉t · 1√
M

−
M∑

i=1

|i〉m|t〉t |di〉d · 1√
M

)

|1〉s (12)

Thus, |ψf 〉 is the overall state of the circuit before
measurement of the swapper and class qubits shown in
Fig. 3. Notably, by performing n swaps between matched
feature component qubits |dj 〉d and |tj 〉t , we effectively

perform a swap of multi-qubit states |di〉d and |t〉t with the
class index qubit acting as a witness to the swap operation
and not participating in the swap even though it is entangled
with the class vector qubits. For clarity, the interchange of

QuantumMachine Intelligence (2020) 2: 7 Page 9 of 26 7

the order of the test and training/class vector states in each
term in parentheses signifies the swapping of the states held
by respective physical qubits (see examples below for more
details). We again note that the state label subscripts (“t,”
“d,” etc.) refer to the function of the qubit and not to the
physical qubit itself and thus remain associated with their
respective initial states. Measurements of the swapper and
class index qubits are made to arrive at the measurement
probability encoding the solution to our problem. To see
how this is so, let us calculate some relevant theoretical
measurement probabilities. Define ρsk as the probability of

measuring the swapper qubit in state |s = s〉 and the class
index qubit in state |i = k〉. After a period of exploring
variants of the circuits shown in Figs. 5, 7, 8, we empirically
found better agreement between simulated and actual runs
on the IBM processors by measuring the swapper qubit
in the s = 1 state as compared to s = 0. Thus, we
will focus on the measurement probabilities ρ10 and ρ11.
For detailed analysis of error modes associated with IBM
processors, see for example ref. (Sisodia et al. 2017). First,
the projection operator projecting the above state onto states
corresponding to fixed values of the swapper (s = 1) and
class index (i = k), the |s = 1〉s |i = k〉m basis, yields:

P(|s = 1〉s , |i = k〉m)|ψf 〉 = 1

2
√

M

(
M∑

i=1

δik|i〉m|di〉d |t〉t −
M∑

i=1

δik|i〉m|t〉t |di〉d
)

|1〉s

= 1

2
√

M

(
|k〉m|dk〉d |t〉t − |k〉m|t〉t |dk〉d

)
|1〉s (13)

where the Kronecker delta function δik serves to pick out
terms corresponding to class k. The squared norm of the
above is:

ρ1k = 1

4M

(
〈k|m〈dk|d〈t |t − 〈k|m〈t |t 〈dk|d

)
〈1|s

(
|k〉m|dk〉d |t〉t − |k〉m|t〉t |dk〉d

)
|1〉s

= 1

2M

(
1 − |Ak|2

)
(14)

where Ak ≡ 〈t |dk〉 is exactly equal to the inner product
between the test vector and the class vector of class k. Thus,
the directly measurable probability ρ1k is essentially the
negative of the squared inner product added to a constant,
always a positive number (as is easily verified in Eq. 14)
and a monotonically decreasing function of the true inner
product of normalized states. All the circuits thus end with
a measurement of the probabilities ρ10 and ρ11 and our
classifier choosing the class k that yields the lower measured
probability and thus the higher inner product with the test
vector.

In terms of data encoding, though specific routines for
encoding data will be employed in our circuits, the kind of
data that can be entered in principle is a little less limited
(see “Methods”). As mentioned above, we do not attempt
to solve the general data input problem associated with
quantum computing (Biamonte et al. 2017; Aaronson 2015;
Ciliberto et al. 2018; Cortese 2018). Nevertheless, we do
provide a recipe in “Methods” for encoding data exhibiting
certain properties/symmetries. However, circuits encoding
non-trivial data may have extremely large gate depth in large
part due to the limitations of CNOT connectivity in currently
available quantum processors. Therefore, for relevance and

clarity, we will present problems involving simplified data
that can be input feasibly into IBM machines. These
solutions themselves require non-trivial gate-depth at times
as they need several swap operations.

We now present our circuits with their respective exam-
ple problems. We will first describe the 5-qubit circuit and
then the 14-qubit version. For each, problems are solved
using the simulator as well as the real processor using the
AIP and/or SIP framework as applicable. 1 For each case,
we will first introduce the generic circuit and state notation,
and then present specific example problems. The under-
lying connectivity constraints of the backends used at the
time of circuit implementation are shown in Fig. 4.

2.5 Five-qubit generic circuit

AIP problems involving an artificial genome containing two
regional blocks can be solved with the 5-qubit circuit. The
SIP framework does not have much relevance or power here

1Problems that are solved by the simulator are also solvable by the real
processors, which present additional architectural constraints, and we
present such solution counterparts for most of the cases.

QuantumMachine Intelligence (2020) 2: 7Page 10 of 267

a

b

Fig. 4 Underlying CNOT connectivity constraints of (a) ibmqx2 and
(b) ibmq 16 melbourne at the time of circuit implementation. Qubit
numbers are circled and CNOT connections shown via directional
arrows. A unidirectional arrow specifies the constraint that the
originating qubit can only act as control and the destination qubit only
as the target of a CNOT operation. A symmetric diamond shape for
connections in (b) indicates that either qubit can serve as control or
target. These qubit numbers correspond exactly to the qubit numbers
shown for the real IBM processors in Figs. 5 and Online Resource 2

due to the small feature space. Only 1 qubit was used to
encode the class vector (“d”), which spans the two genomic
regions. The other 3 qubits were taken by the class index
(“m”), test vector (“t”), which also resides in 2-dimensional
genomic feature space, and the swapper qubit (“s”).

As we have two classes to index, class-index-qubit state
|0〉m represents class 0 (disease) and |1〉m represents class
1 (normal). For all 5-qubit circuits we will present, this
class index qubit is first entangled with the training qubit
using a particular entanglement routine so as to separate the
training vectors for each class (see Fig. 3(b)). Our 5-qubit
“generic entanglement routine” (a similar but functionally
different module is presented in Schuld et al. (2017)) allows
one to prepare a relatively broad class of entangled two-
qubit states involving the class label and class vector qubits.
In these states, the disease class state always has a CNV
in the second region only corresponding to pre-summing
all disease samples having a CNV in the second region
and generating a normalized disease class state; hence,
|d0〉d = |1〉d . The normal class state contains CNVs in
both regions, which corresponds to pre-summing multiple
samples containing CNVs in either or both regions and
generating a normalized normal class state. Using the form
of Eq. 7, the normal class state can be written as |d1〉d =
c1

0|0〉d + c1
1|1〉d where |c1

0|2 + |c1
1|2 = 1. Without loss of

generality, we set c1
0 = sin θ and c1

1 = cos θ (θ here happens

to be precisely the rotation angle shown in Fig. 3(b)). 2 This
state of the class and train qubits, |ψ0〉md , is generated after
action of the 6 gates shown in Fig. 3(b) on the state |00〉md .
This generic post-data encoding state for the 5-qubit inner
product circuits reads:

|ψ0〉md = 1√
2
(|01〉md + sin θ |10〉md + cos θ |11〉md) (15)

where the normalization
√

2 corresponds to M = 2
classes (as shown in Eq. 6). This state refers to the general
situation where class 0 (disease) CNVs lie wholly in the
second genomic region and the number of class 1 (normal)
CNVs in the first genomic region is scaled by a factor of
tan θ relative to the number in the second genomic region
(please see discussion on raw normalization/scaling factor
in “Methods”). As a specific example, the state |ψ0〉md =

1√
2
(|01〉md + |10〉md) denotes the simple case that in class

0 (disease) there is a training state with a CNV only in the
second of two regions and in class 1 (normal) there is one
CNV in the first region.

2.5.1 Example problem 1: AIP on 2-block genome

We will solve a very simple problem with the 5-qubit circuit
now in the AIP framework on the simulator as well as the
ibmqx2 backend. The underlying connectivity constraints
of ibmqx2 at the time of circuit implementation are shown
in Fig. 4(a). In this example, the normal class vector (class
1) has one training vector that contains a CNV in each
of the 2 total genomic regions. The disease class vector
(class 0) has only 1 CNV, present in the second region. The
test vector also has only 1 CNV, present in the first region
(see Fig. 1(a)). Thus, the test sample should be classified
as normal. In the data-encoding stage, the 5-qubit generic
entanglement routine is used with θ = π

4 , which when used
in Eq. 15 yields the post-entanglement routine state for this
circuit: |ψ0〉md = 1√

2
|01〉md + 1

2 (|10〉md +|11〉md). The test

vector is already in the desired form and is not acted upon
in the data-encoding stage.

At this point, the test and swapper qubit states are,
formally, |t〉t = |0〉t and |s〉s = |0〉s , yielding the initial
state:

|ψ0〉 = |0〉s |0〉t
(

1√
2
|1〉d |0〉m + 1

2
(|0〉d +|1〉d)|1〉m

)

, (16)

in which the qubit order is that of the simulator circuit
shown in Fig. 5(a). The second stage of the circuit is
the swap test applied on the training and test qubits with
the swapper qubit as control, which evaluates the inner
product between the class vector and test vector qubit

2Physically, θ is the angle of clockwise rotation the normal class vector
would undergo from initially pointing along the feature II axis (see
Fig. 2) to be thus rendered in the computational basis.

QuantumMachine Intelligence (2020) 2: 7 Page 11 of 26 7

a

b

c

d

Fig. 5 5-qubit example 1 as drawn on IBM Quantum Experience
Composer (IBM-Q-team 2019c). We show (a) the unconstrained simu-
lator circuit with labelled submodules including the complete Fredkin
gate, (b) the ibmqx2 circuit with labels including the architectural
qubit-swap, (c) measurement probabilities of the ibmqx2 circuit on
simulator, and (d) measurement probabilities of same on ibmqx2. In
(a), the predefined functional qubit labels are used to clarify the roles
of the 4 qubits used (“s” for swapper, “t” for test, “m” for class index,

and “d” for class vector). The swap test consists of “H” on swap-
per, Fredkin/controlled swap gate with swapper as control and “t,” “d”
qubits as targets, respectively, and again “H” on swapper. In (b), the 2-
qubit swap gate, a necessity for ibmqx2 connectivity constraints, swaps
the qubits for the class index and swapper qubits. The functional qubit
labels of course apply only until relevant qubits are swapped. In (b)
and (c), the measured values of only the swapper and class index qubits
are shown for clarity in that order

QuantumMachine Intelligence (2020) 2: 7Page 12 of 267

Table 1 The ratio ρ11
ρ10 Problem Theory Simulation Real

5-Qubit example 1 1
2 0.53 0.77

14-Qubit example 1 2 1.9 0.26

14-Qubit example 2 0 0.0 n/a

states (see Fig. 5). This inner product value is given by
the measurement probabilities of the state of the “s” and
“m” qubits as measured in the computational basis, which
leads us to the last phase of the computation. 8192 “shots”
are taken, and ρ10 and ρ11 are measured and plotted on
a histogram (for simplicity, no additional subscripts shall
be used for these quantities for simulated or real runs; it
should be clear from the context whether they correspond to
a theoretical calculation, simulation or real run). As a prior,
the theoretical values for the inner product are set by Eq. 14,
yielding ρ10 = 1

4 and ρ11 = 1
8 , showing that the test vector

yields a higher inner product with class 1 and should be
classified as such.

This problem is solved first on the IBM simulator
on a version of the circuit not limited by architectural
constraints, then on the simulator using a circuit appropriate
for the ibmqx2 architecture, and finally using the same
circuit on the ibmqx2 processor itself. The latter circuit
along with the histogram of measured probabilities for
the simulation and the real execution is shown in Fig. 5.
The unconstrained simulation circuit is shown in Online
Resource 2. The real and simulated circuits differ only in
the order of the qubits used to encode the data, and in the
swap operations required to satisfy the constraints of the
real processor. In Table 1, we compare probability values
from the theoretical calculation, “measurements” from the
architecturally constrained simulation, and measurements
from the real execution for the various (5-qubit and 14-
qubit) circuit examples. The simulation Fig. 5(c) yields
ρ11
ρ10

= 12.78
24.16 = 0.53, while ibmqx2 in Fig. 5(d) gives

ρ11
ρ10

= 19.14
24.7 = 0.77. As expected, the simulation probability

is almost identical with the theoretical one for this example
and classifies the test sample correctly as normal. The real
measured probability, though 45% away from the expected
value, classifies the sample correctly.

2.5.2 ibmqx2 performance across test state classifiability

In order to assess the efficacy of our circuit and the overall
circuit fidelity of ibmqx2, we executed the 5-qubit generic
circuit on the simulator and on ibmqx2 to plot performance
over the full range of a classifiability parameter, F . We
define classifiability generally as the absolute value of the
difference in the theoretical inner product between the test
and normal class and that between the test and disease
class: F = |〈t |d1〉 − 〈t |d0〉| = |A1 − A0|. Because the

state coefficients in the AIP framework are always positive,
the inner products 〈t |di〉 ≥ 0 for i ∈ {0, 1}. Thus, F

ranges from 0 (completely unclassifiable), corresponding
to the training state being equidistant to both the normal
and disease class states, to 1 (completely classifiable),
corresponding to the test state being identical to either the
disease or normal class state and orthogonal to the normal
or disease class state, respectively. The test input used
was again |t〉t = |0〉t . The quantity plotted on the y-axis
is our usual classification metric ρ11

ρ10
, the “measurement

probability ratio” (MPR). Three curves are plotted for MPR
corresponding to theory, simulation and the real run. We
can see from Eq. 15 that A0 = 〈t |d0〉 = 〈0|1〉 = 0
and A1 = 〈t |d1〉 = sin θ ; thus, classifiability reduces to
F = sin θ . From Eq. 14, values of MPR < 1 correspond to
correctly classified test data. As can be seen from Eq. 15,
θ ≈ 0 corresponds to all normal sample CNVs being in
the second region, and increasing θ yields higher relative
numbers of normal CNVs in the first region with θ = π

4
giving an equal number of normal CNVs in both regions
and θ = π

2 corresponding to normal CNVs in the first
region only. In the plot shown in Fig. 6, F ranges in
discrete steps from values corresponding to θ ≈ 0 3 (almost
unclassifiable as F ≈ 0) to θ = π

2 . 4096 “shots” were
taken to produce each data point. It is notable that for θ >
π
20 , or F > 0.157, all test cases were correctly classified
by ibmqx2. It is also noteworthy that the real run MPR
values oscillate about the theoretical and simulated values
with the oscillation amplitude dampening with increasing
F until an increasing degradation in ibmqx2 performance
compared with theory and simulation for F ≥ 0.55, while
still classifying samples correctly. In addition to the 5-qubit
generic circuit experiments, a single point corresponding to
the 14-qubit example problem 1 is also plotted on the same
graph (see “Example problem 1: AIP on 64-block genome”
in the current section).

2.6 Fourteen-qubit generic circuit

With the 14-qubit circuit, we can solve problems involving
a simple genome containing up to 26 = 64 regional blocks
(with some optimizations this can be extended if there are
any CNV-absent regions—see “Zero-coefficient exclusion”
in “Methods”). Using the same notation scheme as for the

3 π
600 to be exact

QuantumMachine Intelligence (2020) 2: 7 Page 13 of 26 7

Fig. 6 Plot of measurement
probability ratio ρ11

ρ10
vs

classifiability F=|A1 − A0| for
the 5-qubit generic circuit
simulation and ibmqx2 run as
well as for the simulation and
ibmq 16 melbourne run of the
single point experiment, “AIP
on 64-block genome.” The
5-qubit circuit plot was created
by varying the θ parameter
(0 < θ ≤ π

2), effectively
plotting over the range
0 < F ≤ 1 (as F = sin θ). The
first point is plotted at θ = π

600 ,
almost at the unclassifiable
point of F = 0. All y-values
below 1 for this circuit indicate
that the test data was correctly
classified. All test cases
corresponding to θ > π

20 , or
F > .157, were correctly
classified by ibmqx2. For the
14-qubit experiment, the single
instances of the simulation and
ibmq 16 melbourne run are
plotted to serve as comparison.
Correct classification
corresponds to y-values above 1
for this circuit. It is immediately
obvious that the
ibmq 16 melbourne run
performs (not surprisingly) far
worse than any of the 5-qubit
experiments including
incorrectly classifying the test
state

�
� �

�

�
�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�
�

�
�

�

�
�

�

�� � � �
�

�

�

�

�

�

�

�

�
�

�

�

�

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0
Classifiability (F)

ρ 1
1

ρ 1
0

�

�

�

�

�

�

14−qubit_ex1_ibmqx14

14−qubit_ex1_simulator

14−qubit_ex1_theory

5−qubit_ibmqx2

5−qubit_simulator

5−qubit_theory

Measurement Probability Ratio vs Classifiability

5-qubit circuit, 1 qubit was used to encode the class index, 6
qubits were used for the class vectors (labelled individually
by d1, d2 . . . d6 in increasing order of bit place value, or
simply by “d” collectively), 6 qubits for the test vector
(t1, t2 . . . t6 individually or “t” collectively) and 1 for the
swapper qubit (“s”). We note that the dual use of the labels
s, d1 etc. as both functional qubit indices and state labels is
quite natural and unambiguous, e.g., |s〉s or |d1〉d1 .

2.6.1 Example problem 1: AIP on 64-block genome

We solve this problem on the 14-qubit simulator as well as
the ibmq 16 melbourne backend using the Qiskit software
for circuit assembly (Abraham et al. 2019). The underlying
connectivity constraints of the backend at the time of circuit
implementation are shown in Fig. 4(b). For this problem, a
single CNV is present in each of the first 32 regions (1−32)
only in the class vector for class 0 (disease), and each of
the last 32 regions (33 − 64) only in the class vector for

class 1 (normal). The test vector represents a test sample
that contains a CNV in each of regions 1 − 16 only (see
Fig. 1(b)). As a practical matter, the class vectors of this
(and the following) example would be composed of multiple
sample vectors to have this particular form in our context.
The test sample here should be classified into class 0 as a
disease sample.

As previously, |0〉m is the first computational basis state
representing class 0 and |1〉m the second representing class
1. As a note, in the simulated version of the problem, the
first qubit (q0) is used for class index, q1 − q6 for class
vectors, q7 − q12 for the test vector (both in decreasing
order of place value of bits, d6−d1 and t6−t1, respectively),
and q13 for the swapper qubit. This changes in the real-
processor version as shown in Online Resource 3 for ease
of required swap operations. The class index qubit is first
entangled with the 6 training qubits as follows (see also
Fig. 7). A Hadamard gate is applied to m, followed by a
CNOT gate with m in control and d6 as target. This puts

QuantumMachine Intelligence (2020) 2: 7Page 14 of 267

the first 7 qubits in the following superposition, effectively
entangling the class index qubit with the 6 training qubits:

|ψ〉md = 1√
2

(|0〉m|000000〉d + |1〉m|1000000〉d) (17)

To encode our data optimally, a Hadamard gate is applied
to d5 − d1 each and not to d6. This puts |ψ〉md in the state:

|ψ〉md =
(

1√
2

)6 (
|0〉m|0〉d6(|0〉 + |1〉)⊗5

d5−d1
+ |1〉m|1〉d6(|0〉 + |1〉)⊗5

d5−d1

)
(18)

where the subscripted tensor product (|0〉 + |1〉)⊗5
d5−d1

≡
(|0〉+|1〉)d5(|0〉+|1〉)d4(|0〉+|1〉)d3(|0〉+|1〉)d2(|0〉+|1〉)d1

etc. This state exactly represents the CNV configuration in
the problem definition per the AIP framework (see Fig. 1).

At this point, the qubit states for the other qubits are as
follows: |t〉 = |000000〉t and |s〉 = |0〉s . Now, using the
same technique as above to achieve the desired test vector,
a Hadamard gate is applied to t4 − t1 each, yielding the
pre-swap test state:

|ψ0〉 =
(

1√
2

)10 (
|0〉m|0〉d6(|0〉 + |1〉)⊗5

d5−d1
+ |1〉m|1〉d6(|0〉 + |1〉)⊗5

d5−d1

)

|00〉t6−t5(|0〉 + |1〉)⊗4
t4−t1

|0〉s . (19)

In this case, only two Fredkin gates are required as
shown in Fig. 7(a) in order to swap the pairs |d6〉d , |t6〉t
and |d5〉d , |t5〉t given that the remaining feature qubit
states are the same. The swap test is executed as usual
to encapsulate the inner product into the measurement
probabilities of the states of the “s” and “m” qubits
in the computational basis; 8192 “shots” are taken, and
ρ10 and ρ11 are measured and plotted on a histogram.
In this case, the theoretical measurement probabilities
from Eq. 14 are ρ10 = 1

8 and ρ11 = 1
4 , showing

that the test vector yields a higher inner product with
class 0 and should be classified as a disease sample. As
before, the problem is first straightforwardly solved on the
simulator, then on the simulator using an architecturally
constrained circuit and finally on the ibmq 16 melbourne
processor. The measured results along with the circuit
are shown in Fig. 7. Again, in Table 1, the theoretical
probabilities, the architecturally simulated probabilities,
and the real measured probabilities can be seen. The
simulated probability is very close to the theoretical
value as expected. However, due to current limitations in
hardware, measurements from the real processor yielded
a ratio ρ11

ρ10
= 0.26 that significantly departed from the

theoretical value of 2 and did not classify the sample
correctly. Notably, the introduction of a second Fredkin
or CSWAP gate (composed of 18 ibmq 16 melbourne
gates) degraded performance significantly compared with
the 5-qubit system in which one Fredkin or CSWAP gate
was implemented. While reduced performance is expected,
this single ibmq 16 melbourne experiment highlights the
current limitations of implementing even more than one
Fredkin or CSWAP operation with current hardware. This
reduced performance is represented in Fig. 6 via comparison

with the expected theoretical and simulation values for this
example problem.

Again, one can see in the circuit that the swap test was
only applied to some of the test and class vector qubits
and not to all. This is an optimization specific to this
circuit as mentioned in “Inner product circuits” employing
the principle of summing coefficient products of only like-
valued qubits to calculate the inner product (please refer to
“Optimization techniques in methods”).

2.6.2 Example problem 2: SIP on 64-block genome

This problem was solved on the simulator. As shown in
Fig. 1(c), for this problem a single CNV is present in
each of the 64 regions in the class vector for class 0
(disease), and each of the last 32 regions (33 − 64) only
in the class vector for class 1 (normal). The test vector
represents a test sample that contains a CNV in each of
regions 1 − 32. Thus, the test sample should be classified
into class 0. As mentioned in “Methods,” only the square
of the SIP, i.e., square of the difference between matches
and mismatches and not the sign of the inner product, is
actually measurable (see “Methods” for work attempting to
address this issue indirectly). However, this is no problem
for the data we used to guide the development of our
classification metrics (van den Bos et al. 2016) (pioneering
single-cell whole genome sequencing data for the context
of our quantum classifier attempting to classify neuronal
disease based on CNVs in samples, hereupon referred to
as “contextual data”), where the number of matches always
exceeds the number of mismatches (see SIP in “Methods”).
This example is fabricated differently from the actual data

QuantumMachine Intelligence (2020) 2: 7 Page 15 of 26 7

Fig. 7 14-qubit example problem 1 as drawn on IBM Quantum Expe-
rience Composer (IBM-Q-team 2019c). We show (a) the simulator
circuit, (b) measurement probabilities on simulator, and (c) measure-
ment probabilities on ibmq 16 melbourne. The circuit adapted to sat-
isfy ibmq 16 melbourne connectivity constraints is too cumbersome to

show here and is shown in Online Resource 3. The measurement prob-
abilities shown pertain to the adapted version. “CV” refers to “class
vector” and “TV” to “test vector.” In the histograms, only the measured
values of the swapper and class index qubit states are shown for clarity
in that order

to highlight certain features of the circuit 4 and here we will
posit that the number of matches is not expected to exceed
the number of mismatches, as shown in the genomic setup
in Fig. 1(c). This means that the measured inner product
between the test and class 1 vector (stemming from an SIP

4The data motivated the development of the classifier but example
problems showing specific circuit functionality may certainly be set up
with different-looking genomes.

of absolute value 64, due to 0 matches and 64 mismatches)
is expected to be higher than the inner product between the
test and class 0 vector (stemming from an SIP of 0, due to
32 matches and 32 mismatches).

In the same way as in the above example (see Fig. 8), we
create the state:

|ψ〉md = 1√
2

(|0〉m|000000〉d + |1〉m|1000000〉d) (20)

QuantumMachine Intelligence (2020) 2: 7Page 16 of 267

and apply Ry

(
π
2

)
to d6, and Ry

(−π
2

)
to t6, to arrive at

the full state:

Fig. 8 14-qubit example problem 2 as drawn on IBM Quantum Expe-
rience Composer (IBM-Q-team 2019c). We show (a) the circuit and
(b) measurement probabilities on simulator. “CV” refers to “class vec-
tor” and “TV” to “test vector.” In the histograms, only the measured

values of the swapper and class index qubit states are shown for clarity
in that order

|ψ0〉 =
(

1√
2

)13 (
|0〉m(|0〉 + |1〉)⊗6

d6−d1
+ |1〉m(|1〉 − |0〉)d6(|0〉 + |1〉)⊗5

d5−d1

)

(|0〉 − |1〉)t6(|0〉 + |1〉)⊗5
t5−t1

|0〉s . (21)

The swap test was applied and the simulated probabilities
measured as usual. We compare them with their theoretical
counterparts in Table 1 and see that they are extremely
close as expected. The test sample was classified into
class 0, which yielded the lower inner product, due to the
precondition indicating fewer mismatches with class 0. This
example was not run on the real processor simply because,
given current hardware limitations, it would add no value
to our results. We have already demonstrated how a very
similar design can be mounted on ibmq 16 melbourne.

2.7 Summary

We have thus presented several example problems on both
the 5-qubit and 14-qubit versions of IBM processors. We
see that the 5-qubit circuit results are much more aligned
with their theory and simulation counterparts than those
of the 14-qubit circuit. The deviation in the latter is due
to limitations associated with circuit implementation and
execution. In principle, and especially in the presence of
qRAM to address the quantum data input problem, the

QuantumMachine Intelligence (2020) 2: 7 Page 17 of 26 7

circuits are an improvement over their classical counterparts
due to the following main features:

1. They provide a feature space mapping for bit vectors by
using them as coefficients of computational basis states,
encoding 2n binary features in n qubits.

2. The classifier is designed as a linearized version of
a Hamming-distance–based classifier, allowing for the
use of presummed input training data into class vectors.
The inner product between this data and the test
vector calculated using the n-qubit swap test effectively
encodes a summed inner product with arbitrarily many
training inputs for the 2 classes.

3. We combine the training data for the 2 classes
(extendable to any number m), each containing 2n

features, into n qubits (as opposed to m · n), by
entangling training vectors with the class index qubit.

4. Finally, the quintessential quantum advantage of
manipulating 2n basis states and coefficients in
superposition simultaneously in an n-qubit machine
is fully realized in this design, as essentially n

Fredkin gates calculate the sum of the product of
2n dimensional vector components. The execution
advantage is O(log N) vs 0(N) in a classical machine.

To reiterate the last point in our context, the class vector
components can have arbitrarily high precision in principle
(set by how precise the physical rotation angles are in
the hardware) and yet the product of each pair of test-
class vector components is encoded into the probability
amplitude via merely one Fredkin gate. The number of
native IBM-Q gates used in implementing 1 Fredkin gate
is a constant (18 in the implementation we used). Of
course, the number of measurements required to establish
confidence in the result will increase with vector precision.

3Methods

3.1 Hamming distance and inner product
equivalence

All individual sample vectors (training or test) have
binary-valued components (indicating in our context the
presence or absence of a CNV in the regional dimensions
of feature space). For what follows, we define the “bit-
string-equivalent” (BSE) for a binary-valued sample vector
such that the vector’s ith component is simply treated as the
value of the ith bit of its BSE. Then, the Hamming distance
between two binary-valued sample vectors in feature space
is naturally defined to be the Hamming distance between
their respective BSEs. We will work out below the equiva-
lence between the Hamming distance and the SIP/AIP of
two sample vectors in the sense of their being equivalent

classification measures. We will also show how SIP and
AIP are linear in the sample vectors while the Hamming
distance is not.

3.1.1 SIP

We will first prove the linear behavior of SIP in terms
of sample vectors and show how it is implemented as a
veritable classifier in a quantum machine. Then, the proof of
its equivalence with Hamming distance will follow. An F -
dimensional class vector in feature space takes the general
form C = 1

NC

∑F
f =1 cf

�f , where �f is the indexed standard
basis vector in F -dimensional feature space, cf ’s are un-
normalized vector components or regional prefactors of C,
and NC is an overall normalization constant. Suppose C is
composed of an arbitrary number of training vectors, which
in analogous notation take the form D = 1

ND

∑F
f =1 aD

f
�f ,

where we note that D serves as a training index and aD
f

is a binary regional prefactor in feature space for the Dth

training vector. Suppose also that we have a test sample
given by the vector B = 1

NB

∑F
f =1 bf

�f with notation
exactly analogous to D. The Hamming distance between D

and B is now by definition:

H(B, D) =
F∑

f =1

(1 − δaD
f bf

) (22)

where δaD
f bf

is the standard Kronecker delta function

applied to aD
f and bf . We are interested in minimizing

the Hamming distance between sample vectors for optimal
classification, which is equivalent to maximizing the reverse
Hamming distance or the quantity −H .

For clarity, we will focus on one training class only for
this proof and generalize at the end. Let us first define
S11(B, D) as the total number of times corresponding vector
components/prefactors of D and the test vector B are both
1, i.e.:

S11(B, D) =
F∑

f =1

δaD
f 1δbf 1 (23)

Similarly, we define S00(B, D) as the total number of
times corresponding components of A and B are both 0,
i.e., S00(B, D) = ∑F

f =1 δaD
f 0δbf 0. We also define the

“1 − 0 mismatches” in the self-evident way following
above: S01(B, D) = ∑F

f =1 δaD
f 0δbf 1 and S10(B, D) =

∑F
f =1 δaD

f 1δbf 0.

Let us now define the quantity S(B, D) as the total
number of corresponding prefactor-matches minus the total
number of prefactor-mismatches between the Dth training
vector and test vector B, i.e., S(B, D) = S11(B, D) +

QuantumMachine Intelligence (2020) 2: 7Page 18 of 267

S00(B, D) − S10(B, D) − S01(B, D). We note that SIP was
defined as the natural extension of S, as the total number
of prefactor matches in corresponding regions between
the test vector and all the training vectors in the class
minus the total number of mismatches. Define σ11(B, C) =∑W

D=1 S11(B, D), etc. Thus, the SIP between test B and
class C is written as:

σ(B, C) = σ11(B, C) + σ00(B, C) − σ10(B, C) − σ01(B, C) (24)

=
W∑

D=1
S(B, D) (25)

where W is the total number of training vectors in the class.
We see that σ is a natural linear extension of S. This linear
behavior is retained in the computational basis under certain
conditions relevant to our classifier. More specifically, when
calculated in the computational basis, the sum of the SIPs
of multiple sample vectors is equivalent to the SIP of the
sum of the vectors as far as successful classification is
concerned. Let us see how this condition of SIP linearity is
achieved and utilized in the computational basis, with state
normalization, for the same above-given sample vectors.

We will use different notation for some of the state
vectors in this section compared with previous sections for
ease of proof. In moving from feature basis to computational
basis now, we will use corresponding Greek notation for
state vectors where necessary. We recall that in the SIP
framework, for the state vector of any training or test
sample, the coefficient for the f th computational basis
vector can only be 1 or −1 (pertaining to the case where
there is a CNV present in the region and the case where there
is not, respectively). So, we start with defining the training
vector (we will use |d〉 to denote the training vector and
|w〉 to denote the class vector in this section to make the
distinction):

|d〉 = 1

ηd

⎛

⎜
⎝

F∑

f =1|αd
f =1

αd
f |f 〉 +

F∑

f =1|αd
f =−1

αd
f |f 〉

⎞

⎟
⎠ (26)

where |f 〉’s are computational basis vectors as before,
αd

f is the unnormalized f th component of |d〉 in the
computational basis, ηd is the overall normalization
constant, and F again denotes the total number of
feature/computational dimensions. The two summations in
Eq. 26 serve to pick out only terms where αd

f = 1 and

αd
f = −1, respectively. Now, the class vector is:

|w〉 = 1

ηw

⎛

⎜
⎝

F∑

f =1|αd
f =1

W∑

d=1

αd
f |f 〉 +

F∑

f =1|αd
f =−1

W∑

d=1

αd
f |f 〉

⎞

⎟
⎠ ,

(27)

where ηw is the overall normalization constant and W is
again the total number of training vectors in the class. And
finally, the test vector can be written as:

|t〉 = 1

ηt

⎛

⎝
F∑

f =1|βf =1

βf |f 〉 +
F∑

f =1|βf =−1

βf |f 〉
⎞

⎠ , (28)

in exact functional and notational analogy with |d〉 in
Eq. 26.

Given that the class vector is just a normalized sum over
its training vectors, and that in any SIP in the computational
basis each matching computational vector component will
add +1 to the result and each mismatching component will
add −1, 〈t |d〉 is equal to the total number of regional CNV-
matches minus the total number of mismatches between the
test vector |t〉 and training vector |d〉, multiplied by their
respective normalization constants.

〈t |d〉 = 1

ηdηt

(S11(B, D) + S00(B, D) − S01(B, D) − S10(B, D)) (29)

= 1

ηdηt

S(B, D) (30)

We will now calculate 〈t |w〉, which is the natural
computational basis representation of the SIP between B

and C. Since the class vector |w〉 is simply a linear sum of
all its training vectors and the dot product (state overlap) is
a linear operation:

〈t |w〉 = 1
ηwηt

W∑

D=1
S(B, D) (31)

= 1
ηwηt

σ (B, C) (32)

Note that the difference in normalization constant
between the single training vector and the class vector
is retained. As W can be arbitrary, Eq. 31 proves the
implementation of SIP linearity in the computational basis.
5 We see that 〈t |w〉 is of the form κσ(B, C), for some
positive constant κ = 1

ηwηt
, and hence is a monotonic

function of σ(B, C). The fact that κ is a constant is seen
trivially for the case where there is only one training vector
in each class, as ηw = 1√

F
for both classes in the SIP

framework. For the case of multiple training vectors per
class, the form of the data determines the constancy of
κ . The statistical nature of our neuronal AD/neurotypic
contextual data is such that the total number of CNVs
in each sample is similar across both disease and normal
classes. In fact, the data reveals that the total number of
CNVs per genomic region has the same overall statistical
distribution in each class (van den Bos et al. 2016).
This gives rise to the normalization constant (which is
a function of these regional coefficients) being the same
for both classes in the computational basis. Classification

5The attentive reader will protest here as ηw will change with addition
of training vectors. This will not matter for classification if we keep
the number of training vectors similar for both classes as seen next.

QuantumMachine Intelligence (2020) 2: 7 Page 19 of 26 7

in separable data is still possible due to a salient region
where all training samples of a class show atypical activity
or different regional arrangements giving rise to the same
overall histogram of CNVs per region. As one general
example, different floors of large multistory buildings
may have different occupancy for different buildings, but
the overall distribution of floor occupancy could be very
similar. At any rate, only the normalization constant needs
to be similar for both classes. Any data satisfying this
constraint is amenable to SIP classification. This implies
that ηw, and thus κ , are very similar for both classes if the
same (or similar) statistically significant number of training
vectors is chosen for both, which is natural for our context.
When 〈t |w〉 is used as a classification metric, the higher of
two SIPs will remain the higher one irrespective of the value
of κ . This means that our classifier is valid independent
of the value of the normalization constants. Thus, we have
shown that our quantum machine successfully executes
SIP-based classification and preserves linearity.

There are ways to address the normalization constant
issue and are expected to be implemented in future work.
As an example, one can encode a simplistic “scaling
factor” (ratio of the raw normalization constant of one
class vector to the other’s; please see “Efficient data-
encoding techniques” for details) using the coefficients of
the ground and excited state of a “scaling” qubit. These
coefficients would play the role of the raw normalization
constants by which the respective class vectors would be
multiplied/scaled at run time. Of course, one can multiply
this factor classically after the inner product computation,
but that would not be a satisfying solution. Without this,
if normalization constants for the classes are not similar,
correct classification is still possible in a weaker sense.
The normalization constant, being the square root of the
sum of squares of basis-vector coefficients, is a slowly
increasing function of any one coefficient. From the form
of the inner product, one can see that if one genomic region
in one training class had a particular prevalence of CNVs,
classification of a similar test sample into that class would
not suffer. In the contextual data, for example, a test sample
typically has only 1 CNV in the genome and is highly
inclined toward being classified into the class displaying
particularly more CNVs in the very same region where that
CNV lies.

Finally, we will now prove the equivalence of SIP to
the Hamming distance (actually its negative, as mentioned)
as a classification metric. In the language of SIP, Eq. 22
can be rewritten by definition as H(B, D) = S01(B, D) +
S10(B, D). We will simply define the Hamming distance
χ between a test vector and a class vector to be the
sum of the Hamming distances between the test vector
and each training vector in the class, i.e., χ(B, C) =∑W

D=1 H(B, D). As an aside here, we can immediately

see how the Hamming distance is not a linear function of
the sample vectors as χ is not a linear extension of H .
As a trivial example, the two Hamming distances between
1-d training vectors (1), (0) and test vector (1) add to 1
whereas the Hamming distance between the test vector and
the vector sum of the training vectors is 0. Coming back
to SIP-Hamming distance equivalence, −χ(B, C) can be
rewritten as:

− χ(B, C) = −
W∑

D=1

S01(B, D) + S10(B, D) (33)

= −
W∑

D=1

F − S11(B, D) − S00(B, D) (34)

=
(

W∑

D=1

S11(B, D) + S00(B, D)

)

− WF (35)

Now, Eq. 25 can be rewritten as:

σ(B, C) =
W∑

D=1

S11(B, D) + S00(B, D)−(F − S00(B, D) − S11(B, D))(36)

= 2

(
W∑

D=1

S11(B, D) + S00(B, D)

)

− WF (37)

We see that Eq. 35 and Eq. 37 are very similar. In
each equation, if we fix the number of training vectors per
class, the term WF can be removed. Now, we see that∑W

D=1 S11(B, D) + S00(B, D) and 2
∑W

D=1 S11(B, D) +
S00(B, D) only differ by a factor of 2 and hence are
classificationally equivalent. Thus, we have proven that
SIP and Hamming distance are classificationally equivalent
measures.

There is one caveat to SIP to mention here. As
measurement statistics are always represented by the square
of the coefficients/probability amplitudes, 〈t |w〉 in Eq. 32
will be measured indirectly via |〈t |w〉|2. Thus, the missing
information will be whether σ(B, C) in Eq. 24 is positive or
negative, i.e., whether the total number of prefactor matches
is higher or lower than the number of mismatches. This is
addressed via Eqn (2) of (Wiebe et al. 2014a) which shows
how to indirectly (semi-classically) arrive at the exact inner
product via calculation of cosine similarity between vectors.
However, this ambiguity is no issue for the contextual
data since each sample has less than 2 CNVs across all
genomic regions (van den Bos et al. 2016), ensuring that any
test sample will have many more matches (mostly “0 − 0
matches) than mismatches with each training class. For data
where individual samples have decidedly fewer 1’s than
0’s, or vice versa, the sign of σ will be a priori known.
For clarity, we will summarize the cases where SIP-based
classification in our circuits cannot succeed:

1. If the raw normalization constants of the two class
vectors in feature space are not similar

QuantumMachine Intelligence (2020) 2: 7Page 20 of 267

2. If the data differs by a significant overall scaling factor
(see above or see “Efficient data-encoding techniques”)

3. If it is not a priori known whether the number of
prefactor matches will be greater or less than the
number of prefactor mismatches. However, circuits can
be revised by Eqn (2) of (Wiebe et al. 2014a) to address
the issue partially.

3.1.2 AIP

AIP was defined as the total number of “1 − 1” matches
between the test vector and all training vectors composing
the class vector for a given class. Note that σ11(B, C) in
Eq. 24, is exactly the AIP, A(B, C), for test B and class
C. As for SIP, we will again begin with showing how AIP
is a bona fide classification metric and prove its linearity.
In the AIP framework, we recall that in the state vector
of any training or test sample the coefficient for the f th

computational basis vector can only be 1 or 0 (pertaining to
the case where there is a CNV present in the region and the
case where there is not, respectively). Following the same
line of proof as for SIP and retaining the above feature basis
definitions (and overall notation), we will now redefine state
vectors in the computational basis for the AIP framework.
The training vector in the AIP framework reads:

|d〉 = 1
ηd

⎛

⎝
F∑

f =1|αd
f =1

αd
f |f 〉 +

F∑

f =1|αd
f =0

αd
f |f 〉

⎞

⎠ (38)

= 1
ηd

F∑

f =1|αd
f =1

αd
f |f 〉 (39)

The test vector can similarly be written as |t〉 =
1
ηt

∑F
f =1|βf =1 βf |f 〉. Now, in analogy with SIP:

〈t |d〉 = 1

ηdηt

S11(B, D) (40)

and

〈t |w〉 = 1
ηwηt

W∑

D=1
S11(B, D) (41)

= 1
ηwηt

σ11(B, C) (42)

As W can be arbitrary, Eq. 41 proves the implementation
of AIP linearity in the computational basis. Following
exactly the same argument as for SIP at this point for the
same kind of data, we conclude that the above inner product
leads to successful classification. Thus, we have shown
that our quantum AIP machine classifies successfully and
preserves linearity. We will now show the classificational
equivalence of AIP to the negative Hamming distance with
the caveat that its equivalence to Hamming distance is not
crucial, even undesirable, for classification problems where
1 − 1 matches are more significant than other kinds of

prefactor matches. In such cases, like the schedule-matching
problem shown in the previous section, AIP is the natural
measure of choice. Proceeding with the demonstration of
equivalence now, we know that the AIP between test sample
B and class vector of C, σ11(B, C) = ∑W

D=1 S11(B, D).
We would like to show as above that this is classificationally
equivalent to

∑W
D=1 S11(B, D)+S00(B, D) = σ11(B, C)+

σ00(B, C). Clearly, this equivalence is valid when σ00, the
total number of “0 − 0” matches between the test and
training vectors of the class in question, is either fixed for
both classes somehow, or is a monotonically increasing
function of σ11 in general. The way these two conditions
hold true would certainly vary from case to case, so we
will simply sketch a few plausible scenarios here. The
latter condition is true, for example, when the difference
in the number of CNV and non-CNV regions in any
given sample is similar to that in other samples (assuming
again that the same number of training vectors is chosen
for each class). It is also true in the case where CNVs
are generally sparsely distributed for all samples. This is
most certainly the situation with the contextual data, where
any sample statistically has only a single CNV across the
whole genome. For test and training samples with sparsely
distributed CNVs, an increase in σ11 is accompanied by an
equal increase in σ00 with a high likelihood. To see how
this is the case, one can visualize a test sample vector with
a CNV not “in line” (see Fig. 1) with regionally coinciding
CNVs of a class’s training vectors, and as soon as it is placed
“in line” by swapping it with a non-CNV in another region
in the sample, both the “1−1” and “0−0” matches will very
likely simultaneously increase, as long as the likelihood of
finding a CNV in the samples is low. Thus, we have shown
that our AIP quantum machine is a valid classifier and that
it is equivalent to Hamming-distance as a measure under
certain conditions, and summarized specific cases satisfying
those conditions. We will again enumerate the cases where
AIP classification in our circuits will not succeed:

1. If the raw normalization constants of the two class
vectors in feature space are not similar

2. If the data differs by a significant overall scaling factor
(see Efficient Data-encoding Techniques)

3. If the total number of “0 − 0” prefactor matches
is neither fixed for the different classes nor is a
monotonically increasing function of the “1 − 1”
matches

3.2 Data-encoding techniques

One universal challenge for encoding feature-space data
using the computational basis is that one can fix only
the relative values of the vector components, as the state
vector must be normalized in the computational basis. For

QuantumMachine Intelligence (2020) 2: 7 Page 21 of 26 7

example, the unnormalized class vectors A = (1, 1), B =
(2, 2), C = (3, 3) in two-dimensional feature space will
all be encoded as S = 1√

2
(1, 1) in the computational basis

and will not be distinguishable. A denotes that there is 1
CNV in each genomic region, B denotes 2 in each and
C denotes 3 in each. If we had two classes with class
vectors given respectively by A and B, the scaling factor
(of B relative to A) would be 2. This is because the raw
normalization constant for B is 2

√
2 and that of A is

√
2.

Thus, we see that the raw normalization constant is nothing
but the square root of the sum of the squared number of
CNVs in each genomic region: σ = ∑n

f =1 V 2
f where Vf

is the number of CNVs in region f of n total genomic
regions. One natural way to represent class vectors is |d〉 =
1
σ
(V1, . . . , Vn). In this raw vector notation, class vectors

can be juxtaposed for comparing corresponding feature
values. If the raw normalization constant is similar for the
2 class vectors, we know that the 2 quantum inner products
would be equally scaled relative to the true (unnormalized)
inner products in feature space and the classifier would
work correctly. Physically, in this simple case, the scaling
factor of 2 signifies class A having 1 CNV in each of two
regions and class B having twice as many CNVs in each
region. They will both be encoded the same and will not
be distinguishable from each other. As mentioned above,
there are ways to address this issue in future work such
as encoding a scaling factor into the circuit. Fortunately,
the kind of data that we are dealing with does not present
this issue, again due to the fact that the raw normalization
constant for the two classes is very similar if a similar
number of training vectors is used. This normalization
ambiguity is a current major limitation of our metrics when
used for general classification problems without the scaling
factor in place. Thus, the metrics are most applicable to data
sets whose overall scaling across the feature dimensions
is similar enough so that the inner product values for the
different classes would not be relatively affected. Some
data-encoding techniques applicable to our context are
presented here. These are not universally applicable for all
forms of input data but may be useful to encode data that
satisfies certain criteria. The brute force approach is not
cheap but is provided to extract broader functionality and
for completeness.

3.2.1 Brute force approach

It is not in general trivial to encode arbitrary data values
from feature space into n-qubit systems starting from the
universal ground state via a series of available unitary
gate operations. A non-trivial combination of ancilla-like
entangling qubits and controlled rotations are typically
required even for the case of two qubits (see “Data Encoding
via Entanglement Routine” in Fig. 5). Broadly, there are two

data encoding strategies that can be considered: (1) attempt
to directly encode the state coefficients into the quantum
computer using a complex set of gate operations which have
to be determined or (2) use a classical-quantum approach
whereby systems of equations are solved classically that
allow simple gate operations to be performed. Many have
focused on the challenge of the first approach (Biamonte
et al. 2017; Aaronson 2015; Ciliberto et al. 2018; Cortese
2018). Here, we will demonstrate that the second approach
is extremely challenging and destroys any advantage
associated with the speedup of the quantum algorithm. In
our context, an n-qubit sample vector is encoded by positive,
real state coefficients, a subset of which can be represented
in the following (binomial-series-like) state:

|ψ〉 = (an|0〉 + bn|1〉)...(a1|0〉 + b1|1〉) (43)

where the ai’s (i = 1, 2, ...n) are data-dependent
coefficients. Even though this representation is without
qubit entanglement, we shall present it to encode sample
vectors otherwise represented by entangled states in the
computational basis, to be accepted in the case that the final
error is low. As a reminder, the combined coefficient of
the term |0〉⊗n represents the prefactor (CNV value) of the
first physical (genomic) region, that of the term |0〉⊗(n−1)|1〉
represents the CNV value of the second region, etc. The
recipe is as follows:

1. First, the sample vector is normalized in the feature
basis using its overall normalization factor 1

N
. Then,

expanding terms in Eq. 43 leads to 2n non-linear
equations in the coefficients ai and bi of the form
cncn−1...c1 = A

N
etc. where the ci’s (i = 1, 2, ...n)

are placeholders for either ai or bi , and A refers to
the relevant regional prefactor/CNV-value. (The case
of sample vectors whose natural representation in the
computational basis is via entangled states is not readily
addressed by this scheme but can be accepted if the
error generated in the solution to follow is low.)

2. Next, the non-linear equations are numerically solved
for the ai and bi in the closest possible form satisfying
the constraint that each ith qubit state term in |ψ〉 in
Eq. 43 is individually normalized, which automatically
leads to the solution |ψ〉 being normalized overall.
Error minimization techniques can be used to solve
these equations for the ai’s and bi’s with the state
normalization constraint, possibly containing some
error relative to the actual data, especially for naturally
entangled states.

3. Finally, each ith qubit state in Eq. 43 is rotated by Ry(θ)

to achieve these minimum error values of ai and bi .

One example of an entangled state, |ψ〉 = a2a1|00〉 +
b2a1|10〉 + b2b1|11〉, being represented in the above
framework is if the coefficients a2, b1 are relatively low

QuantumMachine Intelligence (2020) 2: 7Page 22 of 267

and a1, b2 are relatively high. This would mean that a
term containing a2b1 is negligible and |ψ〉 ≈ (a2|0〉 +
b2|1〉)(a1|0〉+b1|1〉) would be a viable solution. Depending
on the specific meaning, purpose, and intended use of the
data, one may decide that certain terms or features weigh
less in certain contexts to make the above approach feasible.
Thus, modulo the scaling factor, this recipe can be used to
encode a somewhat broad feature-data space up to some
known possible error.

Importantly, solving N = 2n linear equations is O(N3)

in complexity. Solving N non-linear equations according
to the approach specified in step 2 above is likely much
more computationally costly. The approach is provided here
to demonstrate the data input challenge in our context and
for completeness until other solutions to solve the data
input problem, including qRAM, may be realized. These
solutions are critical at any rate for the full potential of
all quantum computing solutions to be realized. There
will necessarily be many cases where a small error will
not be achievable (specifically cases where the natural
representation of the sample vector in the computational
basis is with entanglement may be fraught with high
approximation error), rendering this recipe ineffective for
such scenarios.

3.2.2 Binomial series approach

This is an optimization that can be utilized in both the AIP
and SIP frameworks if the data has certain simplifying CNV
patterns amenable to this approach. In fact, it was employed
in both example problems 1 and 2 of the 14-qubit circuit.
However, we again note that this is not a universal solution
to simplifying the data input problem. Rather, it is a very
useful heuristic approach to simplify the encoding of input
data that belongs to a specific “symmetry group,” using
minimal gates. We first note that, in the AIP framework, the
non-zero coefficients in Eq. 43 will decide which regional
blocks are encoded as having CNVs and which ones as not.
Therefore, the values of these coefficients can be chosen to
encode specific themes or patterns in the data. We will first
motivate this in the context of the AIP.

Suppose, for example, that the data has all zero CNV
entries in the second half (block) of all genomic regions
(i.e., in 32 of 64 regions, etc.). We immediately see that
setting an = 0 will achieve this condition. If the data has all
zero entries in the second half of the first and second half
blocks of genomic regions, setting bn−1 = 0 will achieve
this. Setting bn, bn−1 = 0 will enable only states beginning
with the term |00...〉 to be present, nullifying all CNV values
except those of the first half of all genomic regions and
so on. Similarly if it is desired that the CNV values of the
first half of all regions be exactly twice that of the second
half, one would set an = 2 and all the other coefficients to

1 (prior to normalization) and so forth. Many such desired
patterns can be creatively effected in data encoding from
this general framework. For example, this approach was
extended to the SIP framework of example problem 2 of the
14-qubit circuit by finding simple rotations to encode the
zero coefficients as “−1.” This “binomial” series approach
combines the idea of using ordered bit strings/ block states
to enumerate physical regions with the use of unentangled
1-qubit states juxtaposed to yield a series representation for
all unentangled n-qubit states in the computational basis.
This series representation is then minimalistically utilized
for optimal encoding.

3.3 Optimization techniques

3.3.1 Swap like-valued bits only in inner product evaluation

When calculating an inner product of two state vectors, each
composed of multiple qubits, one need not assess the con-
tribution of corresponding qubits when their contribution is
unity. This happens typically when corresponding qubits are
like-valued. For example, if |A〉 = (a1|0〉+a2|1〉)|0〉|1〉 and
|B〉 = (b1|0〉 + b2|1〉)|0〉|1〉,
〈A|B〉 = a1b1〈0|0〉 + a1b2〈0|1〉 + a2b1〈1|0〉 + a2b2〈1|1〉

= a1b1 + a2b2

Clearly, the second and third qubit values of A and B

do not enter the actual evaluation of the inner product, as
they are correspondingly identical and contribute a factor
of 1 to the result. Of course, if a1 = b1 and a2 = b2,
then the inner product is simply unity by default. One
possible way to realize the above operation would be to
assess qubit equality by applying a CNOT gate between two
corresponding qubits, and then a NOT gate on the target
(second) qubit, whose final value serves as the boolean
result of the comparison. This value would be designed to
trigger the swap test operation for these two qubits by acting
as its control. A prior copy of the second qubit would be
made in order to preserve the state. For computational basis
states, this can be done via a CNOT gate having this second
qubit as control and a qubit containing |0〉 as the target,
which would be the copy destination. In this way, the state
overlap between corresponding qubits would be calculated
only when they are different. 6

There will no doubt be better and more efficient ways
to determine qubit-state equality and to embed these
optimizations within the quantum circuitry in the long
term. These assembly-level optimizations could well be
realized as a combination of classical and purely quantum

6A “copy” of a qubit in superposition using the same method can also
be made in the sense that a measurement of the copy would yield the
original state measurement probabilities.

QuantumMachine Intelligence (2020) 2: 7 Page 23 of 26 7

methods. We have provided a sketch here. We are currently
unable to implement sophisticated circuits anyway due to
architectural constraints, etc., and in our work have given
a proof of concept for future implementations of the inner
product classifier that would employ much more developed
quantum hardware and circuitry. One could just as well
insert swap gates for like-valued qubits (for computing their
trivial overlaps) in order to present “complete” circuits, but
we did not think it vital to the theme of this work.

Online Resource 1 presents further optimization tech-
niques not specific to our context.

3.3.2 Zero-coefficient exclusion

This is a data-reformulation technique for AIP that
saves dimensions in feature space and hence qubits in
computational space. Suppose that some of the physical
regions in the test vector have a prefactor of 0, thus ensuring
that these dimensions will have no contribution to the inner
product. The feature vectors can now be mapped onto a new
basis so as to eliminate the non-contributing dimensions
from the computational framework altogether. For example,
say the original test vector residing in 4-dimensional feature
space reads x = 1

2 (|00〉t + |10〉t), requiring 2 qubits to
encode. Clearly, we only need to use feature dimensions 1
and 3 to calculate the AIP. Thus, we eliminate dimensions
2 and 4 from consideration and reformulate our basis such
that the dimensional labels 1, 3− > 1′, 2′, where the primed
dimensions refer to the new basis. The test vector in the new
basis now reads x′ = 1

2 (|00〉t + |01〉t) and only requires 1
qubit to encode. The class vectors are also mapped to the
new basis and the AIP is calculated in the usual manner.

Of course, the remapping will change the overall
normalization constant for the class vectors. Thus, this
technique is limited in scope. The classification outcome is
assured to be the same in situations where the overall scaling
constant of the two (or more) class vectors changes by
the same factor after remapping, leaving the inner product
unchanged. This is specifically achieved when the overall
scaling factor for the two classes is originally the same
and similar number of CNVs are present in the excluded
features, or in cases where the classes contain single training
samples whose coefficients for most of the features are
non-zero (trivially true in the SIP framework). Moreover,
correct classification is assured in the case where the overall
scaling factor for both classes is the same in the remapped
basis (please see “Efficient data-encoding techniques” for
details and examples of the scaling factor). In the example
above, the relative number of CNVs in regions 1 and 3 in
the original basis will remain the same for the normal and
disease class vectors even after the remapping. If the new
scaling factor for both classes is approximately the same, the

inner product may change but correct classification would
be expected. This can be seen by writing these class vectors
in raw notation in the new basis to see that the new inner
product would be a true representation of the unnormalized
inner product, leading to correct classification (please refer
to “Efficient data-encoding techniques” for details).

Acknowledgments We would like to thank Dr. Thomas Lehner
and Dr. Geetha Senthil at the National Institute of Mental Health
for stimulating our interest in this study, organizing a series
of discussions which brought quantum computing, neuroscience,
genomics, and computational biology experts together to discuss the
potential of quantum computing in solving computational challenges
in neuroscience and supporting this work.We also acknowledge use of
the IBM Q for this work.

Author contributions K.K. designed the classification metrics and
quantum circuits and executed the study. S.B. conceived the study.
K.K. and S.B. conceived inner product as a metric and performed the
experiment. M.M. and A.R. set the biological context and motivated
the biological problem.

Funding information K.K., A.R., M.M., and S.B. were supported by
NIH grant 3U01MH106882-04S1. M.M. and A.R. were also supported
by NIH grants 5U01MH106882-05 and P30CA044579 (to the UVA
Cancer Center), respectively.

Compliance with ethical standards

Disclaimer The views expressed are those of the authors and do not
reflect the official policy or position of IBM or the IBM Q team.

Conflict of interest The authors declare that there are no competing
interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

Aaronson S (2015) Read the fine print. Nat Phys 11:291–293
Abraham H, Akhalwaya I. Y, Aleksandrowicz G, Alexander T, Arbel

E, Asfaw A, Azaustre C, Barkoutsos P, Barron G, Bello L, Ben-
Haim Y, Bevenius D, Bishop L. S, Bosch S, Bravyi S, Bucher D,
Cabrera F, Calpin P, Capelluto L, Carballo J, Carrascal G, Chen
A, Chen C.-F, Chen R, Chow J. M, Clauss C, Cross A. J, Cross
A. W, Cross S, Cruz-Benito J, Culver C, Córcoles-Gonzales A. D,
Dague S, Dandachi T. E, Dartiailh M, DavideFrr Davila A. R,
Ding D, Drechsler E, Drew Dumitrescu E, Dumon K, Duran I, El-
Safty K, Eastman E, Eendebak P, Egger D, Everitt M, Fernández
P. M, Ferracin S, Ferrera A. H, Frisch A, Fuhrer A, George
M, Gacon J, Gadi, Gago B. G, Gambetta J. M, Gammanpila A,

QuantumMachine Intelligence (2020) 2: 7Page 24 of 267

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

Garcia L, Garion S, Gomez-Mosquera J, de la Puente González
S, Gould I, Greenberg D, Grinko D, Guan W, Gunnels J. A,
Haide I, Hamamura I, Havlicek V, Hellmers J, Herok Ł, Hillmich
S, Horii H, Howington C, Hu S, Hu W, Imai H, Imamichi T,
Ishizaki K, Iten R, Itoko T, Javadi-Abhari A, Jessica Johns K,
Kachmann T, Kanazawa N, Kang-Bae Karazeev A, Kassebaum
P, King S, Knabberjoe Kovyrshin A, Krishnan V, Krsulich K,
Kus G, LaRose R, Lambert R, Latone J, Lawrence S, Liu D,
Liu P, Maeng Y, Malyshev A, Marecek J, Marques M, Mathews
D, Matsuo A, McClure D. T, McGarry C, McKay D, Meesala
S, Mevissen M, Mezzacapo A, Midha R, Minev Z, Moll N,
Mooring M. D, Morales R, Moran N, Murali P, Müggenburg
J, Nadlinger D, Nannicini G, Nation P, Naveh Y, Neuweiler P,
Ngoueya A, Niroula P, Norlen H, O’Riordan L. J, Ogunbayo
O, Ollitrault P, Oud S, Padilha D, Paik H, Perriello S, Phan A,
Pistoia M, Pozas-iKerstjens A, Prutyanov V, Puzzuoli D, Pérez
J, Quintiii Raymond R, Redondo R. M.-C, Reuter M, Rice J,
Rodrı́guez D. M, Rossmannek M, Ryu M, Sapv T, Sandberg M,
Sathaye N, Schmitt B, Schnabel C, Scholten T. L, Schoute E,
Sertage I. F, Setia K, Shammah N, Shi Y, Silva A, Simonetto A,
Singstock N, Siraichi Y, Sitdikov I, Sivarajah S, Sletfjerding M. B,
Smolin J. A, Soeken M, Sokolov I. O, Steenken D, Stypulkoski
M, Takahashi H, Tavernelli I, Taylor C, Taylour P, Thomas S,
Tillet M, Tod M, de la Torre E, Trabing K, Treinish M, TrishaPe
Turner W, Vaknin Y, Valcarce C. R, Varchon F, Vazquez A. C,
Vogt-Lee D, Vuillot C, Weaver J, Wieczorek R, Wildstrom J. A,
Wille R, Winston E, Woehr J. J, Woerner S, Woo R, Wood
C. J, Wood R, Wood S, Wootton J, Yeralin D, Yu J, Zachow
C, Zdanski L, Zoufal C, azulehner, bcamorrison, brandhsn,
chlorophyll zz, dime10, drholmie, elfrocampeador, faisaldebouni,
fanizzamarco, gruu, kanejess, klinvill, kurarrr, lerongil, ma5x,
merav aharoni, mergify[bot], ordmoj, sethmerkel, strickroman,
sumitpuri, tigerjack, toural, willhbang, yang.luh, yotamvakninibm
(2019) Qiskit: An open-source framework for quantum computing

Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018)
Quantum boltzmann machine. Phys. Rev. X 8:021050

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S
(2017) Quantum machine learning. Nature 549:195. EP–

Buhrman H, Cleve R, Watrous J, de Wolf R (2001) Quantum
fingerprinting. Phys. Rev. Lett. 87:167902

Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson
MF, Smith AC, Kleinman JE, Hyde TM, Weinberger DR,
Bekiranov S, McConnell MJ (2019) Neurons with complex
karyotypes are rare in aged human neocortex. Cell Reports
26(4):825–835.e7

Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini
S, Wossnig L (2018) Quantum machine learning: a classical
perspective. Proc. R. Soc. A 474:20170551

Cortese JA (2018) Loading classical data into a quantum computer
Dudani SA (1976) The distance-weighted k-nearest-neighbor rule.

IEEE Transactions on Systems, Man, and Cybernetics SMC-
6(4):325–327

Dunjko V, Taylor JM, Briegel HJ (2016) Quantum-enhanced machine
learning. Phys. Rev. Lett. 117:130501

Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access
memory. Phys. Rev. Lett. 100:160501

Havlı́cek V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow
JM, Gambetta JM (2019) Supervised learning with quantum-
enhanced feature spaces. Nature 567(7747):209–212

IBM-Q-team (2019a) IBM Q 16 Melbourne backend specification
V1.3.0. https://quantum-computing.ibm.com

IBM-Q-team (2019b) IBM Q 5 Yorktown backend specification
V1.3.0. https://quantum-computing.ibm.com

IBM-Q-team (2019c) IBM Quantum Experience. https://
quantum-computing.ibm.com

Kapoor A, Wiebe N, Svore K (2016) Quantum perceptron models. In:
Advances in Neural Information Processing Systems, pp 3999–
4007

Kaye P (2004) Reversible addition circuit using one ancillary bit with
application to quantum computing

Kieferová M., Wiebe N (2017) Tomography and generative training
with quantum boltzmann machines. Phys. Rev. A 96:062327

lafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y,
Scherer SW, Lee C (2004) Detection of large-scale variation in the
human genome. Nat Genet 36(9):949–951

Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal
component analysis. Nature Physics 10:631. EP –

Low GH, Yoder TJ, Chuang IL (2014) Quantum inference on bayesian
networks. Phys. Rev. A 89:062315

McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T,
Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall
IM, Gage FH (2013) Mosaic copy number variation in human
neurons. Science 342(6158):632–637

McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-
Ciriano I, Erwin JA, Fasching L, Flasch DA, Freed D, Ganz J,
Jaffe AE, Kwan KY, Kwon M, Lodato MA, Mills RE, Paquola
ACM, Rodin RE, Rosenbluh C, Sestan N, Sherman MA, Shin
JH, Song S, Straub RE, Thorpe J, Weinberger DR, Urban AE,
Zhou B, Gage FH, Lehner T, Senthil G, Walsh CA, Chess A,
Courchesne E, Gleeson J. G, Kidd JM, Park PJ, Pevsner J,
Vaccarino FM (2017) Intersection of diverse neuronal genomes
and neuropsychiatric disease: The brain somatic mosaicism
network. Science, 356(6336):eaal1641

Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector
machine for big data classification. Phys. Rev. Lett. 113:130503

Ruan Y, Xue X, Liu H, Tan J, Li X (2017) Quantum algorithm for k-
nearest neighbors classification based on the metric of hamming dis-
tance. International Journal of Theoretical Physics 56(11):3496–3507

Schuld M, Fingerhuth M, Petruccione F (2017) Implementing a
distance-based classifier with a quantum interference circuit. EPL
(Europhysics Letters) 119(6):60002

Schuld M, Killoran N (2019) Quantum machine learning in feature
hilbert spaces. Phys. Rev. Lett. 040504:122

Schuld M, Sinayskiy I, Petruccione F (2014a) Quantum computing
for pattern classification. In: Pham D-N, Park S-B (eds) PRICAI
2014: Trends in Artificial Intelligence, pages 208–220, Cham.
Springer International Publishing

Schuld M, Sinayskiy I, Petruccione F (2014b) Quantum computing
for pattern classification. In: Pham D-N, Park S-B (eds) PRICAI
2014: Trends in Artificial Intelligence, pages 208–220, Cham.
Springer International Publishing

Schuld M, Sinayskiy I, Petruccione F (2015) Simulating a perceptron
on a quantum computer. Phys Lett A 379:660–663

Sisodia M, Shukla A, Pathak A (2017) Experimental realization of
nondestructive discrimination of bell states using a five-qubit
quantum computer. Phys Lett A 381(46):3860–3874

Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are
sufficient to implement the quantum fredkin gate. Phys. Rev. A
53:2855–2856

Spagnolo N, Vitelli C, Sansoni L, Maiorino E, Mataloni P, Sciarrino F,
Brod DJ, Galvão E. F., Crespi A, Ramponi R, Osellame R (2013)
General rules for bosonic bunching in multimode interferometers.
Phys. Rev. Lett. 111:130503

Tacchino F, Macchiavello C, Gerace D, Bajoni D (2019) An
artificial neuron implemented on an actual quantum processor. Npj
Quantum Information 5:26

Trapnell C, Salzberg SL (2009) How to map billions of short reads onto
genomes. Nature biotechnology 27(5):455–457. 19430453, pmid]

Trugenberger CA (2001) Probabilistic quantum memories. Phys. Rev.
Lett. 87:067901

QuantumMachine Intelligence (2020) 2: 7 Page 25 of 26 7

https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com

van den Bos H, Spierings DCJ, Taudt A, Bakker B, Porubský D.,
Falconer E, Novoa C, Halsema N, Kazemier HG, Hoekstra-
Wakker K, Guryev V, den Dunnen WFA, Foijer F, Colomé-
Tatché M., Boddeke HWGM, Lansdorp PM (2016) Single-cell
whole genome sequencing reveals no evidence for common aneuploidy
in normal and alzheimer’s disease neurons. Genome Biol 17(1):116

Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting.
Phys. Rev. Lett. 109:050505

Wiebe N, Granade C (2015) Can small quantum systems learn?
Wiebe N, Kapoor A, Svore K (2014a) Quantum algorithms for nearest-

neighbor methods for supervised and unsupervised learning
Wiebe N, Kapoor A, Svore KM (2014b) Quantum deep learning

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

QuantumMachine Intelligence (2020) 2: 7Page 26 of 267

	Implementation of a Hamming-Distance-Like Genomic Quantum Classifier Using Inner Products
	Abstract
	Introduction
	Results and discussion
	Binary encoding of feature dimensions into multi-qubit states
	The classification metrics
	Metric 1: Active inner product
	Metric 2: Symmetric inner product

	The inner product decision plane
	The inner product circuit
	Five-qubit generic circuit
	Example problem 1: AIP on 2-block genome
	ibmqx2 performance across test state classifiability

	Fourteen-qubit generic circuit
	Example problem 1: AIP on 64-block genome
	Example problem 2: SIP on 64-block genome

	Summary

	Methods
	Hamming distance and inner product equivalence
	SIP
	AIP

	Data-encoding techniques
	Brute force approach
	Binomial series approach

	Optimization techniques
	Swap like-valued bits only in inner product evaluation
	Zero-coefficient exclusion

	References

