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Abstract
One of the ambient effects of production blasting is flyrock. To effectively manage flyrock throw distance in mining, there 
is the necessity to successfully envisage blasting output without sacrificing the hazardous impact of flyrock which may 
result in fatality and operational shutdown. For flyrock throw distance prediction, velocity of detonation (VOD) and charge 
per bank cubic meter (CPBCM) are not usually included. This paper focuses on the use of support vector machine (SVM) 
regression to ascertain the impact of VOD and CPBCM on flyrock throw predictions. The machine learning models were 
linear support vector machine (LSVM), quadratic Gaussian support vector machine (QGSVM), fine Gaussian support vec-
tor machine (FGSVM), medium Gaussian support vector machine (MGSVM), and cubic Gaussian support vector machine 
(CGSVM). The outcome indicates that FGSVM was the most sensitive with a 4% improvement when VOD and CPBCM 
were included. As a result, the LSVM model provides a suitable AI competitive alternative tool for flyrock throw prediction 
in mining operations by incorporating VOD and CPBCM.
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1  Introduction

When explosives are detonated during rock blasting, some 
rocks are forcefully expelled to distant locations from the 
blasting area, commonly known as flyrock. The distance 
that these flyrock fragments travel depends on various fac-
tors associated with rock excavation, some of which can be 
controlled while others cannot. The controllable parameters 
that have an influence on predicting flyrock include factors 
such as the depth of the blast hole, powder factor (explo-
sive charge per unit volume of rock), spacing between blast 
holes, burden (distance between blast hole and rock face), 
diameter of the blast hole, stemming (material used to plug 
the blast hole), type of explosive material used, and sub-
drilling (depth of additional drilling). On the other hand, 
uncontrollable parameters that are beyond the control of the 

blast engineer include rock properties, such as compressive 
strength, joint spacing, and tensile strength [1, 2]. These 
uncontrollable parameters play a significant role but cannot 
be directly manipulated. Several empirical equations have 
been proposed to simulate the occurrence of flyrock, which 
is expected to happen as a result of the blasting operation 
[1–4]. Furthermore, rock mass characteristics exhibit a sig-
nificant role in the fragmented rock upheaval throughout 
blasting [5]. The rock density and some rock mass charac-
teristics have virtually been overlooked in all the empirical 
models [5, 6]. Amini et al. [7] also conducted research to 
predict flyrock throw using a support vector machine (SVM) 
and the following input parameters powder factor (PF), hole 
length (HL), subdrill (SD), spacing (S), hole diameter (D), 
burden (B), and stemming length (ST) without considering 
the velocity of detonation (VOD) and charge per bank cubic 
meter (CPBCM).

As the explosive moves through the explosive column, its 
potency is taken into consideration by the VOD. The cost 
component per bank cubic meter of blast undertaking is 
taken into account by the CPBCM. The VOD of explosives 
and CPBCM are not usually considered in the flyrock throw 
distance prediction. Combining the rarely used input param-
eter and structural risk minimization (SRM) of SVMs seems 
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novel because it incorporates the concept of finding an upper 
limit on the generalization error [8]. SVM also deals with 
a convex quadratic optimization problem, which means it 
uses the Karush–Kuhn–Tucker (KKT) principles to find the 
global optimum. This explains why SVM outperforms other 
algorithms in so many fields [8].

This paper, therefore, seeks to explore the predictive capa-
bility of SVM with input parameters such as cost charged 
per bank cubic meter (CPBCM) and velocity of detonation 
(VOD), along with traditional geometric parameters of frag-
mentation and flyrock throw distance. The effectiveness of 
SVM for predicting flyrock throw distance will help attain 
innovation and infrastructure protection as well as sustain-
able cities and communities.

1.1 � Overview of Flyrock Throw Distance

Currently, among the recent efficient tools for predicting 
these flyrock outcomes were hybrid dimensional analysis 
fuzzy inference system (H-DAFIS), artificial neural network 
(ANN), biogeography-based optimization (BBO), gene 
expression programming (GEP), multiple linear regression 

(MLR), support vector machine (SVM), fuzzy interface 
system (FIS), fuzzy rock engineering system (FRES), and 
extreme learning machine (ELM) [1, 9–12]. Table 1 shows 
the previous works on AI techniques for fragmentation and 
flyrock throw distance predictions.

Raina et al. [33] determined the pressure-time record of 
blasts by exploiting a pressure probe, which has been verified 
and proven. On the other hand, because of these simplifica-
tions, the technique proposed pressure probe has proven to be 
a more efficient method for predicting flyrock distance. Using 
this method, which gauges pressure-time data, the flyrock dis-
tance and blast danger zone can be estimated around mines 
that carry out blasting operations [33]. The rock mass itself 
responds to dynamic fracturing via the processes of dynami-
cally moving cracks and crack growth under dynamic loading 
conditions. Tests are limited in number, but they are used to 
determine whether flyrock is present and to find out how much 
pressure is involved. While the aforementioned tests are quite 
advanced and are meant to demonstrate a single bench with 
similar lithology, they are still useful in conveying the basics 
of mineral testing. Not only does this experiment cost a lot, 
but it is impossible to implement on a large scale for flyrocks, 
because pressure probes are too expensive [33].

Table 1   Previous works on AI 
techniques for fragmentation 
and flyrock throw distance 
predictions (modified after 
[13–15])

D hole diameter, B burden, S spacing, HD hole depth, Sd Subdrill, PF powder factor, ST stemming,  H 
bench height, VOD velocity of detonation, Q explosive charge, BI blastability index, RMR rock mass rat-
ing, ql linear concentration of charges, q specific charge, σc unconfined compressive strength, J Joint den-
sity, Rn Schmidt hammer rebound number, SD specific drilling, RD rock density, N number of rows, W/N 
charge in each delay, MC maximum charge per delay, CPD charge per delay, ICA imperialist competitive 
algorithm, ANN artificial neural network, SVR/M support vector machine/regression, FIS fuzzy infer-
ence system, PSO particle swarm optimization, RQD rock quality designation, GSI Geological strength 
index, GA-ANN genetic algorithm, MLR multiple linear regression, ANFIS Adaptive Neuro-Fuzzy Infer-
ence System, TOPSIS Technique for Order of Preference by Similarity to Ideal Solution, MADM Multi-
attribute decision making, ACO ant colony optimization

References Method Inputs Dataset R2

[15] ANN B, GSI, S, HL, SD, ST, W/N, PF 200 0.93
[16] SVM HL, S, B, SD, ST, PF 187 0.95
 [17] ANN HD, RD, S, B, ST, PF, SD, N, C 250 0.98
[18] ANN B, D, C, HD, S 310 0.98
[19] GA-ANN SD, PF, HD, B, S, ST, RMR, D, C 195 0.89
[20] AHP-TOPSIS, MADM ST, C, SD, HD, PF, BS, D, B 192 0.98
[21] ANN, SVM SD, S, D, B, ST PF, HL 245 0.92, 0.97
[22] PSO-ANN HD, SD, S, N, ST, PF, B, RD, C, D 44 0.94
[23] ANFIS, ANN BS, C, PF, ST 166 0.83, 0.98
[24] ANFIS-ANN PF, C 232 0.92, 0.98
[25] ANN-PSO S, N, J, B, ST, D, L, C, PF, RD 44 0.93
[26] ANN N, C, SD, B, S, RD, HD, ST, PF 250 0.98
[27] FIS S, B, HD, SD, PF, RD, ST, C 490 0.98
[28] ANN C, RD, N, B/S, HD, ST, PF, SD 39 0.97
[29] FIS, ANN S, HL, ST, B, PF, Q 230 0.96, 0.94
[30] ICA-ANN PF, BS, ST, C, Rn, HD, RD, 113 0.83
[31] ANN q1 q B, ST, σc RQD 95 0.98
[32] ANN-ACO B, S, T, H, PF 97 0.94
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Additionally, Sawmliana et al. [34] tried to replicate the 
effect of a similar blast in the mines that caused the flyrock 
incident. A digital video camera was used to record all the 
blasting trials. Based on the replicated results, the burden 
relief success rate was at least 80% with adequate delay 
recesses for the blasted rock movement. If various flight rock 
prediction models are employed, the maximum possible trave-
ling distance for flinging fragments is 227 m. It was observed 
that the only upward throws of the flyrock happened to be 
from about 70 m in elevation in the trial explosion. Since it 
was hard to discover the actual cause of the flyrock outbreak, 
it must have been difficult to infer. However, Sawmliana et al. 
[34] after their extensive investigation concluded that it is 
highly possible that the source of flying rocks traveling a dis-
tance of 280 m could be a weak zone in the rock strata.

Along this line of reasoning, Hasanipanah et al. [35] 
researched the Ulu Tiram Quarry in Malaysia where risk 
assessment and the prediction of flyrock were envisaged. It 
was realized that in order to tackle the first objective of risk 
associated with flyrock, the fuzzy rock engineering system 
(FRES) framework needs to be applied. The proposed FRES 
thoroughly tested parameters that influence flyrock, which 
can help determine future decisions when situations are 
ambiguous because of its ability to handle multiple inputs 
and scenarios. Flyrock’s risk was evaluated with 11 different 
parameters, and the proposed FRES could take into account 

these interactions. The parameters are burden (B), powder 
factor (PF), hole depth to burden ratio (H/B), spacing to bur-
den ratio (S/B), maximum charge per delay (MC), stemming 
and burden ratio (St/B), burden, diameter ratio (B/D), blasta-
bility index (BI), rock mass rating (RMR), and hole diameter 
(D) and VOD parameters. The most sensitive parameters on 
the cause-and-effect diagram (C + E or C − E) were PF, B, 
and H/B, which possess the highest values of C + E (interac-
tive intensity). The RMR, with the maximum C – E, is the 
dominant system factor, and the system factor with the low-
est C – E is the MC. Based on the findings, flyrock risk was 
found to be moderate to high at Ulu Tiram Quarry. Thus, it 
was recommended that using a controlled blasting method 
at Ulu Tiram Quarry is of the essence. Genetic algorithm 
(GA) was also employed to simulate flyrock, and it was dis-
covered that the GA-based algorithm provided more precise 
predictions than the particle swam optimization (PSO) and 
imperialist competitive algorithm (ICA) constructed models.

From the works of previous authors, the most common 
parameters for flyrock throw prediction are explosives spe-
cific gravity (SGe), hole diameter (D), burden (B), spac-
ing (S), hole depth (HD), subdrill (SD), powder factor (PF), 
stemming (ST), and explosive charge (Q). A review of the 
various AI techniques, their authors, the input used, the total 
datasets, and the coefficient of determination achieved for 
flyrock throw prediction is illustrated in Table 1.

Fig. 1   Location of gold fields 
Ghana Damang mine [36]

Study 
Area
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2 � Materials and Methods

Gold Fields Ghana Limited Damang (GFGLD) mine 
is located in the southwestern part of Ghana, which is 
approximately 300 km away from the capital, Accra, by 
road. GFGLD mine is located at a latitude of 5° 11′ N and 
longitude of 1° 57′ W [36–38] (Fig. 1). To the north of and 
connected to the Tarkwa concession is the Damang com-
mercial enterprise, which is found near the town.

2.1 � Data Collection

Data was collected for drill and blast parameters and was 
used to predict flyrock. The whole data set was 2629. The 
input parameters were summarized in Table 2: explosives 
specific gravity, hole diameter, burden, spacing, hole depth, 
subdrill, powder factor, rate charged per bank cubic meter, 
stemming, velocity of detonation, VOD, and explosive charge 
while the output was flyrock. This secondary data was col-
lected over 2 years spanning April 2018 to March 2020.

The dataset was analyzed in Matrix Laboratory (MAT-
LAB) software, and the corresponding results are also indi-
cated in Table 2. The collected data also included the geo-
logical condition of the operating mine (see Fig. 2).

Figure 2 shows the description of the rock formation 
as good rock mass with a rating between 70 and 90 (color 
coded as green), fair rock mass with a rating of 50–70 (color 
coded yellow), poor rock mass with a rating of between 25 
and 50 (color coded brown), and very poor rock mass with a 
rating of less than 25 (color coded red). The following drill 
patterns used for the various domains are designated as fol-
lows 3.5 m by 3.5 m for (phyllites and diorites), 3.7 m by 4.3 
m (all waste zones), and 3.8 m by 3.8 m (huni sandstones) all 
at depths of 9 m and 6 m as and when needed.

The modeling was carried out using machine learning 
models in MATLAB and using a Hewlett-Packard (HP) 

laptop with Intel® Core™ i7. The predictive accuracy of 
the various spawns of SVM was discovered, and the best-
performing posterities were selected.

2.2 � Methods

Over the years, a series of empirical methods have been 
developed and used by several researchers [1, 5, 6, 39–44]. 
It was realized that the predictive performance of empirical 
models always trails behind AI models [6]. Among the AI 
techniques are support vector machines (SVM). SVM has 
proven its robustness in the field of engineering predictions. 
The standard SVM and least square support vector machines 
were examined to test their predictive capability using large 
datasets and input parameters seldom used for flyrock throw 
distance prediction.

2.3 � Support Vector Machine

A support vector machine (SVM) is a sparse technique, 
like all other nonparametric methods [45]. SVM is a 
sorting technique built on arithmetical knowledge and the 
Vapnik–Chervonenkis (VC) dimensional models [46]. The 
SVM is a set of interrelated controlled learning methods 
that process data and extricate patterns. It is used for 
classification and regression studies [47]. In contrast to 
a neural network, which achieves only a local minimum, 
SVR introduces a global optimization by applying a 
methodology that eliminates structural risk [48]. The 
rudimentary code is fleetingly presented as, for any given 
sample sets (xi, yi), 1 ≤ i ≤ Tn as training samples, where 
Tn is the entire number of vectors. Training vectors xi ∈ 
(Rn) are the random number/(contribution vectors), and 
Dx is the dimension of the input space. yi denotes the 
corresponding yield of xi, yi = ± 1, which is designated as 
precipitation occurrence or not here.

Table 2   Input parameters

Parameter Symbol Maximum Minimum Average Average deviation Standard deviation

Subdrill (m) SD 1.20 0.30 0.93 0.19 0.21
Explosive gravity Sg 165.00 115.00 123.24 6.99 9.84
Hole depth (m) HD 18.00 3.00 6.97 1.48 1.65
Stemming length (m) St 4.13 0.00 2.99 0.26 0.36
Hole diameter (mm) D 165.00 115.00 123.24 6.99 9.84
Powder factor (kg/m3) PF 1.90 0.28 0.71 0.45 0.31
Spacing (m) S 5.00 2.50 3.87 0.25 0.34
Burden (m) B 5.00 2.50 3.72 0.29 0.36
Explosive charge (kg) Q 370.76 46.26 70.11 27.53 31.28
Velocity of detonation (m/s) VOD 4000.00 2900.00 3443.12 279.29 322.34
Cost per bank cubic meter ($/BCM) CPBCM 2.70 0.15 1.68 0.18 0.25
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2.3.1 � Variants of Support Vector Machine

The parting hyperplane is represented as Ψ* x + γ = 0, 
where (*) is the inner product. w is the weight vector, and 
b represents the bias term [49]. Equation (1) represents the 
classification hyperplane. Any of the training samples that 
fall on the hyperplane form the equal sign of Eq. (1), called 
the support vector

For better optimization of the range or to take full advan-
tage of the range, one only needs to maximize ‖ Ψ ‖ −1, 
which is equivalent to minimizing 1

2
 ‖ Ψ ‖ 2. The rudimentary 

kind of SVM is as revealed in expression (2):

2.3.2 � Least Squares Support Vector Machines

The least squares support vector machine (LS-SVM) was 
spearheaded by An et al. [50]. Furthermore, these techniques 
have been efficaciously applied to numerous global areas 

(1)(� ∗x + �) ≥ 0

of research. Finally, while the less popular LS-SVM is not 
quite as widely used as the standard SVM, in a broad range 
of benchmark information sets, LS-SVM and standard SVM 
accomplish about the same. A hyperparameter (i.e., kernel 
parameter or regularization parameter) is used in the design 
of LS-SVM models.

subject to yi (Ψ* x +γ ) − 1 ≥ 0,where i = 1, 2, · · ·, Tn with 
reference to Eq. (2), a hyperplane can be obtained as w · xi 
+ b = 0 with the largest margin. Considering the equality 
constraints in Eq. (2), they can be unconstrained by apply-
ing the Lagrangian relation, and this is done by introducing 
the soft margin, to make a soft margin adapt to noisy data 
if the case is undivided, leading to Eq. (3):

l0/1 is the 0/1 loss function.

(2)Min
�
1

2
‖�‖2

�

(3)Min
�
1

2
‖�‖2

�
− C

�Tn

i=1
lo
�
yi(Ψ ∗ x + γ) − 1

�

Fig. 2   Pit lithology domains 
using rock mass rating (RMR)
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C is a constant bigger than 0, and when C is infinite, 
the imposition of the constraint that all samples meet the 
requirements is engaged. Otherwise, a room is created for 
samples that do not meet the requirements to be used. The 
two main problems here are the maximization of the objec-
tive function and the writing of a quadratic program, both of 
which must be addressed to solve the problem. If an equation 
is solvable, then Eq. (4) is arrived at

Subject to

i = 1,2,……Tn
Vapnik [51] and Du et  al. [49] described this as an 

extremum tricky problem of a quadratic function having 
inequality variables that present a unique solution. Ai is a 
Lagrange multiplier for each training sample, and the sample 
is the support vector for which ai in Eq. (4) = 0, overlay on 
one of the two hyperplanes:

The code of the Karush–Kuhn–Tucker (KKT) state indi-
cates that the optimization problem requirement needs to 
satisfy Eqs. (5) and (6) when dealing with the nonlinear 
SVM problem. The SVM presents a kernel function to ena-
ble easy plotting of the data and transforms the data into a 
high-dimensional space [49, 51]:

where the KKT(xi, xj) is the kernel function, KKT(xi, xj) = 
ϕ(xi) · ϕ(xj).

Once the training algorithm gives the expression ϕ(xi) · 
ϕ(xj), we can use the K(xi, xj) in its place.

The parameter is identical to Eq. (7), and 0 ≤ αi ≤ C. 
SVM is grounded upon the learning of the kernel. The 
kernel function is a crucial component of the algorithm. 
When choosing a kernel function, a crucial location needs 
to be selected, and this has a direct impact on the model’s 
generalization capabilities [46]. Many kernel functions, 
including the RBF function, are used often (8). An ace, 
simple, and easy-to-use kernel function that helps the 
RBF’s nonlinearity issues is the RBF radial basis function 
(RBF RBF) [50].

(4)maxα

∑Tn

i=1
� −

1

2

∑Tn

i=1

∑Tn

j=1
yiyj�i�j

(
xiyj

)

∑Tn

i=1
�iyi = 0

0 ≤ � ≤ C

(5)(� ∗x) + � = +1;

(6)(� ∗x) + � = −1

(7)maxα

∑Tn

i=1
� −

1

2

∑Tn

i=1

∑Tn

j=1
yiyj�i�jKKT

(
xixj

)

2.3.3 � Gaussian Support Vector Machine

Until now, the only functions used by the kernel are as fol-
lows: fractional Brownian motion, kernel polynomial, kernel 
function, and sigmoid kernel [52]. No matter the situation in 
low-dimensional cases or in high-dimensional cases, small 
sample numbers, or significant sample numbers, the Gauss-
ian kernel function is applied in all three of these kernel 
functions, a broader area of convergence for the Gaussian 
kernel and a better classification. According to the funda-
mental theorem of inner products, which asserts that inner 
products are essentially equivalent to feature space, the ker-
nel function is well defined as the inner products of feature 
space. In essence, dot products are interpreted as how closely 
two features are located to each other in feature space. The 
level of similar degree differs in positive proportion to the 
worth of K(xi, x). In model space, Euclidean distance d(x,y) 
Z(xi − yi)2 (i = l, 2, ..., n) is frequently used to define the 
similarity in degree between sample x and y, where n is the 
dimension of sample in Eq. (8) [53].

where g represents the kernel constraint to quantify the 
breadth of the kernel function in RBF.

Suppose unfitting occurs with g, the results of the process 
may outfit or overfit the training data. This function is vigor-
ous and can account for the nonlinear decision border [49].

The Gaussian kernel is based on the notion that similar 
points in the feature space are close to each other and only 
depend on the Euclidean distance between x and xi (in terms 
of Euclidean distance). In many circumstances, this assump-
tion is fair; hence, the Gaussian kernel is frequently utilized 
in practice. For a Gaussian kernel: K(x, xi) := e−g∥x−xi∥2 (for 
a given parameter γ > 0) it works well [53].

A new constraint is enforced on the optimization prob-
lem: the hyperplane must be located far away from the 
classes. We use the term Gaussian kernel because it services 
the optimization phase to discover the hyperplane that is 
situated at the greatest distance from the classes while still 
being equidistant from them. Training needs to take place on 
a subset of the overall population. Prediction, on the other 
hand, requires making predictions on things that have not 
yet occurred [45].

Awad and Khanna [45] stated that structural risk mini-
mization (SRM) is used in conjunction with structural 
optimization minimization (SOM) to obtain the two solu-
tions and convexity requirements. The SRM is an inductive 
code that, from a finite training dataset, selects a learning 
model. The SRM model suggests a trade-off between the VC 
extents, which is to say the space required, and the deviation 
of empirical measurements. In convex optimization, with 

(8)K
(
xixj

)
= exp

{
−gPxj − xiP

2
}
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m constraints and n variables to be maximized, SRM has 
developed a novel method to solve the problem in polyno-
mial time. The SRM sequenced models are placed in order 
of increasing complexity [45]. Figure 3 shows the complete 
model error variation with the involvedness index of any 
machine learning model.

Figure 3 illustrates complex models, as evidenced by the 
elevated error at (B1). Since a basic model does not describe 
entirely the complexity of the data, a model underfitting the 
data occurs, which results in a high error and a maximum 

error (B3). (B3) is overfitting, as described in Fig. 3, and 
occurs in the early stages of training when the structure begins 
adapting its learning model to the training data, resulting in 
overfitting that reduces the training error value while simul-
taneously increasing the model validation coefficient. B2 has 
the least amount of error; hence, the best result is obtained 
at the intersection of the B2 and the test error. When this is 
achieved, then the best model is ready to be implemented [54].

During the modeling of support vector machines for fly-
rock throw distance prediction, the procedures undertaken 
are illustrated in Fig. 4. The process started with the col-
lection of raw secondary data. After the data collection, 
data processing was carried out by cleaning data and split-
ting data. The processed data then goes through the SVM 
model for training, fine-tuning, validation, and testing. If 
the desired result of prediction was obtained, then the pro-
cess was truncated, if not, the whole process was repeated.

The empirical equations for flyrock throw prediction 
are as follows:

Chiapetta (1983) proposed Eqs. (9) to (11) for the dis-
tance traveled by the rock from the blast horizontally, the 
initial velocity of the flyrock at an angle, and the size of 
the projectile flyrock respectively [41].

where

FR1	� is the distance traveled (m) by the rock along a hori-
zontal line at the original elevation of the rock on the 
face,

V0	� is the initial velocity of the flyrock and θ is the angle 
of departure with the horizontal,

g	� is the gravitational constant,

d	� is hole diameter in inches,

Tb	� is the size of rock fragment (m), and

𝛒r	� is the density of rock in g/cm3.

An empirical model was established by Lundborg et al. 
(1975) based on hole and rock diameters as follows [43]:

(9)FR
1
= VO

(
2 sin 2�

g

)

(10)VO =

(
10D(2600)

Tb × �r

)

(11)Tb = 0.1
(
D

2

3

)

Test error

Best 
modal overfi�ng

underfi�ng

Error

h (Model index)

Training error/Empirical 
error

 B2
B1 B3

VC(confidence term)

Fig. 3   Connection between error trends and model index

Fig. 4   Flow chart of modeling



614	 Mining, Metallurgy & Exploration (2024) 41:607–618

where

FRm	� is the maximum rock projection in meters,

D	� is the hole diameter in inches, and

Tb	� is the size of rock fragments in meters.

Gupta (1980) suggested an empirical equation to predict 
flyrock distance based on stemming length and burden [44].

where

L	� is the ratio of stemming length to burden and

FR	� is the distance traveled by the rocks in meters.

According to McKenzie (2018), the minimum stemming 
length can be estimated using Eqs. (16) to (18) [55].

Flyrock range with a safety factor of 1 is given as:

Scaled depth of burial (SDOB)

(12)FRm = 260

(
D

25

) 2

3

(13)Tb = 0.1(D)
2

3

(14)L = 155.2(d)−1.37

(15)FR =
(
155.2

L

) 1∕ 1.37

(16)

Stmin = 0.03 ×

(
m × �e

)0.333
× D1.31

(
Rangemax

FoS

) − 0.0005 × m × D

(17)FR =

(
m × �e

)0.333
× D1.31

St − 0.0005 × m × D

where

St	� is the stemming length,

m	� is the explosive charge length,

D	� is the blast hole diameter,

𝛒e	� is the explosive density,

FoS	� is the factor of safety, and

RangeMax	� is the maximum flyrock range.

3 � Results and Discussion

The study and analysis clearly demonstrate the significant 
role of artificial intelligence in blasting operations and their 
environmental consequences. In light of this, the utilization 
of support vector machines (SVMs), which is one form of 
AI, was investigated.

In order to develop effective models, various types of 
SVMs were examined, including linear, quadratic, cubic, fine 
Gaussian, medium Gaussian, and coarse Gaussian. For all 
these models, automatic kernel functions and kernel scales 
were employed. The fine Gaussian, medium Gaussian, and 
coarse Gaussian SVMs utilized optimal kernel scales of 0.79, 

(18)SDOB =
St + 0.0005 × m × D

0.00923 ×
(
m × D × �e

)0.333

Table 3   Training results

SVM model  
(testing without VOD and CPBCM)

R2 RMSE

MGSVM 0.82 1.32
CGSVM 0.96 0.65
QGSVM 0.99 6.50
LSVM 1.00 0.25
FGSVM 0.40 5.75

Table 4   Testing results

SVM model  
(testing with VOD and CPBCM)

R2 RMSE

MGSVM 0.96 0.33
CGSVM 0.99 0.35
QGSVM 1.00 0.13
LSVM 1.00 0.05
FGSVM 0.51 1.06

Table 5   Impact of VOD and 
CPBCM on overall results

AI techniques R2% RMSE%

MGSVM 14.00 75.00
CGSVM 3.00 65.00
QGSVM 1.00 98.00
LSVM 0.00 80.00
FGSVM 39.5 94.00
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Fig. 5   a–e Parity plots for the SVM models
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3.2, and 13, respectively. The training and testing times ranged 
from 3.66 s for the fine Gaussian SVM to a maximum of 
104.24 s for the coarse Gaussian SVM. The number of obser-
vations processed per second varied from 62,000 observations 
for the medium Gaussian SVM to 150,000 observations for 
the linear Gaussian SVM. Throughout the analysis, automatic 
box constant, epsilon, and standardization were enabled for 
all SVMs. The outcomes of this analysis are presented in 
Tables 3 and 4, respectively.

Following this analysis, an investigation was conducted 
to determine the influence of the velocity of detonation 
(VOD) of the explosive and the charge per bank cubic meter 
(CPBCM) of the blasted material on the model development. 
Please refer to Table 5 for the results of this investigation.

According to the data presented in Table 3, it is evident 
that the fine Gaussian SVM (FGSVM) exhibits the lowest R2 
value in both scenarios. Conversely, the linear SVM (LSVM) 
and quadratic SVM (QGSVM) show the highest R2 values. In 
terms of root-mean-square error (RMSE) values, the FGSVM 
has the highest value, while the LSVM has the lowest value.

Furthermore, the influence of VOD and CPBCM were 
examined, and their impacts are in Table 5. A positive value 
indicates the sensitivity of the included parameter to the 
model, while a negative indicates otherwise. Linear sup-
port vector machine had a 4% and 80% increase in R2 and 
RMSE values. The fine Gaussian support vector machine 
had a − 54% decrease in R2 value, but the RMSE value 
improved by 94%. An improvement of 14% was observed 
in the medium Gaussian support vector machine but a 75% 
improvement in the R2 and RMSE values, respectively. The 
coarse Gaussian support vector machine improved R2 and 
RMSE by 3% and 65%, respectively. The respective parity 
plots for the SVM models are illustrated in Fig. 5a–e. During 
the training and testing stages, 10-fold cross-validation was 
engaged. The corresponding plots are indicated in Fig. 5. 
The predicted value is on the vertical axis, and the true 
response is on the horizontal axis.

From the parity plot, the fine Gaussian support vec-
tor machine is indicated in Fig.  5a. Figure  5b repre-
sents the linear support vector machine, Fig. 5c is the 
coarse Gaussian support vector machine, Fig. 5d is the 
medium Gaussian support vector machine, and Fig. 5e 
represents the quadratic Gaussian support vector machine 
respectively.

The results from the SVM models were then compared 
with the empirical models as shown in Table 6. Based on 
Eqs. (9) to (18), empirical predictions were made. Afterward, 
the result was then compared with the actual flyrock throw 
distance determined using ProAnalyst software. The R2 and 
RMSE values were then determined as shown in Table 6.

4 � Conclusions

The predictive capability of linear, quadratic, fine Gaussian, 
medium Gaussian, and coarse Gaussian quadratic support 
vector machines (LS-SVM, QGSVM FGSVM, MGSVM, 
and CGSV) have been examined.

The best-examined model for flyrock throw distance 
prediction is the linear support vector machine with R2 and 
RMSE values of 1.00 and 0.05, respectively. The achieved 
result was better than those produced by empirical predictions.

The significant contribution offered by the inclusion of 
VOD and CPBCM was determined.

The magnitudes of improvement in R2 an RMSE for the LS-
SVM, FGSVM, MGSVM, CGSVM, and QGSVM are 0.00% 
and 80.00%, 39.5.00% and 94.00%, 14.00% and 75.00%, 
3.00% and 65.00%, and then 1.00% and 98.00% respectively.

This work is limited to the Ghanaian mining environment 
but can be replicated elsewhere provided, and collected data 
has been trained and tested in the model applied.
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Table 6   Comparisons of statistics of empirical models
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(1983)
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(1975)

R2 0.87 0.82 0.92 0.69
RMSE 142.18 94.07 65.92 38.40
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