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Abstract
The basis for the selection of the ultimate pit for an open pit mining operation is generally opaque. Some form of value-based 
analysis will generally guide the final decision; however, the value will often gradually plateau whilst the ultimate pit size 
continues to increase. There is no established framework to guide specialists in the selection of the ultimate pit, with such 
decisions regularly made on a somewhat arbitrary basis. The key component that is missing from the analyses typically used 
to select the size of the ultimate pit is risk. Once risk is quantified within the analysis framework, the decision-making range 
is significantly reduced, and the process for selecting the ultimate pit becomes more consistent, replicable, and defensible. 
This paper provides an approach to including risk in the process used to select the ultimate pit.
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1  Introduction

Pit optimization has become a standard component of the 
planning process for open pit mining assets since the semi-
nal work of Lerchs and Grossmann [1] nearly 60 years ago. 
Numerous incremental improvements to the algorithms and 
processes have been developed; however, two key issues 
persistently remain:

○	 Pit optimization remains “loosely coupled” to subse-
quent planning processes.

○	 Risk is generally not adequately quantified.

These two points are clearly interrelated.
Pit optimization is considered in this paper as being 

loosely coupled with subsequent planning processes for 
several reasons, including:

○	 Significant mine design work is required to transition 
from nested shells (or similar) to an operable mining 
sequence.

○	 Pit optimization algorithms typically only consider a sub-
set of the complete suite of parameters and constraints.

○	 The structure of the pit optimization algorithm (referred 
to as maximum flow in optimization theory [2] and can 
also be modelled as a maximum graph closure problem) 
presents limited functionality to consider time, therefore 
impacting on the assessment of options including blend-
ing, stockpiling, and discounted value calculations.

The second point, the issue of risk quantification in the pit 
optimization process, will be explored in this paper.

For clarity, the ultimate pit is being considered as the 
excavated landform that will be used as the basis for ongo-
ing planning and decision-making at a given point in time. 
It is generally, although not always, able to be revised or 
adjusted as operating conditions change or deposit knowl-
edge evolves; however, each planning process or planning 
cycle will almost always be based on one selected ultimate 
pit for all subsequent design and scheduling developed 
within that program of work. Whilst alternative ultimate pits 
can be used for differing purposes such as Ore Resource 
statements, the ultimate pit for detailed design and valuation 
will almost always be based on one selection.

Importantly, a single ultimate pit is usually selected 
for use as the basis for decision-making to support any 
capital investment.

Certain decisions in the mine life cycle will have endur-
ing implications, such as those made in the initial assessment 
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of a project including the sizing of processing infrastructure, 
size and location of waste facilities, and environmental man-
agement strategies. Again, these can be changed, albeit with 
varying degrees of complexity depending on the specifics of 
the operation.

In summary, there are certain investment and planning 
decisions that will be the basis for less revocable decision-
making, and at these times, a more detailed and thorough 
consideration of the ultimate pit is being advocated as lead-
ing practice.

I propose that the consideration of risk in pit optimi-
zation should initially be considered as a function of the 
selection of the ultimate pit shell. This is the most signifi-
cant risk-impacting output that passes from the pit optimi-
zation process to the subsequent planning processes, par-
ticularly for greenfield projects. Guidance for stage designs 
through nested shells also forms an important output of 
the standard pit optimization process, with an impact on 
potential financial value generation more so than changing 
the risk profile in the way that the selection of the ultimate 
pit does. The ultimate pit selection will directly impact a 
range of factors (expanded below) including the sizing of 
the processing infrastructure, the quantity of waste material 
required for management and rehabilitation, and the life of 
the asset. These factors drive the scale of capital required, 
the capital efficiency, and therefore the scale of the impact 
of any variations in the parameters used as the basis for the 
underlying planning decisions. The selection of staging pits 
will impact the way that the scheduled reserve material is 
available for processing thereby impacting revenue genera-
tion, confidence/risk of maintaining the desired production 
profile, and risks relating to commodity price fluctuations 
as a function of the grade of ore available. These risks 
can be more readily managed through ongoing planning 
processes.

The significance of the selection of the ultimate pit has 
impacts on strategy even prior to any specific quantification 
of risk, considering the following:

○	 Operating life or duration
○	 The size of the stated Ore Reserve
○	 Total quantity of commodity extracted and therefore 

revenue generation potential
○	 Operation scale or throughput rate selected
○	 Quantity of waste rock produced
○	 Quantity of tailings produced
○	 The exposure of the business to adverse commodity 

price movements
○	 Resource to Reserve conversion

The ultimate pit is therefore pivotal in informing sub-
sequent strategic planning decisions and study programs, 
including the following:

○	 Concentrator or plant throughput capacities
○	 Required annual material movements
○	 Capital investment (and potentially therefore operating 

unit costs)
○	 Infrastructure sizing
○	 Design of and size of waste storage solutions
○	 Detailed stage designs including the number of stages
○	 Relocation planning
○	 Equipment selection
○	 Ground and surface water modelling
○	 Environmental approvals
○	 Closure planning
○	 Post-mining land use options

Clearly this list is not intended to be exhaustive, but rather 
serves to illustrate the significance of the decisions that are 
impacted by the selection of the ultimate pit. Intuitively, 
the quantification of any risk changing as a function of the 
ultimate pit size should impact on these decisions. Nega-
tive outcomes of such decisions being incorrectly made are 
not widely publicized; however, they certainly do occur and 
will often be explained as being caused by adverse price 
movements. To provide one example, Evans [3] outlines the 
termination of a significant mine expansion.

Whilst it is possible to revise the ultimate pit selection, 
and it is in fact good practice for the strategic planning pro-
cess to revisit the pit optimization during each planning 
cycle, some decisions cannot be incrementally refined. This 
would include any of the more significant strategic planning 
decisions such as the design, sizing or location of the waste 
storage or tailings storage facilities, the sizing of production 
infrastructure, and the application for mining leases that are 
based on an operation of a certain footprint and scale.

Such decisions as outlined in the previous paragraph 
should be supported by a level of planning and analysis that 
gives the operation the maximum potential for success under 
the widest range of potential future operating conditions. 
The consideration of risk is more critical where there is a 
wider range of options to be considered, resulting in greater 
potential for strategy to be varied to subsequently impact on 
risk and therefore on the resulting value to stakeholders. If 
the risk varies as a function of a strategy, or a key variable 
or decision, then using the same discount rate will not sup-
port the understanding or quantification of the impact on the 
risk. If the impact on the outcomes for each scenario can be 
quantified, then a risk-based decision can be made.

2 � Industry and Literature Review

The incorporation of risk in the pit optimization process is 
considered in the literature. Whittle and Rozman [4] state 
that “risk is notoriously hard to quantify, and it is sometimes 
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better to use a discount rate which covers only economic fac-
tors and to present alternatives graphically for direct consid-
eration by management”. This aligns with what would often 
be seen as current leading practice; however, it is not always 
the case that the second step is included, therefore leaving 
risk considered only via the discount rate.

In considering risk in the pit optimization process, Rich-
mond [5] utilizes a local search heuristic algorithm to com-
pute an efficiency set or frontier to consider the relationship 
between value and risk as a function of ore loss, dilution, and 
geological simulations. Richmond [5] has identified a similar 
problem to this paper but approached it in a different way. 
The method of analysis is powerful and well designed; how-
ever, for the application of this paper, the level of detail in 
the schedule algorithm would be the primary concern. Fur-
thermore, the basis for selection of the ultimate pit incorpo-
rating the quantification of risk is not specifically addressed.

In further considering risk in pit optimization, Richmond 
[6] utilizes a heuristic application of a floating cone algorithm 
to incorporate variability in inputs from geology, commodity 
price, and cost profiles and start timeframe to demonstrate 
the potential impacts in pit selection. He concludes that the 
“uncertainty in future metal prices and operating costs cannot 
be adequately captured in open pit optimization by simply 
post-processing a series of nested pit closures with constant 
values”. This is demonstrated using an example. The process 
utilizes a simple scheduling approach, with the recommen-
dation that “further experimentation should be undertaken 
to determine whether this observation holds for more com-
plex mining schedule algorithms”. Whilst this paper presents 
clearly the impacts of uncertainty on the NPV as a function 

of ultimate pit size, the basis for selecting the ultimate pit 
incorporating any risk quantification is again not specifically 
addressed.

There is no consensus as to what constitutes current lead-
ing practice for the selection of the ultimate pit. The process 
used often relies primarily on the “experience” of the person 
involved and therefore remains subject to errors and biases. 
In this instance, the errors can be basic modelling errors or 
errors made by an operator who believed they were making 
the correct decisions. These “errors” in ultimate pit selection 
potentially exist in many operating mines.

Many authors discuss the arbitrary nature of ultimate pit 
selection including [7–9] amongst numerous others. Hanson 
and Hodson [10] go so far as to say of ultimate pit selection 
that it is “usually by use of guesswork, cleverly disguised as 
experience or rules-of thumb”.

The main conclusion is that the processes used for the 
selection of the ultimate pit are lacking. Empirically, a range 
of revenue factors from 0.3 to 1.35 have been observed for 
ultimate pit selection, and almost always these were used 
without a robust or defensible basis.

Frequently, the selection of the ultimate pit will be 
based on an interpretation from a graph such as Fig. 1. 
This may provide some useful context and guidance to 
planning teams, but it hardly forms a defensible and audit-
able basis for the making of a decision with wide-ranging 
implications. Decisions made using charts such as Fig. 1 
are often based on visual interpretations, for example, the 
ultimate pit or a staging pit could be selected based on the 
step in the size of the pit shells highlighted by the orange 
circular shape.

Fig. 1   Example pit optimization 
chart
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Visual interpretations lack any rigorous analyses and pro-
vide almost no auditability. The process is not necessarily 
repeatability, cannot be automated to support any type of 
variability analysis, and is subject to a range of biases.

One of the most commonly cited approaches for the selec-
tion of the ultimate pit is to base the selection on the revenue 
factor 1.0 shell. If the time value of money is a component 
of the objective function for the planning process (which it 
should be and is in NPV), mathematically this approach to 
the ultimate pit selection will only be appropriate when the 
revenue generating material in the ultimate pit is mined in 
the same period as the waste preceding it in the schedule 
for that shell. The greater the time-based disconnect, the 
further from correct the selection of a revenue factor 1.0 
shell becomes.

The basis for the selection of the revenue factor 1.0 shell 
is that it returns all material that has an incrementally posi-
tive impact on the cashflow, albeit prior to the impact of 
discounting. This will thereby return the largest incremen-
tally positive undiscounted cashflow reserve and the greatest 
(undiscounted) value.

Financial value is generally considered to be the appropri-
ate basis for the selection of the ultimate pit. This is logi-
cal; however, risk is rarely considered, nor is the associated 
impact on the expected value quantified. The selection of the 
ultimate pit based on maximum value is well represented in 
the literature, including [4, 8, 10–14]. Many of these authors 
have discussed variations in the approach to making such 
value-based decisions.

Richmond [6] identifies three significant issues in the 
standard two-step approach that separates the ultimate pit 
selection from scheduling and financial discounting: “1. 
Divorcing the open pit limit delineation from the NPV cal-
culation does not guarantee that an optimal (maximum) NPV 
open pit solution will be found; 2. NPV calculations are 
based on a constant commodity price that fails to consider 
its time-dependant and uncertain nature; and 3. The single 
‘estimated’ orebody model is invariably smoothed, thus it 
fails to consider short-scale grade variations”.

Hanson and Hodson [10] focus on the first point as 
detailed by Richmond [6] and provide an approach to ulti-
mate pit selection that considers the impact of discounting. 
They state that “the technique, which is termed ‘skin anal-
ysis’, requires use of engineering judgement and will not 
itself produce a mathematically exact optimal pit. However, 
if used properly the technique will give a consistently bet-
ter result than the more common rules-of-thumb known to 
the authors”. The approach outlined schedules sequentially 
smaller ultimate pit shells using a shell grouping approach 
to facilitate the selection of the ultimate pit. Given that high-
level schedule constraints are included, this is certainly 
superior to an analysis based solely on the outputs of a pit 
optimization algorithm. The approach does not consider risk 

and can also be expected to produce the same plateauing 
of value that generally makes ultimate pit selection subjec-
tive. In closing Hanson and Hodson [10] state that “the tech-
nique does not produce a rigorously optimized pit and it does 
require proper engineering judgement to produce a reliable, 
near optimum solution”.

Maximizing the financial value is clearly a valid objec-
tive and should undoubtedly remain as an initial step in the 
analysis upon which to base the selection of the ultimate pit. 
It is not, however, the only relevant consideration.

Abdel Sabour, and Dimitrakopoulos [9] develop a sys-
tem that is “based on integrating multiple market and geo-
logical uncertainties as well as the operating flexibility to 
revise the ultimate pit limits using a Monte Carlo based real 
options valuation (ROV) model”. This work is insightful 
and provides some powerful risk-based analyses but is more 
focussed on the impact on the optimality of the sequence as a 
function of the uncertainty in geological modelling and mine 
design than the selection of the ultimate pit.

Baek and Choi [15] directly consider risk in their meth-
odology. Their approach presents some powerful and inter-
esting results, and some of the techniques used herein align 
closely with those outlined in their paper. Baek and Choi 
[15] consider price variability, which they use to code a 
probability of inclusion in the ultimate pit for each block in 
the block model. This is a clear inclusion of a consideration 
other than a static value. Whilst this is novel and powerful, 
there remain further steps that can be taken. Correlations 
between key price assumption sets (and costs) should be 
included. The analysis stops at the ultimate pit selection, 
and so does not incorporate the impact of discounting effec-
tively. The analysis also does not address the basis for the 
selection of the ultimate pit. A revenue factor 1.0 is used, 
which is the most logical basis to support the research that 
the authors presented.

Robins [16] uses a similar approach and produces a 
probability for each block being mined within the ultimate 
pit for a range of conditionally simulated geological mod-
els. The selection for the ultimate pit again appears to be a 
positive incremental value basis. Robins [16] successfully 
demonstrates that the highest probability pits (therefore 
based on lower geological risk) have a tighter distribution 
in valuation outcomes when all model outcomes are incor-
porated. This is an important and logical outcome. Robins 
[16] also reports the standard deviation in value as a func-
tion of the probability-based selection of the ultimate pit. 
This is an interesting approach to communicating the con-
fidence in the expected outcomes. The approach calculates 
the probability of outcomes based on the quantification of 
geological risk but stops short of quantifying the risk of an 
alternative selection. Nonetheless, this presents a powerful 
approach to the incorporation of geological risk into pit 
optimization.
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Direct block scheduling (DBS) is an approach that 
requires consideration. Whilst DBS overcomes some of the 
shortcomings of maximum flow approaches, with Lerchs-
Grossmann (LG) included in this family of algorithms, it 
still uses a value-based selection in isolation. DBS-based 
approaches may theoretically maximize the value in a more 
comprehensive way by considering additional parameters 
and constraints, and thereby more accurately incorporate 
discounting. The approach therefore certainly demonstrates 
potential for the inclusion of a wider range of considera-
tions, including risk in various forms; however, this is not 
a fundamental feature of the algorithm/process. Smith and 
Nogueira [17] reported a similar conclusion in comparing 
DBS to LG, stating that the “… maximum project values are 
very similar, with DBS reserves producing a slightly higher 
NPV. The overall production schedules were also similar, 
but the solution based on DBS resulted in a more aggres-
sive pre-strip allowing for earlier concentrator start-up and 
greater continuity in oxide processing. The DBS solution 
provides a better starting point for stage design due to inclu-
sion of constraints on minimum bench width. Overall the 
time spend on stage design was similar between DBS and 
LG. We expect that with improvements and better under-
standing of how best to apply constraints to DBS that there 
will be significant advantages in terms of man-hours needed 
to convert a DBS solution into a viable stage design”.

Given that risk is not explicitly quantified, DBS-based 
techniques will be considered to be similar to LG-based 
techniques for the purposes of this paper.

A range of simple techniques to potentially improve the 
method by which the discount rate is applied within the pit 
optimization process are available within commercial soft-
ware applications. These techniques include, for example, 
discounting by depth and discounting by sequence. Whilst 
such approaches do provide mechanisms to vary the applica-
tion of discounting, they do not quantify the risks associated 
with any scenario as a specific function of the strategic deci-
sions that should be considered.

Pit optimization is an area where an impressive process 
has been developed to solve a complex mathematical and 
mine planning challenge. Given the complexity of the pro-
cess, the level of detail involved, and the analyses produced, 
it is common for decision-makers to be satisfied with this 
and not to push it much further. As in other areas of strate-
gic planning, the consideration of scenario specific risk is 
routinely ignored, with risk assumed to be adequately incor-
porated via the discount rate.

Aside from the work of a limited number of researchers, 
the detailed quantification of risk is not a major considera-
tion in the literature surrounding pit optimization. Pit opti-
mization is an area of strategic planning that has a significant 
impact on the level of risk, and if this is not a focus of the 

process and the associated analyses, the result will be to 
generally increase it, potentially across multiple facets.

3 � Concept

The concept being presented in this paper is that includ-
ing risk in the pit optimization process is both possible and 
likely to impact the strategic decision-making process. This 
will be explored using commodity price risk.

The variability in the future price environment has 
been represented in the analyses by considering discretely 
two pricing points where there can be expected to be a 
disconnect:

○	 The first being the forecast price at which planning deci-
sions must be made (the planning price environment).

○	 The second being the price at which the operation must 
then deliver a result (the future operating price environ-
ment).

The first dictates the planning decisions, and the second 
is what eventuates; and clearly these will never be identical. 
With this as the starting premise, the resulting impacts based 
on this difference can be quantified. This will then form the 
basis of the calculation of commodity price risk.

It is recognized that the future price environment will not 
be static. The use of a series of single pricing assumptions 
for both the planning price and the future operating price is 
a deliberate simplification of the problem construct to:

○	 Simplify the model execution and analysis.
○	 Support clear and efficient communication of results.

When the purpose of the analysis is to select an ultimate 
pit as the basis for go-forward decision-making purposes, 
which is often the case, this simplification is pragmatic. 
Furthermore, the framework outlined assesses a deliberately 
wide range of potential price environments and analyses the 
full matrix of combinations for the planning price and the 
future operating price.

The synopsis is then to compare the value and the value 
at risk, in financial terms, as a function of the disconnect 
between the two price environments. The future price envi-
ronment remains unknown, and given that the associated 
impacts can be quantified through this form of analysis, they 
have been presented as a value at risk. To explain this further 
by way of an example, if the macroeconomic price environ-
ment used as the basis for the selection of the ultimate pit 
for a copper mine was $3.00/lb and the price under which 
the mine must deliver is closer to $2.50/lb, what would the 
impact be? Equally if the price was $4.00/lb how much 
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potential value would have been forfeited due to the discon-
nect in price assumptions?

Fundamentally, there are two sources of potential value 
destruction in the selection of the ultimate pit:

○	 Value is lost by the adoption of a price environment for 
planning purposes that is too low as compared to the 
operating price environment, and material is planned to 
be left in the ground that could have added value and life 
to the operation. This is the residual resource risk.

○	 Value is lost by the adoption of a price environment for 
planning purposes that is too high as compared to the 
operating price environment, and waste is stripped that 
does not expose material of significant (discounted) 
value to pay for the associated mining costs or realize 
the expected return. This is the excess stripping risk.

Both of the above points are risks and can therefore be 
calculated using a value at risk approach. Both risks are pre-
sented as negatives, including when the value impact is as a 
lost opportunity. For simplicity, the process will be referred 
to as the VAR within this paper.

The term value at risk is more commonly associated with 
portfolio management, where it evolved in response to mul-
tiple liquidity crises with the purpose of quantifying the risk 
exposure of financial services firms [18].

The following definitions/explanations relate to VAR in 
the context of portfolio management:

“Value at risk is a summary statistic which quantifies 
the exposure of an asset or portfolio to market risk or the 
risk that a position declines in value. VAR is the method of 
measuring the financial risk of an asset, portfolio or expo-
sure over some specified period of time” [19].

“Value-at-risk aims to measure the potential loss on a 
portfolio that would result if relatively large adverse price 
movements were to occur. Hence, at its simplest, VaR 
requires the revaluation of a portfolio using a set of given 
price shifts. Statistical techniques are used to select the size 
of those price shifts” [20].

“…VaR is the dollar amount that portfolio losses are not 
expected to exceed, with a specified degree of statistical con-
fidence, over a pre-specified period of time” [20].

The concept of VAR in this paper has similarities and dif-
ferences as compared to that used in portfolio management. 
The following definition is provided for clarity:

Definition (Value at Risk) 

Value at risk is a series of summary statistics to quantify 
financial risk as a function of ultimate pit size selection 
and probabilistic parameter set(s).

This paper will focus on the commodity price as the 
probabilistic parameter set; however, the same underlying 
framework can be used for other risk based probabilistic 
parameters.

The outputs of the VAR process outlined in this paper 
are as follows:

○	 The quantification of the risk (value at risk) as a func-
tion of the price-based decisions and the size of the shell 
selected as the ultimate pit

○	 To subsequently determine the ultimate pit size and the 
revenue factor upon which to base the selection of the 
ultimate pit to provide the best possibility of success for 
the operation as a function of a probability distribution 
applied to the future price environment

The selection of the most appropriate revenue factor for 
an open pit is not simple and is inadequately based on rules 
of thumb or similar. It is impacted by a range of interrelated 
factors including the following:

○	 Underlying geology (dip, relationship between value and 
depth, sharpness of contacts, size, etc.)

○	 Stripping ratio
○	 Geotechnical parameters
○	 Discount rate
○	 Starting topography

There is clearly a relationship between the macroeco-
nomic price environments being used and the revenue fac-
tor; there is also a key difference. The revenue factor, as 
the name implies, factors the revenue-based components of 
the cashflow, however not the costs. Whenever statistically 
significant relationships exist between the commodity prices 
that drive revenues and the costs, this must be incorporated 
in both the pit optimizations and the schedule optimizations 
for every scenario analysed. Such relationships have been 
incorporated in the process presented in this paper with fur-
ther details included in the subsequent section.

The concept will be demonstrated using a case study 
based on a tier 1 copper–gold porphyry operation. Whilst 
a VAR approach can be applied whenever planning teams 
want to make decisions guided by the impacts of risk, the 
case study is considering the specific scenario of an in-pit 
dump, which from the point of commencement will essen-
tially sterilize a significant proportion of the remainder of 
the resource. Conversely, the longer the commencement of 
the in-pit dump is delayed, the waste storage and approval 
options become increasing complex and tenuous. The value 
at risk of this decision will be quantified based on commod-
ity price variability.
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The following summarizes the case study analysis:

○	 The purpose is to consider the range of value and risk-
based outcomes from the inclusion of an in-pit waste 
dump as a function of probabilistically adjusted future 
commodity price scenarios.

○	 The in-pit waste dump also impacts on ex-pit waste man-
agement and material destination optimisation (inclusive 
of the haulage fleet) all of which have been incorporated 
in the schedule optimization model.

○	 Additional capacity is not being considered for either 
the mining fleet or for ore processing; therefore, capital 
expenses do not feature in the analyses.

○	 Given that the scale of the operation is being held con-
stant, the constraints used in the schedule optimization 
are being held constant including processing capacities, 
total mining capacities, and bench turnover constraints. 
The base operating costs are also being treated on a 
consistent base and are only varied as a function of the 
macroeconomic price environment (further details of the 
process used are included in the “Inputs” section).

○	 For context, the year of analysis was 2017.

4 � Inputs

“It is change, continuing change, inevitable change, that is 
the dominant factor in society today. No sensible decision 
can be made any longer without taking into account not only 
the world as it is, but the world as it will be… This, in turn, 
means that our statesmen, our businessmen, our everyman 
must take on a science fictional way of thinking” Asimov 
[21] (1978).

The inputs specific to this paper are based on commodity 
prices; therefore, to support the analyses, a probabilistic set 
of copper price assumptions was required and was sourced 
from a range of commercial providers (for example, this 
could include Wood Mackenzie, SNL, etc.). These series 

were then amalgamated into a form of consensus, first-prin-
ciples price-series dataset, which do not conform specifically 
with any one dataset, but equally do not materially differ.

Figure 2 presents a histogram of the probabilistic price 
distribution used. This data is derived from the predicted 
copper price environment for 2025 (being close to the 
expected timing for the final stage being mined for the case 
study operation at the time of analysis, being 2017). Whilst 
somewhat granular, it can be noted that the distribution is 
positively skewed, thereby implying some potential for price 
upside.

Any probabilistic analysis must include any relevant 
correlations, or otherwise, the analysis will be potentially 
misleading. Given that the commodity price variation is 
the parameter set that is being analysed, it must feature as 
the parameter that is flexed or risk-adjusted in the revised 
framework. In running analyses that vary this parameter, it 
is important to consider whether any other parameters could 
be expected to move as a function of being correlated. The 
copper price, along with many other commodities, varies 
due to changes in the supply–demand balance. This is driven 
to an extent by the level of overall economic activity, which 
also intuitively impacts on the supply–demand balance and 
therefore the prices of a range of components in the operat-
ing costs, e.g. steel and diesel.

To incorporate these correlations in both the pit optimi-
zation and schedule optimization processes, a consistent 
approach has been used throughout. This is the same process 
as detailed in the paper Correlated Valuation Methodology 
[22]. The way that this has been incorporated is by estab-
lishing a series of what are referred to as macroeconomic 
environments. These have as the central parameters the 
main commodity price, which for this paper is the copper 
price. All other correlated parameters are then expressed 
as a function of the copper price. Thus, if the macroeco-
nomic environment is denoted by a $2.25/lb copper price, 
the other commodity prices and operating costs are also 
adjusted using the copper price as the input to the appropri-
ate regression equation developed.

Fig. 2   Histogram of price distri-
bution model
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Table 1 presents a summary of the key parameters that 
were identified as being potentially correlated with the 
copper price for the case study that this paper is based on. 
All parameters were statistically significant at the standard 
α-level of 0.05, and the r-squared values indicate that the 
models will have a useful predictive power.

To interpret the results in Table 1, if the resulting 
p-value from the test of significance of the regression 
analysis is less than the selected α-level (in this case 
0.05), the relationship between the parameters can be 
considered to be statistically significant at the 95% level 
of confidence. The r-squared values provide a meas-
ure of the effectiveness of the model in predicting the 
response data; the closer to 100%, the more closely the 
model fits the data.

All datasets are based on real terms (i.e. not nominal), 
so therefore the potentially common and directional impact 

of inflation on both datasets is not providing an artificial 
positive impact on the results. The regressions upon which 
these analyses are based are all first-order linear regres-
sions. More complex and involved modelling could be 
completed; however for the purposes of demonstrating 
the process, and given the generally high r-squared values 
returned, this basis has been deemed acceptable.

Figure 3 has been included as an example of the time-
series component of the analysis.

Note: The mining and milling operating cost com-
posites are based on historical proportions of costs for 

the case study operation and comprise a range of inputs 
including diesel, labour, chemicals, steel, and equipment 
components. Additional detail could be added at this step; 
however, for the purposes of illustrating the concept, only 
high-level adjustments have been incorporated.

Analyses of the identified correlations returned the 
equations in Table 2 for use in the derivation of the mac-
roeconomic datasets.

The units used in Table 2 are as follows:

Copper_Price	� USD$/t

Gold_Price	� USD$/troy oz

Silver_Price	� USD$/troy oz

Table 1   Statistics for correlations between relevant variables and the 
copper price

1 The p-values are not exactly 0.000 but would need significant deci-
mal places to be otherwise. Functionally, the values are 0; they are 
presented to 3 decimal places as is convention

Response variable p-value1 Interpretation r-squared

Mining Operating Cost 0.000 Statistically significant 78.4%
Milling Operating Cost 0.000 Statistically significant 78.0%
Gold Price 0.000 Statistically significant 67.7%
Silver Price 0.000 Statistically significant 69.8%

Fig. 3   Real copper and real 
mining operating cost compos-
ite — time series dataset

Table 2   CVM regression 
analysis equations

Parameter Equation

Mining Operating Cost (real) MineOpex = [64.0403] + [Copper_Price] * [0.0089]
Milling Operating Cost (real) ProcessOpex = [73.4882] + [Copper_Price] * [0.0054]
Gold Price (real) Gold_Price = [77.4369] + [Copper_Price] * [0.1502]
Silver Price (real) Silver_Price = [-0.9796] + [Copper_Price] * [0.0029]
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MineOpex	� Index based on composite operating com-
ponents for the case study operation

ProcessOpex	� Index based on composite operating com-
ponents for the case study operation

Given that the specific analysis being considered has been 
designed to quantify the risk-based decision surrounding the 
ultimate pit selection for the purpose of including an in-pit 
dump in the subsequent mine planning processes, all capaci-
ties have been held constant for the processing infrastructure 
and the mine equipment fleet. Any capital expense consid-
erations are also therefore omitted from the case study.

All other inputs used can be considered as standard for a 
pit optimization process.

5 � Technologies Used

Whilst it is not fundamental to the VAR process, for clarity, 
the following technologies have been used for the reasons 
outlined:

○	 Hexagon MinePlan (previously MineSight) was used for 
all block model coding and manipulation. This was the 
general mine planning (GMP) solution used at the case 
study operation.

○	 Geovia Whittle was used for all pit optimization runs, 
and all runs were executed using the pseudoflow algo-
rithm. Whittle is a well-recognized software for pit opti-
mization and again was the incumbent solution for the 
case study operation.

○	 A shell grouping algorithm was used to ensure that the 
phases (or stages) used in the scheduling process would 
be achievable for the operation. Whilst it is not funda-
mental to the process outlined in this paper, the algo-
rithm ensured a sufficient total size to support the scale 
of equipment being used, resulting mining widths, and 
also a requirement for a minimum of 3 years ore supply 
in each set of grouped shells, with ore being considered 
in a static sense as material with a positive cashflow 
grade [23].

○	 Comet was used for all schedule optimizations. Comet 
is an advanced multi-policy schedule optimization 
package, with functionality to optimize incorporating 
multiple complex downstream constraints. The func-
tionality to optimize inclusive of complex downstream 
system was important at the case study operation for 
both process and environmental controls in tailings and 
waste streams inclusive of haul route optimization. As 
an example of the required complexity, two process 
streams split with components rejoined subsequently 

and are then combined with a ROM waste stream. The 
resultant combined stream must have certain geochemi-
cal attributes and remain below a set limit for certain 
environmentally sensitive grade attributes. This com-
ponent of the optimization is regularly the constraint 
for the operation and means that comparatively simple 
schedule optimization solutions could not be used in 
this instance. Some further relevant points regarding 
the schedule configuration are as follows:

•	 Comet was configured to include both negative periods 
and negative phase tails (or stages). This is important to 
allow the quantification of scenarios that deliver signifi-
cantly negative results, for example, due to the combina-
tion of an overly large ultimate pit and a lower commod-
ity price.

•	 Importantly Comet is a “true optimizer” and will defer/
adjust the mining profile if it results in a higher NPV 
(being the objective function).

•	 As a general comment, the configuration of the sched-
ule optimisation model is critical to ensure meaningful 
results are produced, regardless of software selection. 
The model needs to be able to be deployed across all sce-
narios for analysis without the introduction of any forms 
of operator or scenario specific bias.

○	 Microsoft Excel was used for the VAR calculations and 
analysis. This did require the development of visual 
basic scripts given that the VAR formulas were not able 
to be readily developed using any combinations of stand-
ard Excel formulae. Subsequent VAR-based work has 
been developed using Python code, which is a superior 
approach based on the data science nature of the VAR 
analysis and the Python-based libraries available for this 
purpose.

6 � Process

An overview of the process used is included in Table 3.
It could be interpreted that the analysis produced by this 

process is similar to the well-recognized best-case, speci-
fied-case, and worst-case schedules (refer Fig. 1); however, 
the analysis is fundamentally different:

○	 The best-case, specified-case, and worst-case schedules 
consider the impact of vertical to lateral mining, transi-
tioning from mining the shells in order (onion skin min-
ing) through to mining complete benches in sequence 
(pancake mining).
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○	 The VAR process is quantifying the impacts of the size 
of the ultimate pit (using consistent and realistic stage 
sizing) as a function of the probabilistic future commod-
ity price environment.

As mentioned previously, the VAR process is modelling 
the impact of the disconnect between the planning price 
environment (pit optimization) and the future operating price 
environment (schedule optimization). The resulting matrix 
analysed therefore includes all possible combinations. The 
intention is to then determine the corresponding ultimate pit 
size and associated revenue factor that results in the most 
risk-robust outcome as a function of this disconnect.

Note: The revenue factor is the same as the standard defi-
nition used throughout the industry.

Subsequent to the pit optimization and schedule optimi-
zation runs being completed for all cases, the VAR analysis 
was completed. The purpose of the model is quite simple, it 
needs to identify for each scenario how much value is at risk 
because of either leaving resources in the ground or because 
of stripping too much waste relative to the value extracted as a 
function of the future commodity price distribution modelled. 
The model therefore also applies the adjustments required to 
incorporate the price-based probability distribution (Fig. 2).

The challenge comes about from the fact that the model 
needs to search the entire results range and potentially return 
a value that does not match either the macroeconomic price-
based assumptions used for the pit optimization or the sched-
ule optimization. To explain this using the simple example of 
identifying the maximum value ultimate pit to compare with 
for the scenario based on a $1.60/lb copper price for the pit 
optimization and a $3.80/lb copper price for the schedule opti-
mization, the search needs to return the ultimate pit shell that 
was generated using a $3.00/lb copper price, ie it  does not 
match either the price used for the pit optimization or the 
schedule optimization.

Equation 1 (VAR excess stripping) and Eq. 2 (VAR resid-
ual resource) provide the base equations used in the VAR 
model.

where:

VARES	� Value at risk due to excess stripping.

VARRR	� Value at risk due to residual resource.

NPVS	� NPV for the selected case.

NPVMSP	� Maximum NPV returned for the schedule price 
for the selected case. This can return a shell 
that is smaller or larger than the selected case.

NPVSHELL	� NPV for the case based on the schedule being 
run paired with the price used to select the shell.

As evident from Eq. 1 and Eq. 2, part of the complexity 
comes from the fact that the maximum value case for the sched-
ule price can result in a shell that is either smaller or larger than 
the case shell.

Whilst Eq. 2 is relatively intuitive, Eq. 1 is less so; therefore, it 
will be explained further. When the ultimate pit is too small, the 
excess stripping risk does not exist; this then transitions through 
to a risk as a function of the scenario NPV compared with the 
scenario that delivered the maximum NPV for the schedule price. 
As the commodity price used for the pit optimization increases 
further, and the ultimate pit increases in size, implicit within this 
is the assumption that the operating commodity price will also 

(1)VAR
ES

= MIN(NPV
S
− NPV

MSP
,NPV

S
− NPV

SHELL
)

(2)VAR
RR

= NPV
S
− NPV

MSP

Table 3   VAR process outline

The base set of macroeconomic price environments were determined, based on copper prices ranging from USD $1.00/lb to USD $5.00/lb in 
increments of USD $0.20/lb

Historical price and cost series data were analysed and regressed with the copper price
The block model coding was updated based on the above points for the 21 macroeconomic price environments using MinePlan
The 21 variants of the block model representing the 21 macroeconomic price environments were exported and 21 pit optimization models were 

run using Whittle
The pit optimization shells were exported from each pit optimization model and loaded into the block model
A shell grouping algorithm was used to develop without bias groups of pit shells into mineable phases for each set of shells exported
Schedule optimizations were all run using the same Comet model. The objective function used maximizes standard NPV. Every schedule is 

optimized for cut-off grade, blending, and mining sequence as a function of the mining areas made available and considers all strategic level 
constraints specific to the case study

441 schedules were run combining the 21 macroeconomic price environments being used to select the ultimate pit, and then for each ultimate pit 
selected the same 21 macroeconomic price environments used as the basis for the schedule optimization runs

The results for all schedules were analysed to quantify the value at risk for each schedule analysed
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increase. The second part of Eq. 1 quantifies this by comparing 
the scenario NPV to the NPV for the schedule paired with the 
shell price. The component of the VAR calculated Eq. 2 should 
not be interpreted as a direct reduction in value, although this is 
one component of the risk calculated, but also includes risk as a 
function of the price distribution used in the VAR process. The 
proportion of these two components will vary by deposit and by 
the price distribution being used.

In a functional sense, Eq. 1 is very effective at constraining 
the ultimate pit selected from being too large, therefore remov-
ing incrementally value destructive sections of the resource 
from subsequent analyses. Such an outcome results either in 
value erosion or re-work for planning teams and should there-
fore be avoided. In some instances, the value destruction is 
obfuscated and difficult to identify, whilst in other instances 
an overly large ultimate pit will result in a series of negative 
value mining stages towards the end of the schedule that sub-
sequently require manual adjustment or removal.

A simplified approach could conceptually be used, with 
some caution, considering only Eq. 2. Once the residual 
resource value at risk approaches zero, there should be limited 
incentive to select a larger shell. This would of course fail to 
quantify the value at risk if a larger shell were to be selected.

Post solving Eq. 1 and Eq. 2, the results are probability 
adjusted at the individual scenario level for the schedule 
price environment only. This is a key connection in the 
logic required to model the risk as a function of the price 
distribution being assessed.

The VAR process presented in this paper differs from a 
standard pit optimization in the following ways:

○	 It considers the price disconnect between the current (or 
planning) price and the future price.

○	 It incorporates static probabilistic commodity price inputs.
○	 It includes correlations between commodity prices and 

operating costs.
○	 It quantifies the value at risk.
○	 It constitutes a quantified, specific, and repeatable 

process for the selection of the ultimate pit (assuming 
underlying model consistency).

The above differences require some fundamental 
changes to the process and the data flows that are out-
lined in Fig. 4 and Fig. 5. Figure 4 presents a high-level 
schematic of the dataflow for a typical pit optimization 
process, and by comparison, Fig. 5 presents a schematic of 
the dataflow for the VAR pit optimization process.

Fig. 4   Schematic of standard pit 
optimisation process
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7 � Results

For the VAR results to be meaningful, it is important that 
the largest pit shells are too large, and the smallest pit 
shells are too small as compared to the base commodity 
price assumptions. Given that the entire analysis is based 
on a single revenue factor driving the exports from the 

pit optimization process for input into the schedule 
optimization process if the first analysis does not deliver a 
balanced analysis, it may need to be repeated. The range of 
appropriate revenue factors is specific to each deposit, with 
rules of thumb often providing little more than a starting 
position. The revenue factor used to produce the analyses 
included in this paper is 0.35; to clarify this point, the 

Fig. 5   Schematic of VAR pit 
optimisation process



601Mining, Metallurgy & Exploration (2024) 41:589–605	

ultimate pit selection made at each of the macroeconomic 
price environments is 0.35 resulting in ultimate pit sizes 
ranging from small to large due to the changes in calculated 
revenues and costs as a function of the macroeconomic 
price environment varying, allowing the revenue factor to 
be held constant. To reiterate, whilst one revenue factor is 
being used for the selection of the ultimate pit, this selection 
is being made at a range of different macroeconomic price 
assumptions, therefore driving the 21 different ultimate pit 
sizes being considered in the analysis.

Figure 6 presents the profile of NPVs output by the analy-
ses with the distribution being based on the range of copper 
price profiles modelled prior to any probability adjustments.

To explain the data presented in Fig. 6, Fig. 7, and Fig. 8, 
the x-axis is the copper price denoting the macroeconomic 
price environment used for the pit optimization, with the 

box and whisker1 plot presenting on the y-axis the associ-
ated value or value at risk. For Fig. 6 the y-axis presents the 
NPV results for the 21 schedules run for each of the macro-
economic price environments. The box and whiskers are 
being used to present the range of outcomes for the schedule 
results from a $1.00/lb copper price environment through 
to a $5.00/lb copper price environment for each ultimate pit 

Fig. 6   Comet NPVs by pit 
optimization price and schedule 
price (revenue factor 0.35)

Fig. 7   VAR analysis prior to 
price probability adjustments

1  The data presented by the Excel box and whisker charts is 
explained as follows: “The middle line of the box represents the 
median or middle number. The x in the box represents the mean. The 
median divides the data set into a bottom half and a top half. The bot-
tom line of the box represents the median of the 1st quartile. The top 
line of the box represents the median of the 3rd quartile. The whisk-
ers (vertical lines) extend from the ends of the box to the minimum 
value and maximum value” [24].
  The points are explained as “..the outlier points that lie either below 
the lower whisker line or above the upper whisker line” [25].
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size. This range in outcome reflects the commodity price risk 
prior to any probability adjustments.

A potentially more intuitive explanation can be provided 
in terms of the size of the ultimate pit with the x-axis transi-
tioning from smaller ultimate pits on the left through to larger 
pits on the right, and then for each of the pit sizes, the box 
and whisker data present the range of schedule results from 
a low commodity price through to a high commodity price.

The mean NPVs in Fig. 6 can be seen to plateau off from 
around the $2.00/lb price environment. This is indicating that 
once scheduled, there is limited incremental value added by 
the larger pits.

Figure 7 has the same structure as Fig. 6; however, it presents 
the value at risk, whereas Fig. 6 presents the value. The x-axis 
remains identical between the two, with the y-axis now present-
ing distributions of the VAR calculated using Eq. 1 and Eq. 2.

Figure 7 shows the VAR for residual resource in blue, and 
for excess stripping in orange prior to being probability adjusted. 
The pattern displayed for both series is largely as expected. The 
excess stripping VAR increases from functionally zero in small 
ultimate pits to being significant as the ultimate pit increases in 
size. The residual resource VAR displays the opposite trend.

Figure 7 can be interpreted by considering the orange 
bars (for each price scenario on the x-axis) as purchasing 
an option via waste stripping which serves to reduce the 
exposure to the risk of leaving value in the ground (the blue 
bars). Therefore, the initial target would typically be the area 
where the two bars are closer to being equal.

Figure 8 presents the same data as Fig. 7 after being 
adjusted for the probability of the schedule price environ-
ment, i.e. the VAR for each schedule has been adjusted by 
the associated price probability for the schedule only. This 
process reduces the impact of the outcomes derived from 
schedules based on lower probability future price environ-
ments and allows a visual interpretation of this as a function 

of the price environment used to select the ultimate pit. Note 
that the y-axis has been removed from this figure as it now 
represents a combination of VAR and probability; the chart 
should be interpreted by comparing the bars.

It should be noted at this point that changes in the price 
probability distribution used to produce Fig. 8 will materi-
ally impact the outputs and therefore the interpretation.

8 � VAR‑Based Ultimate Pit Selection

The following process has been used to select the ultimate 
pit in this paper:

○	 Using the VAR analyses, the preferred price range for the 
selection of the ultimate pit was made by selecting the 
shell with the minimum probability adjusted value at risk.

○	 The selected price environment was then mapped back 
to the matching macroeconomic pit optimization model.

○	 The associated revenue factor was then used to identify 
the size of the target shell.

○	 The shell size was then mapped back to the base pit 
optimization model for the selection of the comparable 
sized shell upon which to base design work.

Table 4 presents the outputs of this process.

9 � Discussion

The VAR process provides a more defensible basis for the 
selection of the ultimate pit, in this instance with a focus on 
the impact of commodity price risk. Excluding the existence 
of any modelling errors, biases, or other differences, two 

Fig. 8   VAR analysis post price 
probability adjustments
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appropriately skilled operators should deliver the same or 
very similar results based on mathematics and statistics with 
minimal subjectivity. The same cannot be said for decisions 
based on a pit-by-pit graph or similar.

It should be noted at this point that the ultimate pit selec-
tion does not have to be the minimum VAR shell. Key stra-
tegic decisions such as the ultimate pit selection should be 
influenced by the risk tolerance of the investors or operating 
company. For example, if the company is only operating one 
asset, the potential for periods of negative cashflow may 
be highly undesirable, whilst the alternative risk of leaving 
some value in the ground may be significantly less concern-
ing. After all, it could always be considered again later. Con-
versely, a company with a strong balance sheet may prefer 
the potential value and life upside of a larger pit and then 
size the operation and infrastructure to align with this scale 
from the commencement of the operation. In both instances, 
the VAR framework provides insight as to the probabilistic 
value potentially forfeited, or at risk, for smaller or larger 
ultimate pit selections based on the probabilistic price dis-
tributions used.

It is also worth noting that if alternative price distribu-
tions were required to be analysed, this is a very rapid pro-
cess and does not require the re-running of any pit optimiza-
tions or schedule optimizations as the price distributions are 
incorporated in the VAR section of the analysis only.

The VAR approach to the selection of the ultimate pit is 
clearly different to the standard approach. If it is assumed 
that the standard approach was to use a single optimization 
model and base the ultimate pit selection on the revenue fac-
tor 1.0 shell,2 which is one approach that is commonly cited 
and easy to understand, the following points summarize the 
differences between the two approaches.

Using a static analysis, the RF1.0 pit delivers the follow-
ing results by comparison to the VAR selected ultimate pit:

○	 Is 800Mt larger or increased the size of the ultimate pit 
by 102%.

○	 The value is decreased by $115 M, which is within the 
accuracy of the model processes used and equates to a 
decrease of 2%. Effectively, the value is the same.

○	 The value at risk is increased from $284 M to $807 M, 
an increase of 184%.

Note:

○	 The environmental risk profile is also significantly 
reduced (although not quantified herein) based on the 
VAR approach as compared to the standard approach 
due to the fact that the quantity of waste and tailings 
required to be stored has been significantly reduced.

○	 The analyses presented are all based on standard NPV. 
This allows the focus to be on the impacts as a result of the 
change in methodology and to avoid the potential for the 
outcomes to be obscured by multiple simultaneous changes.

The VAR results indicated that using a revenue factor of 
0.35, the ultimate pit should be selected based on a macro-
economic price environment denoted by a copper price of 
between $2.40/lb and $2.60/lb. Given that the base price 
assumption for the case study was $3.00/lb for the copper 
price, this clearly results in a duplication of factors, i.e. 
there is a revenue factor, and then the selection of a pit shell 
based on a price assumption that differs from the base price 
assumption. The issue relates to the fact that the revenue 
factor selected for the runs is still not quite optimal for the 
deposit as analysed. Further analyses could improve this 
alignment; however, the size of the ultimate pit, being the 
output of focus, would not materially change. The use of 
two factors is a minimal overhead; however, it does make 
explanations more protracted with certain audiences; it may 
therefore be simpler to present only the final selected rev-
enue factor.

10 � Conclusions

If risk in the pit optimization process is not quantified, it is 
possible to select an ultimate pit that is incorrectly sized. 
This has been demonstrated in this paper using commodity 
price risk as arguably the most obvious risk to consider; 
however, this is clearly not the only risk relevant to the selec-
tion of the ultimate pit.

The results of the VAR analysis can be effectively used 
to guide the strategic planning process to select a base shell 
for the design of an ultimate pit that maximizes the poten-
tial NPV and minimizes the VAR as a function of the price 
probability distribution used. When value is maximized, and 
risk is either ignored or not quantified, the value is likely 
lower than the stated value and therefore may be potentially 
misleading.

Table 4   VAR results

Output VAR

Base revenue factor (input) 0.35
Selected price case (output) $2.40–$2.60
Mapped VAR shell size range (output) 750–790Mt
Selected pit shell ranges (base pit optimization model) 10–11
Revenue factor range (output) 0.29–0.31

2  This is not being advocated.
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Strategic decision-making that does not incorporate risk 
is not very strategic.

Quantifying the commodity price risk in the ultimate pit 
selection process has demonstrated that making a risk-based 
decision can reduce the future exposure to expected com-
modity price variability. The corollary of this is that if risk 
is not quantified, it is possible to base the pit optimization 
process and therefore all subsequent strategic decisions on 
an ultimate pit that materially increases the business risk 
and, furthermore, to be completely unaware of this fact.

Concluding points are as follows:

○	 The selection of the ultimate pit should not be made 
based on financial value alone.

○	 Using a revenue factor assumption in isolation ignores 
risk.

○	 Considering risk in the selection of the ultimate pit can 
be expected to impact the outcome.

○	 Assuming that risk has been adequately modelled using 
a standard discount rate approach is flawed in this appli-
cation.

○	 Risk can be endogenously incorporated into a pit opti-
mization process.
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