
https://doi.org/10.1007/s42454-021-00025-3

RESEARCH ARTICLE

Comparing quantum hybrid reinforcement learning to classical
methods

Maximilian Moll1 · Leonhard Kunczik1

Received: 16 July 2020 / Accepted: 26 January 2021
© The Author(s) 2021

Abstract
In recent history, reinforcement learning (RL) proved its capability by solving complex decision problems by mastering
several games. Increased computational power and the advances in approximation with neural networks (NN) paved the path
to RL’s successful applications. Even though RL can tackle more complex problems nowadays, it still relies on computational
power and runtime. Quantum computing promises to solve these issues by its capability to encode information and the
potential quadratic speedup in runtime. We compare tabular Q-learning and Q-learning using either a quantum or a classical
approximation architecture on the frozen lake problem. Furthermore, the three algorithms are analyzed in terms of iterations
until convergence to the optimal behavior, memory usage, and runtime. Within the paper, NNs are utilized for approximation
in the classical domain, while in the quantum domain variational quantum circuits, as a quantum hybrid approximation
method, have been used. Our simulations show that a quantum approximator is beneficial in terms of memory usage and
provides a better sample complexity than NNs; however, it still lacks the computational speed to be competitive.

Keywords Reinforcement learning · Quantum computing · Quantum approximation · Quantum variational circuits

1 Introduction

In recent years, reinforcement learning (RL) experienced a
renaissance based on the breakthrough in neural networks
(NN) and growing computational power. RL’s basic idea is
learning by trial and error, motivated by the human learning
process. One of the greatest successes was AlphaGO, and
AlpahGO ZERO (Silver et al. 2016, 2017) beating the
GO world champion multiple times. The program started
from tabula rasa and mastered playing the game of GO
by learning from self-play. Recent research shows that RL
algorithms can even learn to solve complex tasks when
relying purely on computational power and time (Baker
et al. 2019).

With the promise of fully operational quantum computers
in the last decade, researchers started to develop RL

� Maximilian Moll
maximilian.moll@unibw.de

Leonhard Kunczik
leonhard.kunczik@unibw.de

1 Universität der Bundeswehr München,
Neubiberg, Bavaria, 85577, Germany

algorithms that can be applied in the quantum domain. The
first algorithm was provided by Dong et al. (2005). Even
though it relies on the principle of quantum computing, it
still is a classical algorithm. Briegel and De Las Cuevas
(2012) developed the first quantum-based RL algorithm
as part of a quantum hybrid framework for RL. This
algorithm was successfully applied to a real five-qubit
quantum computer. Similar to NNs on classical computers,
variational quantum circuits (VQCs) started to generate
interest as a quantum hybrid approximation architecture.
Chen et al. introduced VQCs as a function approximator in
RL (Chen et al. 2019). They modified the well-established
DQN (Mnih et al. 2015) algorithm by utilizing a VQC
embedded in a NN as an approximator. Due to its similarity
to DQN, this approach was termed VQ-DQN. Within
their work, they show that VQ-DQN is able to solve the
frozen lake and the radiofrequency problem, both discrete
problems.

Based on the VQ-DQN approach, this paper shows that
the same results can be achieved with a VQC without
classical methods. We further compare the classical tabular
(Q-learning) and NN-based (DQN) methods to the purely
quantum VQ-DQN in terms of iterations until convergence
to the optimal behavior, memory usage, and runtime on the
frozen lake problem. Thus, our main contributions to RL in

/ Published online: 12 March 2021

Human-Intelligent Systems Integration (2021) 3:15–23

http://crossmark.crossref.org/dialog/?doi=10.1007/s42454-021-00025-3&domain=pdf
http://orcid.org/0000-0003-0907-7250
mailto: maximilian.moll@unibw.de
mailto: leonhard.kunczik@unibw.de

the quantum domain are to (1) show that VQ-DQN can solve
the frozen lake problem with a pure VQC approximator and
(2) provide a rigorous comparison of the standard methods
with the novel quantum hybrid approximation utilizing the
abovementioned performance measures.

The frozen lake problem consists of a 4 × 4 grid, where
the starting state is in the top left corner, and the goal is
in the bottom right corner. The player can choose between
going up, left, down, or right in every cell; walking against
a side of the grid will keep it in the current state. At some
points, there are “holes in the ice,” to add some difficulty. If
the agent steps into a hole, it loses the current episode. The
frozen lake map layout can be found in Fig. 1.

The paper is organized as follows. Section 2 introduces
the concept of RL. Section 2.1 provides the tabular Q-
learning algorithm, and Section 2.2 generalizes the idea
to Q-learning with NNs to approximate the action-value
function. Section 3 provides a brief background on quantum
computing (QC) by defining qubits in Section 3.1 and
quantum gates in Section 3.2 as the atoms of QC.
Section 3.3 connects the previous concepts to quantum
algorithms. Section 4 introduces QVC, which will be
used in Section 4.1 to define the quantum approximation
structure for the action-value function in VQ-DQN. The
computational results from comparing the three algorithms
are provided in Section 5, followed by an analysis of the
results in Section 5.1. The paper concludes in Section 6.

2 Reinforcement learning

RL can be traced back to two ancestors. On the one side,
behavioral research in psychology has been pioneered by
Pavlov. The English translation of his work is also the

Fig. 1 Layout of the frozen lake problem. “S” and “G” mark the start
and goal, respectively. Holes are marked in black

first reference of RL (Pavlov 2010). On the other side, it
stems from a more data-driven approach to optimal control
theory. We give here only a short introduction. However, the
interested reader is referred to Sutton and Barto (2018) for
more details.

Similarly to optimal control, RL deals with optimization
over time. Contrary to the classical approach, however,
RL assumes no knowledge of the dynamics of the system
to be controlled. We instead assume that the RL agent
is completely separated from the environment, which
encapsulates the task to be learned. In the frozen lake
problem introduced above, the environment contains the
game layout and the agent’s current position. At each time
step, the environment communicates to the agent its current
state st , based on which the agent chooses an action at and
returns it. This is usually modeled by a policy π : S → A,
i.e., a function that maps from the state to the action space.

In our example, the state would be the agent’s current
position, and the action would be in which of the four
directions the agent moves next. The environment updates
its state based on the action and sends a short-term
performance measure rt , the reward, to the agent, before
restarting the loop. The agents’ goal is to maximize the sum
of rewards, called the return G. In our example, the reward
could be 0 unless we reach the final state, in which case
the reward is 1. The issue is, however, that the agent can
learn arbitrarily long paths to the final state. By shaping the
reward to be −1 for not leaving and 0 for leaving, the agent
will learn the shortest path. Some care needs to be taken,
though, to treat holes correctly. If the reward for stepping
into a hole is −1 as well, the agent might figure out that it is
better to run into the nearest hole since it takes fewer steps
than reaching the exit. To avoid these issues, we provide a
reward of −0.01 on a standard step, a reward of −0.2 for
hitting a hole, and a reward of 1 for reaching the exit.

In this paper, we focus on model-free RL methods,
which try to find optimal behavior without generating an
explicit model of the environment’s dynamics. These split
quite naturally into direct methods, which parametrize the
function π and try to improve behavior by adjusting its
parameters, and indirect methods, which seek to evaluate
behavior and base their policies on these evaluations. Here,
we focus on the latter. A commonly utilized quantity in
such methods is the estimated future return for a given
state-action pair, which is usually expressed through the
action-value function:

Qπ(s, a) = Eπ

[
T∑

t=0

γ t rt (st , at)

∣∣∣∣∣ s0 = s, a0 = a

]
. (1)

Eπ indicates that we choose all actions based on a given
policy π . OnceQπ is found, π can be improved by checking
whether we already selected the action with the highest

16 Hum.-Intell. Syst. Integr. (2021) 3:15–23

future return in each state. However, it has been shown that
it is not necessary to fully determine Qπ before improving
π . More commonly, they are updated alternately.

2.1 Q-Learning

The most direct way to learn optimal behavior would be the
Monte Carlo approach, which simulates randomly through
the task. Upon finishing the episode, it calculates the Q-
values for all visited state-action pairs. To save memory,
the average can be updated instead of being recalculated as
follows: Let Q(n)(s, a) denote the average after n-th visit
and G(s, a) the (n + 1)st observation. We then have

Q(s, a)(n+1) = 1

n + 1
(nQ(n)(s, a) + G(s, a)) (2)

= Q(n)(s, a) + 1

n + 1

×(G(s, a) − Q(n)(s, a)). (3)

Watkins and Dayan (1992) developed from this the, now
famous, Q-learning algorithm, by approximating the future
return by the sum of the current reward and the estimation
for the future return given by the Q function itself. The idea
of splitting future costs into immediate and follow-on costs
is well known from dynamic programming. The algorithm
for Q-learning can be found in Algorithm 1 in Appendix.
To ensure exploration, we choose an action at random with
some probability ε, instead of the best action according to
the current action-value function.

2.2 DQN

While the above approach works very well, it can only
be applied to problems with a reasonably small, discrete
action and state space. One solution in problems with a
small, discrete action space and continuous state space is
to replace the tabular representation of the action-value
function with a parameterized approximation. The two most
studied choices are linear functions and NNs. The former
can be a good choice since, quite often, optimal parameters
can be determined analytically. However, they typically lack
expressiveness.

For neural networks, the exact opposite is true. It has
been shown by Cybenko (1989) and Hornik et al. (1989)
that they can approximate measurable functions to arbitrary
accuracy. However, finding a suitable set of parameters
requires gradient descent-based methods and significant
computation time and power. This introduces additional
difficulties to the learning regime in RL.

Nevertheless, the best-known success of such an
approach, learned to play different Atari games (Mnih et al.
2015). To achieve this, the authors introduced further adjust-
ments to stabilize learning, which have by now been estab-
lished as standard. Exploiting the fact that Q-learning is an
off-policy training algorithm, i.e., that it does not require the
use of a policy to be trained for exploration, they introduced
a replay memory. Instead of running the updates directly
on the observed state, action, reward, next-state quadruple,
all these quadruples are saved in a memory. For training,
they then sample a batch of training points from that mem-
ory. This approach adds stability and makes use of obtained
data much more efficiently, which is of particular impor-
tance with NNs since they require many training samples.
This technique is now established as a standard procedure
in such approaches.

Additionally, they used a second, target network, to
bootstrap the future reward, instead of the action-value
network they are training. From time to time, the action-
value network is copied to the target network, which is thus
more constant than the training network. Mnih et al. called
their approach DQN with experience replay, which can be
found in Algorithm 2 in Appendix A.

3 Quantum computing

The following will give a short introduction to the principles
of QC by deriving the idea of quantum bits in Section 3.1.
This concept is extended to the essential computational
elements called quantum circuits in Section 3.2 and
concludes with an introduction of quantum algorithms in
Section 3.3. Based on this introduction, QVCs, as a quantum
hybrid approximation method, are derived in Section 4.

3.1 Qubits

The computational concepts differ significantly in classical
computer science and QC since QC is based on quantum
theory. Compared to classical bits that can either take the
values 0 (false) or 1 (true), a quantum bit (qubit) can be
in any superposition of the computational basis states 0
and 1. Using Dirac’s notation, any single-qubit state can be
expressed by a linear combination of basis states |ψ〉 =
α |0〉 + β |0〉, with α, β ∈ C satisfying the normalization
condition |α|2+|β|2 = 1. Thus, α and β define a probability
distribution over the basis states and, therefore, are also
known as probability amplitudes.

Although a qubit can be in a superposition of computa-
tional basis states, it must always be measured to retrieve its
information. The measurement will collapse the qubit to one
of its basis states. For example, measuring the qubit |ψ〉 will
result in measuring the state |0〉 with probability |α|2 and

17Hum.-Intell. Syst. Integr. (2021) 3:15–23

|1〉 with probability |β|2. Thus, even though a single qubit
can be in an arbitrary superposition state, a single measure-
ment will only provide the same information as a classical
bit. Hence, the same algorithm is repeated multiple times,
and the measurement results are averaged to approximate
the state distribution.

A geometrical interpretation of a qubit can be derived
from explicitly writing α and β as complex numbers |ψ〉 =
(α1 + iα2) |0〉+ (β1 + iβ2) |1〉. Thus, a single qubit has four
degrees of freedom. The normalization condition traces out
one degree of freedom, and without loss of generality, α can
be represented as a real number. Applying Eulers’ formula,
we can derive the convenient representation

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 , (4)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π . Equation 4 maps
a quantum state to the Bloch sphere shown in Fig. 2. The
Bloch sphere provides a representation of a qubit in the 3D
space.

A complex two-dimensional Hilbert space mathemati-
cally describes the state space of a single-qubit system. This
definition can be generalized for an n-qubit system to a
Hilbert space on C

m with m = 2n. In quantum systems
with more than two qubits, another property arises that is
unknown in classical computation; two or more qubits can
be in an entangled state, meaning that they can not be writ-
ten as the product of single-qubit states. This further implies
that measuring one qubit will automatically reveal informa-
tion about the others as well. The simplest example is the
state 1√

2
(|00〉 + |11〉). For example, if the first qubit is mea-

sured in the state |0〉, the second qubit must be in the |0〉
state.

Fig. 2 Bloch sphere representation of a qubit |ψ〉

Fig. 3 Example quantum circuit that creates the fully entangled state
1√
2
(|00〉 + |11〉) with a measurement at the end

3.2 Quantum gates

Computations on a quantum system are performed by
applying quantum gates to the system. A quantum gate is
mathematically described by a Unitary matrix U (a complex
square matrix holding the identity UU
 = U
U = I , with
U
 denoting the complex conjugate of U). One example is
the

X =
[
0 1
1 0

]

gate, which is the quantum equivalent to the classical NOT
gate, since it flips the state |0〉 to |1〉 and vice versa. If we
look at the X gate as an operation on the Bloch sphere, it
is a 180° degree rotation around the x axis. The gates that
perform the same operation just at a different axis are the
following

Y =
[
0 −i

i 0

]
Z =

[
1 0
0 −i

]

these gates are called the Pauli gates.
The rotations can be generalized to arbitrary rotations

around a specific axis by the rotation gate RP (θ), where
P ∈ {X, Y, Z} specifies the rotation axis and 0 ≤ θ ≤ π the
angle. The rotation gate is given by

RP (θ) = ei θ
2P = cos

θ

2
I + i sin

θ

2
P,

where I denotes the identity matrix.
The single-qubit gates can be extended to gates that act

on multiple qubits. The controlled NOT (CNOT) or CX gate

CX =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

is one example for such a gate, which acts on two qubits by
applying the X gate to the second qubit only if the first qubit
is in the |1〉 state.

18 Hum.-Intell. Syst. Integr. (2021) 3:15–23

Fig. 4 In VQC approximation,
the input parameter is encoded
to unitary rotations. Multiple
layers of parameterized circuits
with trainable parameters are
repeated and measured to obtain
the output. This is used to
computer the loss between the
target value and the measured
output, to update the circuit
parameters

3.3 Quantum circuits

To perform computations on a QC, one has to specify the
order of gates and on which qubit they should be applied.
Such a quantum algorithm is called a quantum circuit. A
quantum circuit to create a fully entangled two-qubit state
1√
2
(|00〉+|11〉) is shown in Fig. 3. Each qubit is represented

by a horizontal line, starting with the first qubit at the top.
A quantum gate is depicted by a square with its name
written in the center. The CNOT gate, as a multi-qubit gate,
connects the qubits it acts on by a vertical line. The control
qubit is shown as a small, filled circle, while the controlled
qubit is marked with a larger open circle. The graphical
illustration of a measurement is a small meter symbol.

4 Variational quantum circuits

VQCs can be seen as a quantum hybrid approximation
architecture. A VQC is a quantum circuit that combines
parameterized gates, like rotation gates (see Section 3.1),
and controlled gates, to map an input state to a specific
output. The expectation value of the system is measured to
obtain the result ŷ. In some cases, similar to classical NN,

Fig. 5 Example of an VQC on three qubits with RY rotation gates.
The U0 block denotes the state preparation routine and the dashed box
around the variational part indicates that this block can be repeated
multiple times

a bias term is added to the measurement result. If no bias
term is added at the end, we will call it a pure VQC. Like in
NN training, a suitable procedure, e.g., stochastic gradient
descent, or ADAM, adjusts the circuit parameters θ to
optimize an objective function. This parameter optimization
is performed on a classical computer. Therefore, VQC is a
hybrid technique. The procedure is shown in Fig. 4.

The VQC can be separated into two parts. The first part
is a state preparation routine U0 initializing the qubits to
the desired state, for which multiple encoding techniques
exist, like basis state or amplitude encoding (Schuld and
Petruccione 2018). The second part is the parameterized
circuit U(θ), with θ denoting the parameter vector. There
are multiple structures for U(θ), where the specific gate
types and their order define the structure. Sim et al. (2019)
provide an overview of the commonly used circuits.

Figure 5 shows the VQC that was used for the frozen
lake study. The circuit starts by encoding the state with the
circuit U0. The state is encoded by RX(φi) gates with i ∈
{1, 2, 3, 4}. The parameters φi are determined by converting
the state, an integer number between 0 and 15, into a four-
digit binary number b4b3b2b1, where the bi ∈ {0, 1}. The
rotation angle is given by the formula φi = πbi . Thus, qubit
i is initialized in the state |1〉 if bi = 1 and in state |0〉
otherwise.

The variational part starts with entangling the qubits
using CNOT gates and is followed by parameterized RY (θi)

gates. The dashed box surrounding the variational circuit
denotes that this part can be repeated several times. The last
step is to measure the qubits to obtain the final result.

4.1 Variational quantum deep Q-learning

The idea from Section 2.2 was extended to VQCs as the
approximator for the action-value function in Chen et al.
(2019), which is called variational quantum deep Q-learning
(VQ-DQN). The architecture from Fig. 5 can be used to
realize Q(s, a, θ) in Algorithm 2 in Appendix where θ

is the parameter vector of the parameterized gates. The
gradient of the VQC with respect to θ can be computed
using the Parameter-Shift Rule (Schuld et al. 2018).

19Hum.-Intell. Syst. Integr. (2021) 3:15–23

Table 1 Parameters for optimal performance of the RL algorithms

Algorithm α γ ε Batch size Memory size Target update

Q-Learning 0.6 0.8 0.9

DQN 0.5 0.8 0.9 15 80 10

Pure VQ-DQN 0.22 0.8 0.9 15 80 10

V Q − DQN
 0.4 0.9999 1.0 15 80 20

The values indicated with
 were taken from Chen et al. (2019)

Thus, the DQN algorithm can be generalized to a hybrid
quantum reinforcement learning method by replacing the
NN approximator with a VQC.

Within their publication, Chen et al. used a non-pure
VQC to approximate the action-value function. We propose
a similar approach to Chen et al. (2019) but using a pure
VQC; thus, we do not add a bias term at the end of the
VQC. Therefore, our approach approximates the action-
value function purely in the quantum domain. Based on this
novelty, we call our approach pure VQ-DQN. Furthermore,
our approach only uses RY rotations in the trainable U(θ)

andRX rotations in the encodingU0 block, while Chen et al.
(2019) utilize the gate combinations RX, RY , RZ in U(θ)

and RY , RZ in U0.

5 Results

The three algorithms introduced above are compared in
terms of iterations until convergence to the optimal behavior
(sample efficiency), memory usage, and runtime, on the
frozen lake problem. Before analyzing the results, the
optimal parameters will be presented. For the sake of
completeness, we include the results reported by Chen et al.
(2019) and indicate where the values are missing.

The optimal learning rate, discounting factor, and
exploration parameter for the algorithms, as well as the
memory size and the target action-value function update
frequency for the DQN and (pure) VQ-DQN algorithm, are
listed in Table 1.

The NN for the DQN approach is a three-layer network
with 16 input units, a fully connected 8-unit hidden layer
with tanh activation function, and a fully connected output
layer with a linear activation function and one output unit for
each action. The 16 states are encoded by one-hot encoding.
This architecture results in a total of 172 parameters that
need to be optimized.

The Q-learning algorithm stores the action-value approx-
imations in a table with 16 × 4 entries. Thus, it has 64
parameters.

The VQC is realized by the architecture shown in Fig. 5.
The state-preparation routine U0 is used, and the variation

part U(θ) is repeated 10 times to approximate the action-
values successfully. Therefore, the circuit has a total of
40 parameters that need to be fitted. The pure VQ-DQN
algorithm is implemented using the Penny Lane (Bergholm
et al. 2018) quantum machine learning framework and
PyTorch. 1

Chen et al. report that they successfully solved the
problem with a variational part with three parameters for
each qubit, which is repeated twice, plus one bias parameter
for each qubit resulting in a total of 28 parameters.

Comparing the algorithms in terms of memory usage
shows that the VQ-DQN algorithm needs the least number
of parameters, followed by the pure VQ-DQN approach. Q-
Learning needs more than 1.5 times as many parameters
as the pure VQ-DQN algorithm, and DQN needs the
most parameters with more than 4 times the number of
parameters of the pure VQ-DQN. Table 2 summarizes the
memory usage of the three algorithms, as well as their
runtime on a system with an Intel Xeon E5-2630 CPU
and a GeForce GTX 1080 Ti GPU. Q-Learning performs
best with a runtime of about one-third of a second. DQN
finishes 750 training iterations after 190 s, and pure VQ-
DQN runs for over 21 h. Pure VQ-DQN was run on a
quantum simulator, which is slower than a real quantum
computer. Therefore, this should be seen as a worst-case
runtime, and it is expected that a real quantum device with
dedicated access should perform better. The runtimes for the
results of VQ-DQN are not given in Chen et al. (2019).

The number of training steps (episodes) until the
algorithm converged to the optimal solution is depicted in
Fig. 6. The algorithms are evaluated after each training
step, and the obtained return is averaged over the last 10
episodes. The figure shows that Q-learning converged after
80 iterations to the optimal solution. Pure VQ-DQN needs to
observe 190 episodes of training until the optimal behavior
is achieved, and the DQN algorithm acts optimally after
290 episodes. Thus, the quantum hybrid approximator needs
about 100 episodes fewer for optimal behavior than NNs.
Still, both can not compete with standard Q-learning on
a problem with small state and action spaces. Chen et al.

1The code can be obtained from the authors upon request.

20 Hum.-Intell. Syst. Integr. (2021) 3:15–23

Table 2 Comparing the memory usage and runtime of the three algorithms for 750 episodes of training

Algorithm Q-Learning DQN Pure VQ-DQN V Q − DQN

Number of parameters 64 172 40 28

Runtime 336268 μs 190 s > 21 h

The values indicated with
 were taken from Chen et al. (2019), where the runtime was not reported

reported that their approach solves the problem on the 198th
training step for the first time and the average of the last
100 episodes converges to the optimal value after the 301st
episode.

5.1 Discussion

The results from evaluating the three approaches show
that on a small problem, like the frozen lake, Q-learning
performs best in terms of runtime and sample efficiency.
Only pure VQ-DQN needs less memory for optimal
behavior, but it cannot compete with Q-learning due to its
long runtime. When including the results from Chen et al.,
the VQ-DQN approach needs about two-thirds of the pure
VQ-DQN algorithm’s memory, which seems to be even
more memory efficient.

The (pure) quantum and classical approximation show
similar behavior. (Pure) VQ-DQN has a better sample
efficiency since it converges around 100 episodes earlier
to optimally policy. It further needs far less memory than

DQN, but over 21 h of run time is too long to be a
near-term alternative for DQN that trains in about 3 min.
Unfortunately, Chen et al. do not indicate the runtime of
their algorithm.

Overall, Q-learning is the preferred choice for simple
problems. When it comes to more complex situations like
Atari games, the state space becomes intractable for tabular
methods, and an approximator for the action-value function
is needed. Nowadays, DQN (or similar algorithms that rely
on NNs) established as best practice to solve such problems.
However, as we can see from our results, a quantum hybrid
approximator like (pure) VQ-DQN performs better than
NNs, since it requires less memory and training samples.
However, the drawback of quantum hybrid approaches is
their runtime. NNs experienced their renaissance once they
were computed in parallel by using GPUs. If quantum
computing will experience a similar speedup that GPUs
provided in classical computing, (pure) VQ-DQN is likely
to outperform NN approaches. Furthermore, the quantum
computations have been done on a quantum simulator,

Fig. 6 The graphic shows the
return obtained after each
episode of training averaged
over 10 episodes with the
standard deviation in shaded
color. The Q-learning algorithm
converged after 80 iterations to
the optimal solution. The VQC
approximator is fully trained
after 190 episodes of training
and the DQN algorithm acts
optimal after 290 episodes. Both
DQN and VQ-DQN show an
instability around episode 350

21Hum.-Intell. Syst. Integr. (2021) 3:15–23

which lacks computational speed compared to a real
quantum device.

6 Conclusion

Within this paper, we showed how the theory of RL
(Section 2) could be extended to the quantum domain
(Section 4). We then extended the VQ-DQN algorithm
to use a novel pure quantum approximator (Section 4.1)
and compared the classical tabular RL approach with two
approximation methods. DQN approximates the action-
value function using a NN, and pure VQ-DQN utilizes a
VQC on a quantum computer for the approximation. The
results showed that tabular methods are the best choice for
small problems like the frozen lake, as was anticipated.

Comparing the classical and quantum approaches
revealed that with today’s hardware, DQN shows a better
performance, even though it needs more memory and has
a lower sample efficiency. At the moment, VQ-DQN with
a pure quantum approximator lacks runtime to be compet-
itive. This problem might change in the future when real
quantum devices are available for exclusive usage.

The results indicated that the quantum and the classical
approximators should be compared on more complex
problems, like the Atari games. It would further be
interesting to compare the two approaches with linear
methods in RL or analyze how different structures of the
VQC impact the training.

Appendix: Algorithms Acknowledgements The authors would like to thank Stefan Pickl for
the fruitful discussions and insightful comments.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

22 Hum.-Intell. Syst. Integr. (2021) 3:15–23

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

References

Baker B, Kanitscheider I, Markov T, Wu Y, Powell G, McGrew
B, Mordatch I (2019) Emergent tool use from multi-agent
autocurricula. arXiv:1909.07528

Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed S,
Arrazola JM, Blank C, Delgado A, Jahangiri S, McKiernan K,
Meyer JJ, Niu Z, Száva A., Killoran N (2018) PennyLane: auto-
matic differentiation of hybrid quantum-classical computations.
arXiv:1811.04968

Briegel HJ, De Las Cuevas G (2012) Projective simulation for artificial
intelligence. Sci Rep 2(1):400. https://doi.org/10.1038/srep00400.
http://www.nature.com/articles/srep00400

Chen SYC, Yang CHH, Qi J, Chen PY, Ma X, Goan HS (2019)
Variational quantum circuits for deep reinforcement learning.
arXiv:1907.00397

Cybenko G (1989) Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals, and Systems.
https://doi.org/10.1007/BF02551274

Dong D, Chen C, Chen Z (2005) Quantum reinforcement learning.
In: Lecture notes in computer science, vol 3611. Springer, Berlin,
pp 686–689. https://doi.org/10.1007/11539117 97

Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw.
https://doi.org/10.1016/0893-6080(89)90020-8

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G,
Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533.
https://doi.org/10.1038/nature14236

Pavlov IP (2010) Conditioned reflexes: an investigation of the physio-
logical activity of the cerebral cortex. Ann Neurosci 17(3). https://

doi.org/10.5214/ans.0972-7531.1017309. http://www.annalsofneuro
sciences.org/journal/index.php/annal/article/view/246

Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2018) Evalu-
ating analytic gradients on quantum hardware. Phys Rev A 99(3).
https://doi.org/10.1103/PhysRevA.99.032331. arXiv:1811.11184

Schuld M, Petruccione F (2018) Supervised learning with quantum
computers. Quantum Science and Technology. Springer Inter-
national Publishing, Cham. https://doi.org/10.1007/978-3-319-
96424-9. http://www.springer.com/series/10039

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche
G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M,
Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I,
Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D
(2016) Mastering the game of Go with deep neural networks and
tree search. Nature. https://doi.org/10.1038/nature16961

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez
A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui
F, Sifre L, Van Den Driessche G, Graepel T, Hassabis D (2017)
Mastering the game of Go without human knowledge. Nature
550(7676):354–359. https://doi.org/10.1038/nature24270

Sim S, Johnson PD, Aspuru-Guzik A (2019) Expressibility
and entangling capability of parameterized quantum cir-
cuits for hybrid quantum-classical algorithms. Adv Quantum
Technol 2(12):1900070. https://doi.org/10.1002/qute.201900070.
arXiv:1905.10876

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction,
2nd edn. A Bradford Book. The MIT Press, Cambridge

Watkins CJCH, Dayan P (1992) Q-Learning. Mach Learn.
https://doi.org/10.1007/bf00992698

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

23Hum.-Intell. Syst. Integr. (2021) 3:15–23

http://arxiv.org/abs/1909.07528
http://arxiv.org/abs/1811.04968
https://doi.org/10.1038/srep00400
http://www.nature.com/articles/srep00400
http://arxiv.org/abs/1907.00397
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/11539117_97
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1038/nature14236
https://doi.org/10.5214/ans.0972-7531.1017309
https://doi.org/10.5214/ans.0972-7531.1017309
http://www.annalsofneurosciences.org/journal/index.php/annal/article/view/246
http://www.annalsofneurosciences.org/journal/index.php/annal/article/view/246
https://doi.org/10.1103/PhysRevA.99.032331
http://arxiv.org/abs/1811.11184
https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1007/978-3-319-96424-9
http://www.springer.com/series/10039
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1002/qute.201900070
http://arxiv.org/abs/1905.10876
https://doi.org/10.1007/bf00992698

	Comparing quantum hybrid reinforcement learning to classical methods
	Abstract
	Introduction
	Reinforcement learning
	Q-Learning
	DQN

	Quantum computing
	Qubits
	Quantum gates
	Quantum circuits

	Variational quantum circuits
	Variational quantum deep Q-learning

	Results
	Discussion

	Conclusion
	Appendix : Algorithms
	Declarations
	References

