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Abstract
The availability of reliable electrical power, which is essential for a comfortable lifestyle worldwide, requires realistic power 
usage projections for electric utilities and policymakers, leading to the adoption of machine learning-based modelling 
tools due to the limitations of traditional power usage projection approaches. However, successful modeling of power 
usage in neuro-fuzzy models depends on the optimal selection of hyper-parameters. Consequently, this research looked 
at the major impact clustering methods and hyper-parameter modifications on a particle swarm optimization (PSO)-
based adaptive neuro-fuzzy inference system (ANFIS) model. The study examined two distinct clustering methods and 
other key hyperparameters such as the number of clusters and cluster radius, resulting in a total of 10 sub-models. The 
performance of the developed models was assessed using four widely recognized performance indicators: root mean 
square error, mean absolute percentage error (MAPE), mean absolute error (MAE), and coefficient of variation of the 
root mean square error (CVRMSE). Additionally, the robustness of the optimal sub-model was evaluated by comparing it 
with other hybrid models based on three different PSO variants. The results revealed that the combination of the ANFIS 
approach and PSO, specifically with two clusters, yielded the most accurate forecasting scheme with the optimal values 
for MAPE (7.7778%), MAE (712.6094), CVRMSE (9.5464), and RMSE (909.4998).

Article Highlights

• In fuzzy c-means-based models, more clusters may not consistently improve performance, requiring multiple experi-
ments to find optimal clusters.

• The performance of hybrid models is contingent on the clustering technique and hyper parameter settings.
• Inertia weight strategy plays a key role in the optimal performance of PSO-ANFIS models.
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1 Introduction

Since electricity has developed into such an integral element of our day-to-day lives in the contemporary world, the 
economic development of any country is closely tied to the infrastructure, network, and accessibility of its electrical 
supply [1, 2]. Consequently, there has been a phenomenal rise in the demand for domestic and commercial uses of 
energy all over the world. The process of forecasting future power demand is very important to the electric sector, as it 
serves as the foundation for decision-making about the operation and planning of power systems. Furthermore, with 
the development of renewable energy sources and smart networks, load forecasting, or the prediction of electrical 
energy consumption, is becoming increasingly important [2]. Good grid management requires careful forecasting of 
load demand, a regular repair schedule for generators, transmission and distribution lines, and a judicious allocation 
of loads across these facilities [3]. Forecasting electricity demand and pricing is an extremely important component 
in the process of developing efficient, dependable, and risk-free management strategies for the energy system in 
the context of deregulated energy markets [4]. The key to successfully sustaining energy stability is the implementa-
tion of strategies that encourage the expansion of technologies capable of forecasting demand [5]. When it comes 
to making judgements that are precise and well-informed on the planning of the future, the investigation of such 
technologies may be helpful.

Significant progress has been made in the field of prediction methods over time. Recently, forecasting using 
non-linear models has gained increased attention compared to traditional linear models. This shift is driven by the 
recognition of the inherent nonlinearity in real-world challenges. It underscores the importance of utilizing fore-
casting methodologies capable of accommodating nonlinearity to develop precise and reliable forecasting models 
[6]. The foundation of the artificial neural network (ANN) model is grounded in its nonlinear mapping structure, 
inspired by the configuration of human neurons. This model has proven effective in addressing diverse challenges 
across various fields of activity [7]. Within the domain of modeling methodologies, the adaptive neuro-fuzzy infer-
ence system (ANFIS) emerges as a sophisticated alternative, seamlessly blending the complexities of ANN with the 
nuanced architecture of a fuzzy inference system (FIS). The objective behind this fusion is to amplify the swiftness, 
error resilience, and adaptability of the modeling system, thereby optimizing its overall performance [8, 9]. The 
recent surge in positive feedback regarding the application of ANFIS to time series prediction and issue forecasting 
is a direct consequence of its notable effectiveness, surpassing other conventional approaches. This is attributed to 
ANFIS’s unique capability to concurrently leverage both ANN and FIS. Previous researchers have considered ANFIS 
in various domains [10–12]. However, it is essential to note that ANFIS may encounter imprecision in certain situa-
tions. This imprecision arises from the necessity to determine and optimize its parameters before achieving effective 
utilization. Addressing this challenge effectively involves optimizing ANFIS parameters, a task facilitated through the 
application of Evolutionary Algorithms (EAs), as recommended in relevant references.

The utilization of EAs provides a strategic approach to enhance the precision and performance of ANFIS, contrib-
uting to its overall effectiveness in various applications. That being said, EAs have also proven to be very effective 
when applied to other machine learning models [13, 14]. Their versatility and adaptability make them valuable tools 
across various applications. By incorporating EAs into the optimization process, researchers can fine-tune ANFIS 
parameters to better align with the specific requirements of different scenarios, ensuring improved outcomes and 
robust performance [9, 15, 16]. Combining EAs with ANFIS structures yields a potent AI-based forecasting method 
that draws on the traditional ANN’s propensity for learning and the flexibility of fuzzy logic to make precise forecasts 
[17]. Therefore, EA-based ANN and ANFIS models have rapidly gained popularity in the research community and have 
been investigated in a variety of contexts, few of which are wind [18, 19], heating, ventilation and air-conditioning 
(HVAC) systems [20], agriculture [21], economics [22], education [23], medicine [24], sport [25] etc. The same is true 
for prediction of electricity consumption. For instance, authors in [26] used MLR, ANFIS, and PSO-ANFIS to determine 
the industrial energy demand in Turkey. The PSO-ANFIS model outshines its counterparts, namely the MLR and ANFIS 
models, exhibiting heightened accuracy in predictions and minimizing the margin of estimation error, as corrobo-
rated by research their findings. In ref. [27], the forecasting accuracy for Bonneville, Oregon was increased using a 
NSGA II, ANFIS, and GA. When compared to other approaches, the suggested NSGA II-ANFIS-GA model had the best 
performance. Together, ANFIS and PSO methods were used to simulate the scour hole’s geometric characteristics in 
ski-jump spillways [28]. Simulation findings showed that the suggested model performed better than competing 
approaches on a number of well-known error computation indices. Kumaran and Ravi [29]used an ANN-biogeography 
optimization (BOA) model to an LTF of electric power demand in India. The suggested model uses two BOA-tuned 
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ANNs to find the optimal nonlinear map between input and output values based on socio-economic aspects like 
population. Ahmad et al. [30]investigated a variety of methods for predicting the electrical load in buildings by using 
AI-based techniques such as SVM and neural networks. They proved that employing a combination of two different 
methods of predicting produces better results than using just one strategy alone. Banda and Folly [31], examined how 
well a hybrid PSO/ANN model performed in forecasting hourly to weekly changes in electrical load demand. In order 
to produce an accurate model, the PSO algorithm was used to fine-tune the structure of the standard ANN model 
and bring the forecasting error down. Results demonstrated that the PSO-ANN hybrid outperformed the ANN alone.

Even though hybrid models are effective energy forecasters, much prior research has omitted the potential impact of 
clustering methodologies and other crucial factors necessary for the ANFIS model to be successful. Appropriate care must 
be taken when selecting a clustering strategy to utilize in approximating an output function [32]. A proper selection of 
clustering methods is essential for maximizing competence and guaranteeing excellent forecast correctness. Eventually, 
the model’s accuracy will suffer if the clustering technique and parameters are not chosen properly. Moreover, the hybrid 
PSO and ANFIS have been used in a variety of contexts across a number of papers. Perhaps this is because the PSO algo-
rithm is one of the easiest and most adaptable to use, making it popular in a wide range of industries. However, it is also 
very important to consider the inertia weight (IW), which is a key component of the PSO algorithm to function optimally.

The IW parameter holds significant importance in determining the equilibrium and convergence of the explora-
tion–exploitation phase of the PSO algorithm. The inception of the IW concept, initially proposed in [33], was directed 
towards enhancing the performance of the conventional PSO algorithm. As the field advanced, subsequent research 
has actively sought to improve the conventional PSO algorithm, primarily through subtle adjustments to the IW. Conse-
quently, this study systematically investigates the effects of employing distinct IW strategies. Furthermore, the research 
extends its horizon to probe into the multifaceted impact of diverse clustering methods and other pivotal parameters 
on a sophisticated hybrid model that integrates PSO and ANFIS for the purpose of forecasting electricity consumption. 
The geographical scope of the case study is specified to districts within Lagos, Nigeria. In addition to scrutinizing the 
predictive accuracy, the study systematically evaluates the robustness of the proposed model by subjecting it to rigor-
ous comparisons with various PSO variants.

The main contribution of this study is as follows:

(1) Develop a hybrid model by combining particle swarm optimization and ANFIS for electricity consumption, utilizing 
weather data and historical electric loads.

(2) Investigate the impact of hyper parameters and two renowned clustering techniques such as subtractive clustering 
(SC) and fuzzy c-means (FCM) on the developed model.

(3) Further conduct a comparative study between the developed model and other hybridized PSO-based ANFIS vari-
ants using different inertia weight strategies.

The subsequent sections provide an overview of the remaining aspects of this investigation. Section 2 details the 
materials and procedures employed, while Sect. 3 delves into the analysis of experimental findings. Finally, Sect. 4 con-
cludes the study and presents potential avenues for future research.

2  Materials and methods

2.1  Description of the study area

Southwest Nigeria is home to one of the most populous cities on the African continent, which goes by the name of 
Lagos. It is widely renowned for being the most populous city in Nigeria as well as the key regional hub for transporta-
tion through air, land, and sea. Because of its location on the coast of Nigeria’s Atlantic Ocean and the excellent trade 
routes it provides, the area’s geographic setting is of special significance. In addition to having a big airport, it has road 
and rail connections to the Nigerian cities that are located in the vicinity. Situated at 6° 27′ 55.5192″ N latitude and 
3° 24′ 23.2128″ E longitude, the metropolitan area with high population density encompasses 16 out of the 20 local 
government areas (LGA) within the region (refer to Fig. 1). The climate in the state manifests itself through two well-
defined seasons: the rainy season spanning from April to October and the dry season prevailing from November to March. 
This climatic occurrence arises from the convergence of the hot and arid air mass from the continental interior with the 
warm and moisture-laden tropical air mass from the marine environment [34]. Changes in temperature and humidity 
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throughout the year influence people’s routines and, as a result, the amount of energy they use. This research considered 
the development of a hybrid modelling scheme for predicting the energy usage during the wet season.

2.2  Data collection

In this study, we investigate the influence that clustering methods and other critical characteristics have on hybrid mod-
els for estimating the amount of energy that is used in 10 different districts in Lagos (see Fig. 1). Utilizing information 
obtained from the Eko Electricity Distribution Company (EKEDC), the forecasting model was constructed using data from 
the wet months of 2020. Climatic data, encompassing maximum temperature, minimum temperature, humidity, wind 
speed, and dew, was sourced from the Visual Crossing Weather Data stations, aligning with the geographical scope of the 
study. The model’s output, measured in megawatt-hours (MWh), is the electricity consumption. The model was developed 
utilizing 214 sets of experimental data, encompassing daily consumption and environmental factors over the span of a 
year. Training of the model involved 150 data samples, while the remaining 64 hold-out data points were employed to 
assess the model’s precision. Following an assessment of model fit to the data, the optimal model was chosen based on 
criteria aiming for the least amount of error. A comprehensive analysis of the two primary methods of clustering is car-
ried out, during which significant parameter changes are also taken into consideration. This results in the development 
of many sub-models. Following a number of different simulations, the best model is chosen. To provide insight into the 
data used, Table 1 presents the statistical properties of the input and output data.

2.3  Adaptive neuro‑fuzzy inference system (ANFIS)

In 1993, Jang [8] introduced the concept of the ANFIS as a distinctive hybrid model that combines neural networks 
and fuzzy logic in its structure. One of its notable advantages is its capability to extract fuzzy rules from numerical 
data and expert knowledge, subsequently constructing an adaptive rule base from this information. This fusion aims 
to enhance the speed, robustness, and adaptability of the modeling system, thus optimizing its overall performance 

Fig. 1  Geographical representation indicating the location of the study area [9]
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[8, 9]. As a result of this integration, ANFIS has gained significant acclaim for its application in time series prediction 
and issue forecasting. Its effectiveness is demonstrated by its superiority over traditional methods, attributed to its 
remarkable ability to simultaneously harness the strengths of both ANN and FIS. ANFIS addresses the complex task 
of translating human intelligence into fuzzy systems [35]. ANFIS strives to achieve the intricate task of establishing a 
model that effectively correlates input parameters, represented by initial values, to the desired target outcomes or 
predicted values. This involves a multi-stage process, encompassing the mapping of input characteristics to input 
MFs, subsequent relationships between these functions and a comprehensive set of TSK-type fuzzy if–then rules, 
mapping these rules to a set of output features, linking these features to output MFs, and ultimately connecting 
the output MF to a singular output value or a decision associated with the output, thus demonstrating the compre-
hensive functionality and complexity of ANFIS [36]. Presuming the fuzzy inference system comprises two inputs (x, 
y) and a solitary output (f), the first order Sugeno fuzzy model is characterized by a distinct structure in a singular 
fuzzy if–then rule.

where the membership functions are denoted by I1 , I2 , J1 , and J2 ; the input parameters are represented as x and y ; the 
outputs obtained from the system are designated as F1 and F2 ; the nodal consequent parameters are a , b , and c . The 
structure of ANFIS in this uncomplicated scenario is depicted in Fig. 2, encompassing five tiers. The initial layer serves 
as the input stage, followed by the fuzzification layer, succeeded by the third and fourth layers dedicated to fuzzy rule 
assessment, culminating in the fifth layer designated for defuzzification.

The model’s structural design is portrayed in Fig. 2. Within these layers, the product, normalization, and defuzzi-
fication layers maintain a consistent number of nodes, whereas the fuzzy and output layers possess adaptive char-
acteristics. In the initial layer, each adaptive node flexibly adjusts to a function parameter, comprising a fuzzy MF. 
The output function is dictated by:

(1)Rule 1 ∶ If x is I1 and y is J1, F1 = a1x + b1y + c1

(2)Rule 2 ∶ If x is I2 and y is J2, F2 = a2x + b2y + c2

Table 1  Statistical properties of the input and output data

Input Output

Max Tempera-
ture (°C)

Minimum Tem-
perature (°C)

Average dew Humidity (%) Windspeed (m/s) Electricity 
consumption 
(MWh)

Maximum 35.0000 28.0000 26.6000 98.3000 75.6000 12,386.300
Minimum 25.1000 20.0000 21.1000 76.6000 9.4000 4241.90
Mean 30.5000 24.1200 24.0100 84.8600 23.0700 9530.44
Standard deviation 2.2600 1.5900 1.0900 4.0400 9.6500 1378.70

Fig. 2  ANFIS model architec-
ture
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In addition, the second layer consists of nodes that are not adaptive, and the firing strength of each rule is calculated by 
utilizing Eq. (5).

The third layer conducts the normalization of the firing intensity at the jth node. The outcome of this layer is derived from 
the proportion of the node’s firing intensity to the aggregate firing intensity of the remaining nodes, as depicted in Eq. (6). 
Acceptable values for both the normalized layer and the normalized firing intensity span from 0 to 1.

The defuzzification procedure is executed within this layer. Every node in this stratum is dynamic, utilizing the acquired 
node functions. The ensuing nodes integrate both the input and normalized signals from the preceding normalized layer, 
determining the jth rule’s influence on the output, as delineated in Eq. (7).

where pj , qj , and rj are the consequent parameters of the node j.
In the fifth layer, non-adaptive nodes are present, and a summation function is employed to aggregate all incoming signals 

from the preceding layers [37].

2.4  PSO‑ANFIS model

Kennedy and Eberhart’s groundbreaking work [38] led to the inception of the PSO, an evolutionary algorithm that has gained 
widespread acceptance. Drawing inspiration from the complex dynamics inherent in fish schooling and bird flocking, this 
population-driven bio-inspired approach has achieved notable recognition across diverse domains. PSO is celebrated for its 
uncomplicatedness, stability, and enhanced computational capabilities, particularly evident in addressing nonlinear, high-
dimensional, and multi-optimal problems [39]. Therefore, the utilization of the PSO algorithm has become exceptionally 
prevalent in the optimization field, surpassing alternative algorithms. Furthermore, it has been employed in population-
based search methodologies, wherein each potential solution or swarm is symbolized by a population particle. Through this 
approach, a continuous adaptation of each particle’s position within a search space is initiated until optimal solutions are 
reached, adhering to predefined computing constraints [40]. The integration of the PSO algorithm, ANN, and FIS structures 
defines the complex PSO-ANFIS hybrid model. This sophisticated amalgamation harnesses the collaborative capabilities of 
these constituents, resulting in an advanced framework tailored for modeling and optimization endeavors. The model’s effec-
tiveness emanates from merging ANN’s relational structures and learning proficiencies, incorporating fuzzy logic’s inherent 
dynamic qualities in decision-making encapsulated within ANFIS, and integrating the PSO algorithm’s prowess in parameter 
tuning. In a population of N particles, each particle i comprises position components Xd

i
 and velocity components Vd

i
 at the 

dth dimension. The updates in position and velocity for each particle are expressed as follows:
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where r1 and r2 ∈[0, 1]; c1 and c2 are the cognitive and social constants, respectively. The term w is referred to as inertia 
weight. Figure 3 displays the employed PSO-ANFIS model.

2.5  Clustering techniques

The process of clustering involves the partitioning of data sets into distinct groups, wherein each cluster encompasses a 
unique entity. Clustering assumes a pivotal role in the domains of data mining and statistical analysis, and it is noteworthy 
that it constitutes a fundamental factor contributing to the precision of ANFIS models. The ANFIS employs two different 
clustering methods to organize the data into similar fuzzy clusters, which it then uses to assign MFs and generate the 
FIS structure from the data[41]. The subsequent sections delve into an exploration of the two prominently utilized clus-
tering techniques. This research scrutinizes each of these clustering algorithms with the overarching aim of predicting 
energy consumption.

2.5.1  Fuzzy c‑means clustering (FCM)

The employment of the FCM methodology streamlines the clustering process by allowing individual data items to 
contribute to multiple clusters. To ensure the efficacious operation of this approach, each data point is allocated mem-
bership values based on its proximity to every cluster center, determined by the spatial separation between the cluster 
center and the specific data point. As an unsupervised methodology for data scrutiny and model construction, FCM 

Fig. 3  Proposed PSO-ANFIS model
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discovers applications across a myriad of disciplines. Within the ANFIS framework, discerning the MF stands as a pivotal 
facet, entailing a challenge rooted in clustering. The primary objective of the FCM technique within this construct is the 
minimization of the overall number of fuzzy rules applied during the analysis. In FCM, gauging the extent to which data 
pertains to distinct clusters involves the minimization of an objective function. Equation (11) elucidates the formula 
utilized to determine the optimal value for the spatial distance from the center to each datum for every fuzzy group n 
and vector xi , where i  = 1, 2 … n.

In the specified range (1 ≤ m ≤ ∞) , the weighting exponent is denoted by ‘m,’ the degree of membership is repre-
sented by Um

ij
∈ (0, 1) , the data point is expressed as xi , the centroid of clusters is illustrated as cj , and the number of 

clusters is identified as C. The Uij of the data point in the j cluster at any iteration is calculated as follows:

2.5.2  Subtractive clustering (SC)

The primary objective inherent in clustering methodologies is the systematic arrangement of data into discrete groups, 
employing a metric of similarity. The SC technique operates on the underlying assumption that each individual data 
point harbors the inherent potential to act as the centroid of a cluster. Subsequently, it quantifies the probability of each 
data point assuming the role of delineating the cluster center by scrutinizing the density of data points positioned in its 
immediate vicinity [42]. Assuming the resultant dataset, denoted by the letter x, arises from the amalgamation of the 
system’s input data set X and its output data set Y, and further assuming that each dimension of the data has undergone 
standardization, implying the confinement of data set x within a hypercube, the SC method treats each point as a can-
didate for the center of a cluster. It calculates the distance between these points utilizing Eq. (13) [43]:

The symbol ra signifies the cluster’s radius, while |.| expresses the Euclidean distance between clusters, and n refers to 
the count of sampled data points. Applying Eq. (14), the SC algorithm computes the potential for each point. The initial 
cluster center, xc1 , is designated at the position with the utmost potential, denoted by Dc1 . The potential for each data 
point, xi , undergoes updating through the specified equation [43]:

The region’s radius with significant potential for decrease is denoted as rb . To avoid clusters becoming overly compact, 
it is advisable to set rb to a value greater than ra [43]. The selection of the next center involves identifying the point with 
the highest potential. This process continues until one of the predetermined stopping criteria is satisfied.

2.6  Model performance evaluation

The developed models’ precision is shown by comparing observed and predicted values of power consumption across 
five distinct indicators of system’s performance and efficiency. The chosen performance measures have been widely 
employed in numerous prior studies. Research has shown that RMSE (38%) is the most popular error measure among 
electricity forecasts, with MAPE (35%) coming in a close second [3]. In the context of an ANFIS model for electricity 
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prediction, each evaluation parameter offers valuable insights into the accuracy and reliability of the forecasts. MAPE 
gauges the average absolute percentage difference between predicted and actual electricity consumption values, 
with lower MAPE values indicating higher precision in the predictions. Similarly, MAE calculates the average absolute 
difference between predicted and actual consumption values, providing a measure of prediction accuracy. RMSE 
assesses the typical deviation of the model’s predictions from the actual electricity consumption values, with lower 
RMSE values indicating improved model performance. CVRMSE offers a normalized measure of prediction error rela-
tive to the magnitude of observed electricity consumption values, with lower CVRMSE values suggesting enhanced 
predictive accuracy relative to the variability of observed consumption levels. The correlation coefficient (R) was also 
used to evaluate the performance of the developed models. The criteria for choosing the best model are outlined in 
Table 2. The delineations of the performance metrics (PM) are expounded as follows:

In the equations, k represents the index of the sample, N denotes the total number of samples, Pk stands for the 
predicted electricity consumption value for the ith sample, and Ok represents the observed electricity consumption 
for the same sample. Additionally, O ̅ and P ̅ denote the average observed and predicted values, respectively.

(15)MAPE =
1

N

N∑
k=1

||||
Pk − Ok

N

|||| × 100%

(16)MAE =
1

N

N∑
k=1

||Pk − Ok
||

(17)RMSE =

√√√√ 1

N

N∑
k=1

(
Pk − Ok

)2

(18)CVRMSE =
100

P

�∑N

k=1

�
Pk − Ok

�2
N

(19)R =

⎡
⎢⎢⎢⎢⎣

∑N

k=1

�
Ok − O

��
Pk − P

�
�∑N

k=1

�
Ok − O

�2

×
∑N

k=1

�
Pk − P

�2

⎤⎥⎥⎥⎥⎦

Table 2  Respective 
acceptability criteria for 
performance metrics

Performance measures Acceptability criteria

MAPE [44, 45] High accuracy
(MAPE ≤ 10%)
Good prediction
(10% < MAPE ≤ 20%)

Reasonable prediction
(20% < MAPE ≤ 50%)
Inaccurate prediction ( MAPE > 50%)

MAE, RMSE, and CVRMSE The lower they are, the better
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3  Results and discussion

In this session, the experimental findings and statistical results obtained from the developed models are discussed. 
The performance of the model was evaluated using a separate portion of the data (30% hold-out data), and relevant 
statistical metrics were employed to assess its statistical significance and effectiveness. A careful examination was 
conducted on how the performance of a hybrid model can be affected by the selection of a specific clustering tech-
nique and set of parameters. This investigation was an integral part of our overall research study. The table labeled 
Table 3 provides information about the essential parameters used in each clustering technique. The settings of 
these parameters were varied to find the combinations that yielded the most dependable PSO-ANFIS simulations. 
Regarding the FCM clustering technique, a range of 2–6 clusters were tested to investigate the impact of number of 
clusters (NoC) on the FCM-based hybrid model. In addition, for the SC-based hybrid model, a cluster radius (CR) in 
the range of 0.40–0.60 in the increment of 0.05 was examined. The parameter settings for the PSO algorithm are as 
follows: c1 = 1 , c2 = 2, ωdamp = 0.99, ω = 1 [46]. In light of these considerations, various sub-models were developed 
and meticulously analyzed with diverse hyperparameter configurations to ensure accurate and reliable assessment.

3.1  Performance implications of clustering parameters

The application of the SC algorithm is prevalent in the clustering of data, employing a fundamental concept that 
situates the center of each cluster at the data point with the highest density (potential) across various variables or 
dimensions [48]. The robustness and efficacy of the resultant clusters are intricately tied to the radius parameter, a 
critical factor influencing both the quantity and strategic placement of cluster centers. A thoughtful consideration 
of this parameter is essential, as a small radius may inadvertently overlook pertinent data points within the cluster’s 
center, while an inflated value possesses the potential to disproportionately amplify the contributions of all data 
points, thereby diminishing the intended density effect [47]. Consequently, a series of tests were conducted on PSO-
ANFIS, utilizing CR values ranging from 0.40 to 0.60 with an increment of 0.50. This led to the creation of five distinct 
sub-models. The outcomes of the PSO-ANFISSC sub-models are showcased in Table 4, while Fig. 4 illustrates the 
visual representation of observed and anticipated electricity consumption, accompanied by respective error plots. 
Considering the testing phase, an irregular trend was observed as the CR increased from 0.40 to 0.60. Among these 

Table 3  Clustering method 
parameters

ANFIS-FCM ANFIS-SC

Minimum improvement: 1e−5 Cluster radius: 0.40–0.60
Number of exponents for partitioning
Matrix: 2
Number of clusters: 2–6

Table 4  Evaluation of the 
performance of PSO-ANFISSC 
models

Bold text in the tables indicates the most successful results

Sub-models CR PM
MAPE

PM
MAE

PM
CVRMSE

PM
RMSE

PSO-ANFISSC1 0.40 Training 7.3926 645.1913 8.5891 808.0953
Testing 8.3794 802.3725 10.3782 1.0188e+03

PSO-ANFISSC2 0.45 Training 7.1515 608.8522 8.7314 833.2915
Testing 10.2937 608.8522 14.7884 1.4048e+03

PSO-ANFISSC3 0.50 Training 8.5231 724.2123 10.0148 945.2829
Testing 8.7548 831.9323 11.5979 1.1302e+03

PSO-ANFISSC4 0.55 Training 7.7748 681.4841 9.4624 1.0922e+03
Testing 9.5075 785.1866 11.3818 1.0922e+03

PSO-ANFISSC5 0.60 Training 7.7706 661.3806 9.6029 914.8315
Testing 9.8516 882.4110 11.6323 1.1097e+03
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sub-models, the best performance was achieved by PSO-ANFISSC1, which had the smallest CR value (0.40) and exhib-
ited the lowest values for MAPE (8.3794%), RMSE (1.0188e + 03), and CRMSE (10.3782). PSO-ANFISSC1 demonstrated 
the highest forecasting accuracy of 91.6% compared to other sub-models. Nonetheless, PSO-ANFISSC2 exhibited a 
commendable performance in relation to MAE, recording a value of 608.8522. As revealed in Fig. 5 the regression 
(R = 0.67118) showed the performance of the forecasting model.

The choice of the NoC within the neuro-fuzzy model clustered by FCM can influence performance, computational 
complexity, and interpretability. Striking the appropriate balance is essential, as an excess of clusters can lead to 
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output for optimal PSO-
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overfitting, while insufficient clusters may result in underfitting. To address this, we conducted experiments to deter-
mine the optimal NoC for our proposed PSO-ANFISFCM model, considering specific application requirements and 
data characteristics. Table 5 compares the performance of the PSO-ANFISFCM models in the testing phase. Figure 6 
showcases the visual depiction of both the observed and anticipated electricity consumption, accompanied by the 
error plots that correspond to them. The sub-model PSO-ANFISFCM1, with 2 clusters, outperformed other sub-models 
in terms of key performance metrics. It achieved a MAPE of 7.7778%, indicating a prediction accuracy of 92.2%. 
Additionally, it exhibited a lower. Figure 7 shows the performance of the forecasting model with the R = 0.68647.

MAE of 712.6094, a lower CVRMSE of 9.5464, and a lower RMSE of 909.4998. A careful observation of the show 
that the different number of clusters produced different results. In addition, it is possible that increasing the NoC in 
ANFIS-based FCM does not always lead to better performance, thus it may be necessary to carry out many tests to 

Table 5  Evaluation of the 
performance of PSO-ANFISFCM 
models

Bold text in the tables indicates the most successful results

Sub-models NoC PM
MAPE

PM
MAE

PM
CVRMSE

PM
RMSE

PSO-ANFISFCM1 2 Training 9.0445 761.8196 10.7965 1.0291e+03
Testing 7.7778 712.6094 9.5464 909.4998

PSO-ANFISFCM2 3 Training 8.4433 723.9737 10.2495 981.9568
Testing 9.3704 786.0590 10.9366 1.0295e+03

PSO-ANFISFCM3 4 Training 8.8835 757.9881 10.6890 1.0205e+03
Testing 8.3272 731.6594 9.7551 925.9669

PSO-ANFISFCM4 5 Training 7.6780 674.1675 9.3541 898.2425
Testing 11.3170 918.4851 12.8858 1.2063e+03

PSO-ANFISFCM5 6 Training 8.0887 708.1166 9.8739 945.4926
Testing 10.3493 851.9106 11.6600 1.0989e+03
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find the ideal quantity [9]. If the number of clusters is increased above 6, there is a possibility that there will be more 
ambiguity, noise, and overfitting.

When evaluating the regression R value, the optimal PSO-ANFISFCM model surpassed its counterpart, demonstrating a 
higher R value (0.68647) in contrast to the optimal PSO-ANFISSC model, which attained a value of 0.67118. This highlights 
the superior predictive capability of the PSO-ANFISFCM model in electricity prediction. This difference underscores the 
importance of model optimization techniques in achieving more accurate electricity prediction results. It suggests that 
the PSO-ANFISFCM approach may offer advantages over the PSO-ANFISSC method in capturing the complex relationships 
inherent in electricity consumption or generation data.

Table 6 illustrates the performances of the premier sub-models corresponding to each clustering approach. The out-
comes unveiled the exceptional performance of each optimal sub-model. Notably, the PSO-ANFISFCM1 model emerged 
as the most accurate forecaster among them. This outcome signifies a commendable level of concurrence in the com-
prehensive forecast, affirming that the FCM-clustered PSO hybrid model, particularly with a reduced number of clusters 
(specifically, two clusters), stands as a feasible neuro-fuzzy hybrid model for precise energy consumption predictions.

Furthermore, the performance of the optimal models was also compared with the standalone ANFIS. It can be seen 
that just using ANFIS in standalone mode will not provide optimal results. This further justifies why hybrid models should 
be considered for accurate model prediction.

3.2  Comparison of sub‑optimal model with PSO variants

The inertia weight assumes a pivotal role in steering the convergence and equilibrium dynamics during the explora-
tion–exploitation phase within the PSO algorithm. Shi and Eberhart’s innovative augmentation of the traditional PSO 
algorithm introduced an inertia weight, striving for an optimal equilibrium between local and global search strategies 
[33]. As the field progresses, a persistent effort is evident in refining the classical PSO algorithm, with a particular focus 
on enhancing the inertia weight (w). The algorithm’s efficacy is markedly contingent on the appropriateness of the w 
[48]. An excessively large w results in a deceleration of convergence, while an overly small value hastens the settlement 

Fig. 7  Target versus network 
output for Optimal PSO-ANF-
ISFCM testing data

Table 6  Optimal sub-model 
comparison

Bold text in the tables indicates the most successful results

Sub-models Input MF-type PM
MAPE

PM
MAE

PM
CVRMSE

PM
RMSE

ANFIS Training 8.3955 711.7011 10.0148 942.2322
Test 8.3898 791.9362 10.1797 999.2798

PSO-ANFISSC3 CR = 0.40 Training 7.3926 645.1913 8.5891 808.0953
Testing 8.3794 802.3725 10.3782 1.0188e+03

PSO-ANFISFCM1 NoC = 2 Training 9.0445 761.8196 10.7965 1.0291e+03
Testing 7.7778 712.6094 9.5464 909.4998
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on the best local solution. Hence, the meticulous selection of an appropriate w is paramount for ensuring the precision 
of PSO-ANFIS models. To address this, the utilization of three distinct PSO variants, each incorporating different w values 
and cognitive proposed by various researchers (e.g.,  PSOvar1 [49],  PSOvar2 [50], and  PSOvar3 [51]), has been instrumental in 
constructing diverse PSO-ANFIS models. The intricacies of the parameter configurations for the PSO variants are meticu-
lously outlined in Table 7, accompanied by the explicit equations defining w for each variant.

The comparative evaluation of the optimal model from the preceding section was conducted with new variants, 
and the model that exhibited the highest level of performance was ultimately chosen. Table 8 presents a comparative 
analysis of various PSO-ANFIS variants employed. As it may be seen in Table 8, the forecast accuracy in decreasing order 
is PSO-ANFISvar1 (88.2%), PSO-ANFISvar3 (90.6%), PSO-ANFISvar2 (92.1%), and PSO-ANFISFCM1 (92.2%). It can be observed 
that although all the models produced a commendable result the PSO-ANFISFCM1 maintained its optimal response. The 
present study’s findings suggest that the optimal value for the inertia weight parameter in the PSO-ANFISFCM1 is repre-
sented by the � parameter. An advantage of the PSO-ANFISFCM1 model lies in its incorporation of a damping factor ( ωdamp

), that serves to regulate the balance between the particles’ exploratory and exploitative abilities, as well as govern the 
transmission of positional information from the previous state [52, 53]. According to the findings, PSO-ANFISFCM1 is the 
most effective method for predicting the power consumption.

This study has shed light on the crucial role played by the selection of the data clustering technique in conjunction with 
other important parameters in determining the accuracy of ANFIS modeling. The results obtained clearly demonstrated 
that different clustering techniques can yield varying levels of precision and effectiveness in ANFIS modeling. Additionally, 
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Table 7  Configuration of 
parameters for the PSO 
variants

PSO variants Configuration of parameters

PSO-ANFISvar1 �start = 0.6, �end = 0.1, c
1
= 1, c

2
= 2

PSO-ANFISvar2 c
1max = c

2max = 2 ; c
1min = c

2min = 
2, �max = 0.9, �min = 0.2

PSO-ANFISvar3 �start = 0.4, �end = 0.9, c
1
= c

2
= 2

Table 8  Comparison of the 
Optimal Sub model with other 
PSO variants and methods

Sub-models PM
MAPE

PM
MAE

PM
CVRMSE

PM
RMSE

PSO-ANFISvar1 Training 7.5608 671.8936 9.3489 896.5819
Testing 11.7352 939.1325 13.0674 1.2271e+03

PSO-ANFISvar2 Training 9.0732 771.4175 10.6911 1.0135e+03
Testing 7.8860 722.2274 9.8029 945.8676

PSO-ANFISvar3 Training 8.4036 720.7951 10.1458 975.8934
Testing 9.4255 792.0338 11.1791 1.0423e+03

PSO-ANFISFCM1 Training 9.0445 761.8196 10.7965 1.0291e+03
Testing 7.7778 712.6094 9.5464 909.4998
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the impact of these parameters on the accuracy of the model cannot be understated, as they can significantly influence 
the performance and reliability of the ANFIS system. These findings emphasize the need for careful consideration and 
thoughtful selection of the data clustering technique and other relevant parameters to achieve optimal accuracy in 
ANFIS modeling.

In addition, the results of this analysis emphasize the enhanced precision and decreased margin of error attained 
through the utilization of the FCM clustering technique. This discovery aligns with prior observations, highlighting FCM’s 
preference among clustering methods due to its swift processing and unique feature of enabling items to belong to 
multiple groups, distinguishing it from alternative clustering algorithms [54]. Moreover, the FCM exhibits robustness in 
the face of ambiguity and possesses the capability to retain a substantially larger amount of data compared to alternative 
hard clustering methods [55]. In addition, it is not necessarily true that the performance of FCM clustered ANFIS model 
improves by simply increasing the number of clusters. Therefore, it becomes crucial to carry out multiple experiments 
in order to identify the optimal number of clusters for a specific model.

4  Conclusion

Predicting future energy use is essential for effective power system management and planning. Precise energy prediction 
has the potential to enhance energy utilization, minimize expenses, and enhance energy efficacy. Machine learning (ML) 
has become a potent technique for energy prediction, especially when used in conjunction with metaheuristic algo-
rithms (MAs). The present study has examined the importance of hyperparameter tuning in hybrid neuro-fuzzy models 
for achieving optimal model building in the context of electricity consumption forecasting. The study has focused on 
selected districts in Lagos, Nigeria as a case study. The dataset was divided into a training set (70%) and a testing set 
(30%) to assess the accuracy and competency of the model. The PSO algorithm was employed as a means to efficiently 
explore the optimal values of the ANFIS hyperparameters. In light of the significance of the clustering technique and other 
hyperparameters in the operation of the ANFIS, this study sought to examine the effects of various clustering methods 
and their respective variables on the proposed PSO-ANFIS framework. The primary objective was to identify the most 
effective combination that yields superior prediction accuracy. Multiple sub-models were developed, analyzed, and com-
pared using widely recognized statistical metrics such as MAPE, MAE, CVRMSE, and RMSE. Additionally, the robustness of 
the optimal sub-model was tested against various variants of the PSO algorithm. The experimental results revealed that 
the PSO-ANFIS with FCM clustering technique and 2 clusters outperformed other configurations, exhibiting the lowest 
MAPE (7.7778%), MAE (712.6094), CVRMSE (9.5464), and RMSE (909.4998). These findings highlight the superior accuracy 
and reduced error achieved by employing the FCM clustering technique in this analysis.

In further research, it could be worthwhile to consider expanding both the amount of experimental data and the 
number of input variables. Additionally, the impact of key parameters critical to the efficacy of the PSO algorithm, such 
as cognitive and social learning rate, neighborhood topology, swarm size, and velocity limit, can be examined in the 
hybrid PSO-ANFIS.
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