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Abstract
Biological synthesis of metal nanoparticles has caught the interest of scientists due to the environment friendly synthesis 
approach which yields metallic nanoparticles with antimicrobial potency. In the present study silver nanoparticles were 
produced using a green method with the assistance of Fusarium sp. fungal cell filtrate and their antimicrobial potency 
was explored. The silver nanoparticles depicted a surface plasma resonance of 434 nm when run in the Ultra Violet–
Visible Spectrophotometer. The functional group present in the nanoparticles were investigated using an Attenuated 
Total Reflectance-Fourier Transform Infrared where –OH, C–H, amide I and amide II functional groups were notable. The 
morphology and crystallinity of the produced silver nanoparticles was investigated with the help of a Scanning Electron 
Microscope and X-ray Diffraction. The X-ray diffraction results revealed that the nanoparticles were crystalline in nature 
with a face centred cubic structure and a crystallite size of 38.5 nm. The Scanning Electron Microscope revealed that 
the nanoparticles were spherical with sizes ranging between 3 to 43 nm. Antimicrobial studies of the synthesised silver 
nanoparticles were conducted at different concentrations (1 mM, 10 mM, 20 mM and 100 mM) against disease causing 
microorganisms Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, the results showed 
that at a concentration of 1 mM there was no inhibition but as the concentration was increased to 20 mM and 100 mM, 
there was a notable inhibition with the maximum inhibition zone being 17 ± 0.6 mm.

Article highlights

• The study involved synthesis, optimization and characterization of silver nanoparticles that were produced with the 
help of Fusarium sp.

• Characterization of the silver nanoparticles revealed that the nanoparticles were crystalline and spherical in nature.
• The antimicrobial results indicated that the nanoparticles had notable inhibition zones meaning they can be applied 

as antimicrobials.
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1 Introduction

Antimicrobial resistance has stood out to be among the major and urgent risks to human health which makes preven-
tion and successful treatment of various ailments very difficult [1, 2]. Problems arising from antimicrobial resistance 
affect both the developing and developed nations posing great risks to public health [3]. Worldwide, the centre for 
disease control estimated that 4.95 million people lost their lives due to antimicrobial resistance related infections 
in 2019 [4]. To curb this menace, metal nanoparticles such as copper, zinc and silver are increasingly being utilized 
as antimicrobial agents as they have been shown to possess good inhibitory activity [5–7]. For instance, Herault 
et al. developed silver-containing titanium dioxide nanocapsules for combating multidrug-resistant bacteria. In their 
study, they observed that silver-containing titanium dioxide nanocapsules had strong antimicrobial activity against 
Escherichia coli and even against a multidrug-resistant strain of Staphylococcus aureus [8]. They demonstrated that 
the presence of the nanocapsules in macrophages that did not affect cell viability and did not activate proinflamma-
tory responses at doses of up to 20 μg/mL [8]. With an aim to develop antimicrobial wound dressings, Madivoli et al., 
fabricated a stimuli responsive cellulose chitosan wound dressing containing zinc oxide nanoparticles. In the study, 
the authors observed that presence of zinc oxide entrapped within the polymeric network resulted in to inhibitory 
activity against Escherichia coli [9, 10]. On the mechanisms of action it has been postulated that nanoparticles do 
possess the potentiality to attach themselves on the plasma membrane via interactivity with the Coulomb force there 
by disrupting the plasma membrane [11, 12]. The triggering of a reactive oxygen species comprise of a mechanism 
where the nanoparticles induce disintegrations of microbial cells that only stop when the life of the microorganism 
is terminated [13–15].

In a study carried out by Ibrahim et al., it was observed that titanium oxide functionalized polystyrene nanocom-
posites exhibited good antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa [16]. Bayger 
et al. observed that medical sutures coated with biosynthesized silver nanoparticles were able to inhibit the growth 
of Candida albicans, Escherichia coli and Staphylococcus aureus [17]. Srisod et al. employed antimicrobial silver nano-
particles as a coatings which exhibited powerful and long lasting antibacterial properties against Staphylococcus 
aureus and Escherichia coli [18]. Jayakumar et al., developed polyvinyl alcohol antimicrobial fabrications by incor-
porating ZnO nanoparticles that had strong deterrence against Staphylococcus aureus, Klebsiella pneumoniae and 
Pseudomonas aeruginosa [19].

In another study Valenzuela et al., were able to obtain stable antimicrobial surfaces that were based on ZnO 
nanoparticles that had good proficiency against Staphylococcus aureus [20]. Turakhia et al., were able to fabricate 
cotton with copper oxide nanoparticles which was found to have promising antibacterial actions against Escherichia 
coli [21]. Another study by Acikbas and Calis Acikbas reported a modification of surfaces with copper oxide nano-
particles which showed good deterrence of Staphylococcus aureus and Escherichia coli [22]. In view of the potential 
antimicrobial activities portrayed by nanoparticles, this study therefore aimed at exploring and investigating the 
antimicrobial properties of silver nanoparticles synthesized using Fusarium sp. cell filtrate. The nanoparticles were 
characterized using an Ultra Violet Visible Spectrophotometer, an Attenuated Total Reflectance Fourier Transform 
Infrared, a Scanning Electron Microscope and by X-ray diffraction while their inhibitory activity against Bacillus subtilis, 
Staphylococcus aureus and Pseudomonas aeruginosa was evaluated using disc diffusion assay.

2  Materials and methods

2.1  Isolation of fungus

A soil sample was collected from Jomo Kenyatta University of Agriculture and Technology (JKUAT) farm in Juja, 
Kiambu County. The sample collection was done at a depth of 3–4 cm with the help of a spatula before taking the 
samples to JKUAT botany laboratory. 1 g of the soil sample was placed in 9 mL of sterile distilled water and was well 
shaken. Potato dextrose agar media was prepared by dissolving 39 g of the potato dextrose agar powder in 1000 mL 
distilled water which was supplemented with streptomycin, an antibiotic. The media was then sterilised by autoclav-
ing at 15 lbs pressure and at 121 °C for fifteen minutes. Some fresh media was then poured into a petri dish where 
it solidified. 100 µl of the sample soil solution were placed on the potato dextrose agar plate, spread using a sterile 
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glass spreader, and then incubated at 28 °C for four days. After the 4 days of incubation sub-culturing was done 
using new potato dextrose agar plates. The plates were then incubated for 10 days at a temperature of 28 °C to allow 
development and growth of the fungal strain [23].

2.2  Characterization of the fungal strain

After the incubation period the fungal strain was identified based on its morphological characteristics. The charac-
terization bench was cleaned using 70% alcohol whereas the lenses of the compound microscope were also cleaned 
using xylene. A sterile mounting needle was used to place the isolate on the slide and a drop of lacto-phenol dye was 
introduced before covering the slide with the cover slip. The slide was placed on the microscope and observation of 
the mycelia and the spore patterns was used for identification and characterization at a magnification of X40 under a 
compound microscope [24].

2.3  Fungal biomass production

To prepare potato dextrose broth media 24 g of the potato dextrose broth was dissolved in 1000 mL distilled water. The 
media was then divided in 250 mL portions and sterilised by autoclaving at 15 lbs pressure and at 121 °C for 15 min, 
Fusarium sp. was inoculated aseptically in the broth media using sterile mounting needles and were incubated at room 
temperature for 14 days. The produced biomass was then harvested by filtration through a sterilised muslin cloth and 
then washed with distilled water to ensure removal of any components of the growth media. The biomass wet weight  
measured was dissolved in 200 mL sterile distilled water. The flasks were then incubated at room temperature on a rotary 
shaker with 120 rotations per minute for 24 h. The biomass was filtered and the crude cell filtrate was collected for the 
use in the synthesis procedures [25].

2.4  Synthesis optimisation

To evaluate the effect of different reaction parameter on the synthesis of silver nanoparticles, the reaction time, concen-
tration of silver nitrate solution, ratio of silver nitrate solution and the Fusarium cell filtrate, and the reaction temperature 
were evaluated. First, the effect of fungal filtrate amount on the synthesis of silver nanoparticles was studied by reacting 
2 mM silver nitrate solution with different ratios of the Fusarium fungal cell filtrate (1:1–1:3) at 80 °C for an hour [26].

In order to determine the optimum concentration of the silver nitrate solution in the synthesis of the nanoparticles 
using Fusarium sp. 1 mM, 1.5 mM and 2 mM concentrations were prepared and were then reacted with the Fusarium 
fungal cell filtrate at a ratio of one is to one. The reaction time was maintained at one hour at a temperature of 80 °C. At 
the close of each reaction, the absorbance was measured and the spectrum obtained was recorded [27].

The optimum temperature was investigated by subjecting the silver nitrate solution and the Fusarium fungal cell 
filtrate to different temperatures. Time was held constant for an hour while the concentration of silver nitrate was main-
tained at 2 mM. The contact ratio of one is to one between the silver nitrate solution and the Fusarium fungal cell filtrate 
was as well maintained. Temperatures 60 °C, 70 °C and 80 °C were investigated and at the end of each investigation the 
absorbance and spectrums associated with each reaction were recorded [28].

Synthesis of nanoparticles using the fungal cell filtrate time was varied at different intervals for a period of five hours. 
A ratio of one is to one between the silver nitrate solution and the Fusarium cell filtrate was used in the investigation at 
a contact temperature of 80 °C. The concentration of the silver nitrate solution was held constant at 2 mM. After thirty 
minutes, one hour, two hours, three hours, four hours and five hours aliquots were taken and each time the absorbance 
and the spectrums obtained were recorded [29].

2.5  Characterization of the silver nanoparticles

The spectral data were acquired using an IRAffinity-1S FTIR spectrophotometer (Shimadzu Corp., 03191) equipped with 
an ATR. The instrument was set up to perform a total of 20 scans with 4  cm−1 spectral resolution for both background and 
sample spectra, recorded rapidly at the range between 4000 and 400  cm−1 [30].The X-ray diffractograms were obtained 
using a Bruker D8 Advance Diffractometer (Bruker, Ettlingen, Germany) with a copper tube operating at a voltage and 
current of 40 kV and 40 mA. The samples were irradiated with a monochromatic CuKα radiation of 0.1542 nm and the dif-
fractograms were acquired between 2θ values of 5°–90° at 0.05° intervals with a measurement time of 1 s per 2θ intervals 
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[31]. The elemental mapping of the nanoparticles were obtained with a Thermo Fischer SEM FEIXL30SFEG equipped with 
an Oxford Aztec advanced system equipped with an X-MAX 150  mm2 Silicon Drift Detector [32, 33].

2.6  Disc diffusion assay

The synthesised silver nanoparticles were screened for their antimicrobial activity against Pseudomonas aeruginosa (ATCC-
27853), Escherichia coli (ATCC-25922), Staphylococcus aureus, (ATCC-25923), and Bacillus subtilis (ATCC 23857) using disc 
diffusion method in Medical Microbiology Department, J.K.U.A.T [34]. Inoculum suspension (108 CFU/ML) were spread 
over the nutrient agar surface by sterile collection swab and 6 mm Fusarium sp. AgNPs, discs sterilized at 120 °C for 15 min 
were placed onto the petri dishes using flamed forceps and incubated at 37 °C for 24 h [34].

3  Results and discussion

3.1  Characterization and fungal biomass production

The results from Fusarium sp. characterization were obtained and are as depicted below. The initial figure (Fig. 1) shows 
the appearnce of the Fusarium sp. on the microscope at a magnification of X40 while the second (Fig. 2) shows its appear-
ance on the potato dextrose agar (Fig. 3).

After the elapse of the 10 days growth of the fungal strain on the Potato Dextrose Agar Fusarium sp. was characterised 
and identified by a deep rose-coloured centre with a pink periphery appearance on the PDA plates. The microscopic 
studies showed several-celled macroconidia, slightly curved at the pointed ends, a typical canoe-shaped characteristic 
of a Fusarium sp. [35, 36]. The fungal biomass production from the Fusarium sp. yielded 43 g wet weight of biomass which 
was a floating mass on the potato dextrose broth.

3.2  Synthesis of Fusarium sp. silver nanoparticles

The following images depict the colour changes during the synthesis process.

Fig. 1  Appearance on com-
pound Microscope X40

Fig. 2  Appearance on PDA
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The image taken at the end of synthesis showed a notable brown solution (Fig. 5), the brown solution was a rep-
resentation of the colour associated with the synthesised silver nanoparticles [37]. The silver nitrate solution when 
combined with the Fusarium sp. fungal cell filtrate emerged as a colourless solution (Fig. 4) just as the Fusarium sp. 
cell filtrate (Fig. 3) was on its own [38]. Gomathi et al., Lokhande et al., and Abd El-Aziz et al., in their studies with 
silver nanoparticles obtained a brown colour solution of silver nanoparticles that corresponded to the one obtained 
in this study [39–41]. This gave confidence in the results since the notable brown colour confirmed the presence of 
silver nanoparticles.

3.2.1  Metal solution and cell filtrate variation.

Following figure shows the results of the combination of the silver nitrate solution and the Fusarium fungal cell 
filtrate (Fig. 5).

From the ratios investigated in this study (Fig. 6) a one is to one ratio between the silver nitrate solution and the 
Fusarium sp. fungal cell filtrate proved to be the best, with the highest peak and a wavelength of 423 nm [42]. The 
wavelength was characteristic to that of silver nanoparticles. A one is three ratio had the lowest peak an indication 
of the least concentration of silver nanoparticles among the ratios investigated. The optimum ratio from the study 
under investigation with Fusarium sp. was a one is to one ration which was subsequently employed in the subsequent 
investigations. It was concluded that a good balance between the cell filtrate and the metal solution was achieved 
at the ratio of one is to one [25].

Fig. 3  Cell filtrate solution
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3.2.2  Variation of metal solution concentration

The following is a visual presentation of results obtained after reacting the Fusarium sp. fungal cell filtrate with different 
concentrations of the silver nitrate solution.

Of the three concentrations investigated (Fig. 7) 2 mM concentration showed the highest peak at an absorbance of 0.7 
and a silver nanoparticles characteristic wavelength of 418 nm [43]. The 1 mM concentration was the furthest from the 
optimum concentration as it gave the lowest peak. The wavelength of 418 nm at the optimum concentration confirmed 
the presence of silver nanoparticles as the wavelength lied within the SPR associated with the nanoparticles [44]. The 
highest peak obtained at 2 mM showed that more of the nanoparticles got produced at this concentration as compared 
to when 1 mM or 1.5 mM concentrations were being employed (Fig. 7). This as well confirmed that beer lamberts law 
was being obeyed by the synthesis reactions [45].

3.2.3  Variation of temperature

The following figure is a representation of results obtained by reacting the optimum combination ratio of the silver nitrate 
solution with Fusarium sp. fungal cell filtrate at different temperatures.

Of the temperatures 60 °C, 70 °C and 80 °C investigated, 80 °C stood out as the most suitable temperature in syn-
thesising the silver nanoparticles using the Fusarium sp. fungal cell filtrate. It had the highest peak with a wavelength 
of 432 nm (Fig. 8) [46] which fell well within the SPR of silver nanoparticles, this confirmed the presence of synthesised 
silver nanoparticles [46]. It was noted that as temperature increased the nanoparticles were being produced at a quick 
speed. Temperature was believed to increase the number of collision between the cell filtrate and the silver nitrate solu-
tion. Increased number of collisions increased the interactions between the filtrate and the metal solution making the 
reduction of silver ions to silver nanoparticles faster [47].

Fig. 4  Metal solution and cell 
filtrate
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3.2.4  Variation of time

The following figure is a graphical depiction of the results obtained by varying reaction time of the Fusarium fungal cell 
filtrate and the sliver nitrate metal solution.

After 30 min of contacting the Fusarium sp. cell filtrate with the silver nitrate solution a small broad peak emerged 
at around 446 nm [48] (Fig. 9) an indication of synthesis in the early stages. As reaction time was increased the peaks 

Fig. 5  Nanoparticles solution

Fig. 6  UV–Vis spectra of 
AgNPs obtained from varying 
the combination ratios
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grew narrow compared to initial peaks that were broad. The highest peak emerged after five hours at a wavelength of 
434 nm which was characteristic to silver nanoparticles SPR. This confirmed that the produced nanoparticles were indeed 

Fig. 7  UV–Vis spectra of 
AgNPs obtained from varying 
the contact concentration
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Fig. 8  UV–Vis spectra of 
AgNPs obtained from varying 
the contact temperature
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Fig. 9  UV–Vis spectra of 
AgNPs obtained from varying 
the contact time

350 400 450 500 550 600 650 700 750 800 850 900
0.0

0.5

1.0

1.5

2.0

2.5

ab
so

rb
an

ce

wavelength (nm)

30 mins
1 hr
2 hrs
3 hrs
4 hrs
5 hrs



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:201  | https://doi.org/10.1007/s42452-024-05870-w Research

silver nanoparticles [49]. It was believed as the peak grew narrow from the initial broad peak the concentration of the 
synthesised silver nanoparticles increased [50].

3.3  FTIR analysis of Fusarium sp. nanoparticles

The figure below is a visual depiction of the results obtained from FTIR for the investigation involving Fusarium sp. fungal 
strain.

In order to determine the functional groups present in the Fusarium cell filtrate and those that remained in the silver 
nanoparticles after synthesis FTIR analysis (Fig. 10) was carried out for both the cell filtrate and the silver nanoparticles 
[51]. The wave numbers 3277  cm−1and 3295  cm−1 were associated with –OH stretching [38]. Wave number 2927  cm−1 
was attributed to is C–H stretching of methyl groups found in proteins [52]. The stretches at 1541  cm−1 and 1639  cm−1 
represented amide I (–C=O) and amide II (–NH2) bands respectively [53, 54]. The stretching at wave number 1393  cm−1 
was due to a C=O stretching of carboxylic group [55]. Wave numbers 1226  cm−1 and 1031  cm−1 revealed the presence 
of carbohydrate and C–OH vibrations of proteins [55, 56].

3.4  X‑ray diffraction analysis of Fusarium sp. AgNPs

The figure below is a visual depiction of the diffractograms obtained from XRD analysis.
The XRD pattern of the Fusarium sp. silver nanoparticles suggested that the structure of the nanoparticles is a face 

centred cubic structure. The diffractogram peaks at 38°, 44°, 64°, and 77° were found to correspond to (111), (200), (220) 
and (311) crystallographic planes attributed to a face centred cubic structure as per JCPDS index [57–59]. In their work 
Nyabola et al., established that peaks 38° and 44° were a true indication of the presence of silver nanoparticles. From 

Fig. 10  FTIR spectra of Fusar-
ium sp silver nanoparticles
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Fig. 11  X-ray diffractograms 
of Fusarium sp. AgNPs
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the X-ray difractogram of silver nanoparticles (Fig. 11) it was concluded that the synthesised silver nanoparticles were 
indeed crystalline in their nature [31]. In their works with silver nanoparticles Rudrappa et al., and Sathiyamoorthi et al., 
obtained nearly identical results with the ones reported in this study [58, 59]. The crystallite size from the X-ray diffraction 
data was found to be 38.5 nm, the crystalline size of the nanoparticles was determined by the use of Debye Scherrer’s 
equation as follows:

where D is the average particle size (nm), K is a constant equal to 0.94, λ is the wavelength of X-ray radiation, β is full-width 
at half maximum of the peak in radians, and theta is the diffraction angle (degree) (Eq. (1)) [60, 61]. In their studies with 
silver nanoparticles Absi et al., found silver nanoparticles with a crystallite size similar to that obtained in the current 
study [62]. In another study carried out by Singh et al., they obtained silver nanoparticles with a crystallite size identical 
to the value obtained from the current investigation [63].

3.5  Scanning electron microscope analysis of Fusarium sp. AgNPs

The results from the scanning electron microscope (Fig. 12) indicated that the synthesised silver nanoparticles were 
spherical in nature and had an average size of 12 nm (Fig. 13). In their study using a Fusarium species Gudikandula et al., 
obtained silver nanoparticles that were spherical in nature with an average size of 16 nm [64]. The smaller the nanoparticle 
sizes are, the more efficient they become when it comes to their application as antimicrobial agents [65]. In a study by 
Singh et al., silver nanoparticles ranging between 12 to 20 nm with an average size of 16 nm were synthesised with the 
help of an endophytic fungus Fusarium semitectum [66]. The results from these studies related well with the current study.

3.6  Stability of the Fusarium sp. silver nanoparticles

The following figures visually present the stability results of the silver nanoparticles over a period of three months.

(1)D =

(

K�
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)

Fig. 12  Nanoparticles appear-
ance on Scanning Electron 
Microscope

Fig. 13  Histogram showing 
the nanoparticle size distribu-
tion
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The stability spectrums (Figs. 14, 15, 16 and 17) indicated that the nanoparticles remained stable over the whole 
monitoring period. The UV–VIS spectrums showed the same sharp curve as it was taken on day one [67]. This was an 
indication that after three months the silver nanoparticles were still stable and neither had they reduced in concen-
tration nor agglomerated. Had there been an agglomeration it would be expected that a red shift commonly known 
as a bathochromic shift could have emerged. This could have been a shift towards higher wavelengths. Had there 
been a decrease in the concentration of the silver nanoparticles a hypochromic shift would have been expected. 
This could have been a shift towards lower absorbance values [68]. The fact that the nanoparticles showed stability 
indicated that their application is effective and long lasting.

Fig. 14  Stability of the silver 
nanoparticles on day one
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Fig. 15  Stability of the silver 
nanoparticles after one month
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Fig. 16  Stability of the 
silver nanoparticles after two 
months
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3.7  Antimicrobial analysis

Antimicrobial studies showed promising results of the Fusarium sp. silver nanoparticles against the four disease 
causing microorganisms that were under investigation. As illustrated by the table below (Table 1) at 1 mM concen-
tration there was no inhibition but on increasing the concentration to 10 mM inhibition was notable. At 20 mM and 
100 mM the inhibition exhibited by the two concentrations increased but was almost similar (Table 1) (Fig. 18). In 
their works with silver nanoparticles Nyabola et al., synthesised silver nanoparticles using a green method and after 
investigating the antimicrobial potency, inhibition zones of 10–19 mm against Staphylococcus aureus, Escherichia coli, 
Pseudomonas aeruginosa and Bacillus subtilis were realised [31]. In an investigation conducted by Gholami-Shabani 
et al., silver nanoparticles were produced using the fungus Fusarium oxysporium, the inhibition zones from the study 
ranged between 14 to 25 mm against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa [69]. Pro-
cedures carried out on the antibacterial properties of silver nanoparticles by Muhammad et al., revealed that silver 
nanoparticles had inhibition zones ranging from 12 to 18 mm against Escherichia coli and Staphylococcus aureus 
[70].The results obtained from these studies resonated well with results obtained from the current study.

Fig. 17  Stability of the silver 
nanoparticles after three 
months
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Table 1  Depicting 
antimicrobial results

Microorganism S. aureus E. coli P. aeruginosa B. subtilis

1 mM No inhibition No inhibition No inhibition No inhibition
10 mM 11 ± 0.6 mm 10 ± 0 mm 9 ± 0.6 mm 12 ± 0.6 mm
20 mM 17 ± 0 mm 15 ± 0.6 mm 16 ± 0.6 mm 17 ± 0.6 mm
100 mM 17 ± 0.6 mm 16 ± 0.6 mm 16 ± 0 mm 17 ± 0.6 mm

Fig. 18  Antimicrobial assay 
images
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4  Conclusion

From the investigations conducted it is clear that silver nanoparticles synthesised from Fusarium sp. possess good and 
promising antimicrobial potency. The investigations also revealed that the synthesised silver nanoparticles remained 
stable after synthesis. The ability of the silver nanoparticles to retain stability and still maintain its antimicrobial proper-
ties indicated that the silver nanoparticles can be applied as antimicrobials. Going forward into the future when well 
configured the silver nanoparticles obtained from the green method using Fusarium sp. can be applied as active agents 
in antimicrobial surface coatings, there by assist in reducing infections and use of antibiotics hence countering the threat 
of antimicrobial resistance.
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