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Abstract
The in-situ management of rice straw incorporation has become an essential practice in the rice–wheat cropping system 
with the growing adoption of super-seeder among farmers. While this equipment facilitates straw incorporation, nutrient 
immobilization from organic residues during decomposition poses a challenge to production. This study investigates the 
effect of bio-decomposer, nitrogen (N) level, and N scheduling on on various parameters in super-seeder sown wheat over 
two consecutive years (2020–21 and 2021–22). The experiment was laid in split-split-plot design without (B0) and with 
(B1) bio-decomposer, two nitrogen levels 150 (N1) and 180 (N2) kg  ha−1 and three N splits (%) viz., 50: 25:25 (S1), 40: 30: 30 
(S2), and 30:35:35 (S3) and replicated thrice. Results indicate significantly higher N concentration and uptake at pre- and 
post-anthesis with N2 and S1 compared to N1, S2, and S3. Post-anthesis N accumulation (post-NA) and remobilization 
(NR) were notably higher with N2. Dry matter accumulation (DMA) at anthesis and harvest significantly increased with 
N2 and S1 compared to N1 and S3, leading to significantly improved grain yield by 8.3% and 10.9% (two years mean). 
Soil urease activity (UA) significantly increased with bio-decomposer, N2, and S1 compared to B0, N1, and S3 at 30 and 
60 DAS. Moreover, bio-decomposer enhanced soil microbial biomass carbon (SMBC). These findings underscore the 
importance of higher N levels with a greater basal N proportion in mitigating N stress and promoting sustainable wheat 
productivity. It also highlight the significance of effectively utilizing and conserving rice residue in the rice–wheat system.

Article Highlights

• Evaluation of nitrogen immobilization status by assessing its absorption and concentration in plants.
• Application of higher nitrogen level coupled with higher proportion of basal nitrogen overcome early nitrogen stress 

in wheat crop under rice straw incorporation.
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• Impact of bio-decomposer on soil urease enzymes and soil microbial biomass carbon.

Keywords Bio-decomposer · Nitrogen deficiency stress · Dry matter accumulation · Urease activity · N concentration 
and uptake

1 Introduction

Wheat (Triticum aestivum L.) is one of the most extensively grown cereal crops worldwide, and serves as a staple food 
for about 205 million of world population. Globally, wheat occupies around 217 million hectares of land with the annual 
production of 713 million tonnes [1], and provides half of the calories in the region of North Africa, West and Central 
Asia. The rice–wheat cropping system (RWCS) of Indo-Gangetic plain falling in South Asia covers 12.3 million ha in India 
[2]. This system is of immense importance for ensuring food and nutritional securities in India and contributes about 
75% to the national food chain [3]. However, the conventional RWCS has been deemed unsustainable under the ever-
changing climatic conditions, due to receding groundwater table [4], increasing labour, capital, and energy requirements 
[5]. In addition, conventional transplanted rice has negative impact on the succeeding wheat, resulting in soil structural 
degradation [6], and delayed seeding of the wheat crop [7]. Hence, the conventional RWCS needs to re-orient to a more 
sustainable management to safeguard the food-security of millions of south Asian families.

The highly mechanized harvesting and threshing of rice using combine harvesters is a common practice in North-
West (NW) India, wherein huge residues are left behind in the forms of standing stubbles and loose residue in the field. 
Timely management of this residue in the short span of 10–20 days for timely planting of wheat crop is a difficult task. 
Therefore, the farmers commonly opt for burning of rice residue in the combine-harvested fields due to lack of access to 
user-friendly, cost- and time-effective management practices. It was estimated that in NW states of India, about 23 MT 
of rice residues were burnt annually [8]. Extensive residue burning results in production of copious amount of harmful 
gases; an hectare (10,000  m2) of paddy field produces around 6.2 tonnes of stubble, whereby on burning, releases 18.5 kg 
of particulate matter, 370.7 kg of carbon monoxide, 9,019.5 kg of carbon dioxide, 1230.6 kg of ash and 12.4 kg of sulphur 
dioxide [9], and the black carbon emitted during residue burning warms the lower atmosphere and is the second most 
important contributor to global warming after  CO2 [10]. Burning of rice residue degrades the soil health due to loss of 
soil organic matter and plant nutrients. About 90% of nitrogen (N) and sulphur (S), and 15–20% of phosphorus (P) and 
potassium (K) contained in rice residue are lost during burning [2]. Therefore, the need for providing a cost-effective 
and farmer friendly option for management of rice residue is a major challenge for the sustainability of intensive RWCS 
in developing countries.

The on-farm management of rice straw viz., surface retention (mulching), incorporation (in-situ) and composting 
(ex-situ) and the recent practice i.e., use of bio-decomposer, are the promising strategy to address the issue of burning 
as well as maintaining the soil health for long-term sustainability of RWCS. Composting of rice residue management is 
not adopted on large scale by the farmers as it is energy and cost intensive coupled with time limitation. Over the years, 
different in-situ RS management technologies have been notified and adopted under the RWCS, such as zero-tillage, 
happy seeder, and super seeder. The recent development of machinery like super-seeder (rota-till-drill) has greatly sim-
plified the incorporation of rice residues into the soil by crushing and evenly spreading the straw over the field leading 
to clean cultivation [11].

In addition, incorporation of residues increases hydraulic conductivity, cation exchange capacity, and reduces bulk 
density of soil by modifying soil structure and aggregate stability, surface crust formation, water evaporation from the 
topsoil layer [12]. Besides, residues incorporation can prevent nutrients leaching and increase crop yield and reduce 
significantly soil greenhouse gases [13]. Therefore, the use of super seeder could be a more sustainable alternative to 
conventional RWCS. Furthermore, the soil biological properties viz., microbial biomass, urease activity, dehydrogenase 
and alkaline phosphatase can be enhanced through incorporation of residues [14].

Rice residues are a potential source of organic carbon and plant nutrients to enhance the soil organic matter dynamics, 
nutrient cycling, and soil physical environment. Rice straw contains around 0.7% N, 0.23% P and 1.75% K and it is also an 
important source of micronutrients (Zinc) and rich in Silicon [15]. Soil enzymes are a major index for soil microbial activity 
and soil organic carbon status [16], particularly α- and β-glucosidase and urease [17]. Moreover, it has been reported that 
urease activity is very crucial for soil N metabolism and it can be positively enhanced by the application of organic manure 
and chemical N fertilizers [18, 19]. Application of inoculum consortium under rich incorporated organic residues could 
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provide substrate availability, moisture, and temperature for better microbial growth [20]. The use of bio-decomposer i.e., 
inoculum consortium applied for crop residue decomposition, is an interesting way to enhance soil microbial population.

The development of crop yield can be determined through the accumulation and partitioning of dry matter [21]. 
Further, it has been reported that, the accumulation, distribution, and remobilization of dry matter in plant organs dif-
fers with different management practices such as fertilization [22]. In wheat, it has been reported that during the grain 
filling period, the dry matter for grain is mainly supported by the vegetative organs, and strongly influences the grain 
yield formation [23]. Therefore, the vegetative organs (non-grain components) growth post flowering in wheat is very 
crucial to carry out the photosynthetic activity and continue to support the translocation of soluble carbohydrate [24]. 
In addition, the supply of macronutrients particularly nitrogen (N) greatly influenced the production and distribution 
of dry matter [25]. The variation in N uptake is primarily associated with the dry matter [26] apart from the soil N status 
and other management practices.

Considering the great significance of in-situ management of available nutrient resources, the present study was 
performed under field conditions during 2020–21 and 2021–22 to (i) assess the effect of bio-decomposer, nitrogen 
level, and nitrogen split on productivity of wheat crop under rice straw incorporation, (ii) find out the N immobilization 
status through its uptake and content in plants coupled with soil urease activity, and iii) assess dry matter and nitrogen 
accumulation, remobilization, and contribution to grain yield and N.

2  Materials and methods

2.1  Experimental site description and climatic conditions

A fixed-plot field experiment was carried out during the winter (rabi) season for two years (2020–21 and 2021–22) at Nor-
man E. Borlaug Crop Research Centre of G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India 
(29° N; 79°3′ E; 244 m. a.s.l.). The region falls under sub-humid, sub-tropical climatic zone, on the foot-hills of Himalayas 
(Tarai region). The region experiences warm and humid summer (April-June), with cold winter (November-February). 
Generally, south-west monsoon commences in the second fortnight of June and continues sparsely till September. The 
highest weekly mean rainfall are 18.6 mm and 54.7 mm during January in both the years. The daily average air tempera-
ture during the experimental period (December–April) varies from 1.0 to 9.0 °C (min.) and 30–43 °C (max.), respectively 
and the crop received an average of 6.2 sunshine hour (Supplementary Table 1). The soil of the experimental site was 
sandy clay loam with 49.4, 27.3, and 23.3% sand, silt, and clay, respectively, typic Ustochrept classification, soil pH of 7.2 
[27], EC of 0.31  dSm−1 [28], soil organic carbon − 0.80% [29], available nitrogen 0.11 g  kg−1 [30], available phosphorous 
0.01 g  kg−1 [31], and available potassium 0.08 g  kg−1 [27].

2.2  Cultural operation, design, and crop management

The preceding Kharif rice was harvested by combine harvester, and rice straw equivalent to 7 t  ha−1 was retained 
and spread uniformly in all the plots. The experiment was laid in split-split-plot design with main-plot: without (B0) 
and with (B1) application of bio-decomposer; nitrogen levels 150 (N1) and 180 (N2) kg  ha−1 in sub-plot; and three N 
splits (%) in sub-sub-plot viz., 50: 25:25 (S1), 40: 30: 30 (S2), and 30:35:35 (S3) and replicated thrice with gross plot size 
8.8 m × 5.0 m = 44.0  m2. The wheat variety in the present study (PBW 373) was a late sown variety developed by Punjab 
Agricultural University, India. The details of the cropping history and treatment are given in Tables 1 and 2, respectively. 
Prior to sowing (4–5 days) of wheat crop, the microbial formulation (pusa bio-decomposer) (25 L  ha−1) was prepared and 
then sprayed uniformly over the retained residue. The microbial formulation used in the present study was developed by 
the ICAR-Indian Agricultural Research Institute, New Delhi, India containing beneficial microorganisms which enhance 
the enzymatic activities in soil and straw for fast decomposition of biomass [32]. The crop was sown 20 days after the 
harvest of the preceding rice using super-seeder (rota-till-drill), wherein the residue is incorporated to the depth of about 
0.15 m while the seed was drill to a depth of 0.05–0.07 m in a single operation. The crop was sown on 24th November 
(2020–21), and 26th November (2021–22) at a row-spacing of 0.20 m and seed rate of 110 kg  ha−1. Pre-sowing irrigation 
was not applied since good amount of residual moisture was present. The fertilizer, nitrogen (N), phosphorus (P), and 
potassium (K) were applied in the form of NPK mixture (12:32:16% of N, P and K) and urea (46% N). Two levels of nitrogen 
as 150 kg  ha−1 (recommended) and 180 kg  ha−1 were taken to test the optimization N rates under residues incorpora-
tion. Full dose of P and K were applied as basal, while N was applied in three different splits ratios as described in Table 2. 
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Irrigation was applied based on the critical crop growth stages and taking rainfall into consideration. A total of four and 
three irrigations were given in the first (2020–21) and second year (2021–22) respectively (Supplementary Table 2). Both 
years, a post-emergence (35 DAS) herbicide clodinafop-propargyl 15% + metsulfuron methyl 1% (broad spectrum) at 
400 g a.i.  ha−1 was applied. In the second year (2021–22), propiconazole 25 EC @ 500 mL  ha−1 was sprayed during the 
active tillering stage to control yellow rust (Puccinia triticina f.sp. tritici). The other diseases and pest were controlled fol-
lowing the standard management practices.

2.3  Soil sampling

A composite soil sample was collected randomly from a depth of 0.00–0.15 m, both initially before wheat sowing and at 
wheat harvest, using a tube auger, with 5 replicates in all plots. The sample was shade dried, processed, passed through 
80 mesh sieves, and analyzed for determination of various soil chemical properties viz., pH, EC, OC, available N, P and K. 
Further, to assess soil urease activity, fresh soil samples were collected from a depth of 0.00–0.15 m with 5 replications 
at 30 and 60 DAS in both years. Similarly, for soil microbial biomass carbon (SMBC) analysis, fresh soil samples from the 
same depth with 5 replications were collected at crop maturity during the second season.

2.4  Nitrogen concentration and uptake in plants

The plant samples for N concentration and its uptake were collected from an area of 1  m2 at 30, 60 DAS, anthesis, and 
harvest. The samples were shade-dried for 48 h, then oven-dried at 65 °C to a constant weight and the oven-dried bio-
mass was recorded. The dried samples were grinded through Wiley-mill having 40-mesh sieve, and appropriate amount 
(0.5 g) of the ground sample with catalyst mixture was digested on hot plate in processing lab. Subsequently, the amount 
of NH4-N liberated during distillation with an alkali (NaoH) was absorbed by boric acid containing mixed indicator and 
titrated against sulphuric acid. This method, outlined by [27] was used to determine the total N concentration. The total 
shoot N uptake was worked out by multiplying the N concentration with the shoot biomass for all the stages of the crop. 

Table 1  Cropping system 
followed prior to the current 
study

# The cropping system in the first 4 years was conventional rice wheat cropping system

Year Season

Kharif (Monsoon) Rabi (Winter) Summer

2016–17 Rice Wheat Fallow
2017–18 Rice Wheat Fallow
2018–19 Rice Wheat Fallow
2019–20 Rice Wheat Fallow
2020–21 Rice Experimental crop (Wheat) Fallow
2021–22 Rice Fallow

Table 2  Treatment adopted 
during the 5th and 6th year 
wheat crop (experimental 
year)

# CRI: crown root initiation

S. No Symbol used Treatments

Bio-decomposer (main plot)
 1 B0 Without bio-decomposer
 2 B1 With bio-decomposer

N-level (sub plot)
 3 N1 Nitrogen rate at 150 kg N  ha−1

 4 N2 Nitrogen rate at 180 kg N  ha−1

N-split (%) (sub-sub plot)
 1 S1 50:25:25 (Basal:CRI:Booting)
 2 S2 40:30:30 (Basal:CRI:Booting)
 3 S3 30:35:35 (Basal:CRI:Booting)
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The nitrogen accumulation, remobilization, remobilization efficiency, and contribution to grain nitrogen was calculated 
as given by [33, 34]:

1) Post-anthesis nitrogen accumulation (Post-NA, g m−2) = Total above-ground N uptake at maturity- Total N uptake at anthe-
sis

2) Nitrogen remobilization (NR, g m−2) = Total N uptake at anthesis – Vegetative N uptake at maturity
3) Nitrogen remobilization efficiency (NRE, %) = (NR/ Total N uptake at anthesis) × 100
4) NR contribution to grain N (%) = (NR / grain N) × 100

2.5  Dry matter accumulation

The plant samples were collected at 30 DAS, 60 DAS, anthesis, and harvest in both years. In each plot, the plants were cut 
at the base from an area of 1  m2 in the mid-rows. The samples were placed in a perforated paper bag, air-dried for 48 h, 
and then oven-dried at 65 °C till constant dry weight. The dried biomass values were used for determining dry matter 
accumulation, remobilization, remobilization efficiency, and contribution of remobilization to grain yield as described 
by [35, 36].

1) Post-anthesis dry matter accumulation (Post-DMA, g m−2) = Total above-ground dry matter at maturity–dry matter at 
anthesis

2) Dry matter remobilization (DMR, g m−2) = Dry matter at anthesis–vegetative dry matter at maturity
3) Dry matter remobilization efficiency (DMRE, %) = (DMR/Dry matter at anthesis) × 100
4) DMR contribution to grain yield (%) = (DMR / grain yield) × 100

2.6  Yields and yield components

The wheat was harvested during the second fortnight of April in both years. The crop was harvested manually from the 
net plot (5 m × 4 m, 20  m2) leaving the border rows from both the sides. The harvested samples were sun-dried, weighed 
for biological yield (total above-ground biomass), threshed using pullman thresher, and the grain yield was recorded for 
each plot. The straw yield for each plot was calculated by subtracting the grain yield from the biological yield. The yield 
attributes, such as productive tillers (tillers bearing productive spike), spike weight (average of 10 spikes), grains  spike−1 
(10 spikes average), and 1000-GW (grain weight) were recorded by harvesting the crop from 1  m2 area at maturity.

2.7  Urease activity

The activity of urease was determined following the method of [37] at 30 and 60 DAS. In this method, one gram of fresh 
soil was combined with 1 ml of toluene and then supplemented with 10 ml of pH 7 buffer solution and 5 ml of 10% urea 
solution. After shaking and incubating for 3 h at 37 °C, 0.5 ml of the filtrate was taken and mixed with 5 ml of distilled 
water. This mixture was then treated with 2 ml of phenolate solution and 1.5 ml of sodium hypochlorite solution contain-
ing 5% active chlorine. The volume was adjusted to 25 ml with distilled water, and the optical density was measured at 
630 nm using a spectrophotometer. The amount of  NH4

+-N released was calculated by reference- calibrated curve and 
was expressed as  NH4

+-N µg per gram dry soil per three hours.

2.8  Soil microbial biomass carbon

Soil microbial biomass carbon in soil samples was estimated following chloroform fumigation extraction procedure as 
described by [38]. Biomass carbon in soil was calculated from the relationship, Biomass carbon in soil (Bc) = Fc/Kc, Where, 
Fc = Difference between extractable carbon from fumigated soil and non-fumigated soil. Kc = Efficiency factor, which is 0.45 
[39] and express as µg  g−1 soil.
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2.9  Statistical analysis

The data was analyzed by using analysis of variance technique [40], with SAS 9.4 for testing the significance of differ-
ence between any two means wherever F-test was significant. Tukey’s honestly significant difference test (Tukey’s HSD) 
at 0.05% probability was performed to compare the mean effects.

3  Results

3.1  Weather conditions

The highest mean precipitation of 98.9 mm was received in January 2022 followed by 48.2 mm in February 2022 whereas, 
the other months of the crop season remained dry. The total amount of rainfall received in 2021 was 25.7 mm, while in 
2022 it was 154.7. During the study period, about 90–95% of total rainfall was received between January and Febru-
ary. The average minimum and maximum relative humidity (RH) ranged between 48–89% and 51–89%, respectively in 
2020–21 and 2021–22. (Supplementary Table 1).

3.2  Nitrogen concentration and uptake

The shoot nitrogen concentration at 30 DAS remains similar between B0 and B1, while with the N-level, N2 had signifi-
cantly higher shoot N concentration compared to N1 by 16.5% and 14.5% in 2020–21 and 2021–22, respectively (Table 3). 
Among the N-splits, maximum shoot N concentration was observed with S1, wherein it was similar to S2 in both years 
but significantly higher than S3 to the tune of 7% and 6%. Similarly, the shoot N concentration at 60 DAS did not observe 
significant difference between B0 and B1 in both years, but with N-levels, N2 recorded significantly higher shoot N con-
centration of 12.9% (2020–21) and 13.4% (2021–22), respectively (Table 4). Further, among the N-splits, S1 had the highest 
shoot N concentration wherein, it was similar S2 in but statistically more than S3 in both years. The increment of S1 over 
S3 in shoot N concentration was to the tune of 5% and 5.8% in 2020–21 and 2021–22. The total shoot N concentration at 
flowering remains similar between B0 and B1 in both years, but with N-level, N2 resulted in significantly higher shoot N 
concentration than N1 by 12.9% and 15.8%, respectively in 2020–21 and 2021–22. Further, among the N-splits, maximum 
shoot N concentration was observed with S1 in both years, wherein it was significantly higher than S3 to the tune of 
7.7% (2020–21) and 8.0% (2021–22) but at par with S2. Similarly, at harvest total N concentration in straw with B0 and B1 

Table 3  Nitrogen 
concentration in above-
ground at 30 and 60 DAS 
(days after sowing) under 
bio-decomposer application, 
nitrogen level, and nitrogen 
split on super-seeder sown 
wheat

*  B0- without application of bio-decomposer; B1- with bio-decomposer application; N1- nitrogen at 
150 kg ha−1; N2- nitrogen at 180 kg ha−1: S1- 50:25:25; S2- 40:30:30; S3-30:35:35 (N applied at sowing, crown 
root initiation, and booting). Shoot (Stem + leaf). Data in the column followed by different letters are signifi-
cantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference (Tukey’s HSD) test. # ± indicate 
the standard error deviation

Treatment Shoot N concentration (%)

30 DAS 60 DAS

2020–21 2021–22 2020–21 2021–22

Bio-decomposer
 B0 1.44 ± 0.13a 1.67 ± 0.15a 1.90 ± 0.15a 1.76 ± 0.18a
 B1 1.55 ± 0.12a 1.78 ± 0.11a 2.00 ± 0.16a 1.87 ± 0.12a

N-level
 N1 1.36 ± 0.09b 1.59 ± 0.03b 1.82 ± 0.12b 1.68 ± 0.11b
 N2 1.63 ± 0.13a 1.86 ± 0.12a 2.09 ± 0.16a 1.95 ± 0.17a

N-split
 S1 1.56 ± 0.17a 1.79 ± 0.14a 2.02 ± 0.15a 1.88 ± 0.18a
 S2 1.49 ± 0.18ab 1.72 ± 0.22ab 1.95 ± 0.20ab 1.81 ± 0.24ab
 S3 1.45 ± 0.21b 1.68 ± 0.20b 1.91 ± 0.19b 1.77 ± 0.21b
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were at par, but with N-level, N2 had significantly higher content of 18.3% and 21.2% over N1 in 2020–21 and 2021–22. 
While, among the N-splits S1 resulted in highest N concentration which was similar to N2 but significantly more than S3 
to the tune of 19.4% (2020–21) and 21.2% (2021–22). Furthermore, the N concentration in grain did not have significant 
impact with or without bio-decomposer application in both years. Nevertheless, with N-level, N2 had significantly higher 
N concentration in grain over N1 by 13.9% and 15.5% in 2020–21 and 2021–22. While, among the N-splits, maximum 
grain N concentration was observed with S1 in both years, wherein it was significantly more than S2 and S3 by 6.9% and 
13.4% in 2020–21, while in 2021–22 it was significantly higher by 5.7% and 8.6%, respectively (Table 4).

The total shoot N uptake in 2020–21 at 30 and 60 DAS under B1 was significantly higher than B0 by 10.3% and 8.9%, 
while with N-level N2 resulted in statistically higher N-uptake to the tune of 24.2% and 17.7% at 30 and 60 DAS. Among 
the N-splits, N-uptake at 30 DAS with S1 was significantly higher by 10–15% over S2 and S3, while at 60 DAS S1 was sig-
nificantly higher by 12.7% over S3 but similar to S2 (Fig. 1a). Further, in 2021–22 at 30 DAS B0 and B1 were found similar 
in N-uptake, while at 60 DAS B1 was statistically higher by 8.9% over B0. While, between N-level, N2 had significantly 
higher N uptake both at 30 and 60 DAS to the tune of 21.3% and 18.5%, respectively. Further, among the N-splits, highest 
N uptake was recorded with S1 both at 30 and 60 DAS which was significantly higher by 9–17% and 5–13% compared to 
S2 and S3 (Fig. 1b). The total N uptake in shoot at flowering with B1 was significantly higher than B0 by 7.3% and 5.5%, 
in 2020–21 and 2021–22. With, N-level, N2 resulted in significantly higher N uptake to the tune of 18.4% (2020–21) and 
20.7% (2021–22), while among the N-splits maximum N uptake was recorded with S1 in both years, wherein it was sig-
nificantly more than S3 by 12.8% in 2020–21, and 8% and 13.1% than S2 and S3 in 2021–22 (Fig. 2). Further, the N uptake 
in straw at harvest remains similar between B0 and B1 in 2020–21, while in 2021–22 significantly higher N uptake was 
observed with B1 (6.5%) over B0. While, with N-level, N2 resulted in significantly higher N uptake of 25.3% (2020–21) and 
21.6% (2021–22) over N1. Among the N-splits, S1 observed maximum N uptake in both years which was significantly 
higher than S2 and S3 by 13.6% and 22.6% in 2020–21, and 17.5% and 25.9% in 2021–22 (Fig. 3). In addition, the N uptake 
in grain remains similar between B0 and B1 in 2020–21, but B1 had significantly higher uptake of 9% in 2021–22. While, 
the N uptake with N2 had significantly 20.2% and 20.3% more compared to N1 in 2020–21 and 2021–22, respectively. 
The highest N uptake in grain was recorded with S1 among the N-splits, wherein it was significantly more than S2 and 
S3 to the tune of 11–19% in 2020–21 and 10–13% in 2021–22 (Fig. 3).

3.3  Post‑anthesis N accumulation, remobilization, and contribution to grain N

The post-anthesis N accumulation (post-NA) with B0 and B1 were at par in both years. While, the Post-NA with 
N2 had significantly 4.5 g  m−2 and 3.5 g  m−2 more compared to N1 in 2020–21 and 2021–22 (Table 5). Among the 
N-splits, S1 had highest post-NA which was significantly higher than S2 and S3 by 17–27% in 2020–21, and S3 by 

Table 4  Wheat N 
concentration at flowering 
and harvest under bio-
decomposer, nitrogen level, 
and nitrogen split

*  B0- without application of bio-decomposer; B1- with bio-decomposer application; N1- nitrogen at 
150 kg ha−1; N2- nitrogen at 180 kg ha−1: S1- 50:25:25; S2- 40:30:30; S3-30:35:35. Data in the column followed 
by different letters are significantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference 
(Tukey’s HSD) test

Treatment At flowering At harvest

N concentration in shoot (%) N concentration in straw (%) N concentration in grain 
(%)

2020–21 2021–22 2020–21 2021–22 2020–21 2021–22

Bio-decomposer
 B0 1.91a 1.89a 0.54a 0.55a 2.07a 2.03a
 B1 2.02a 1.97a 0.56a 0.56a 2.22a 2.15a

N-level
 N1 1.83b 1.76b 0.49b 0.50b 1.98b 1.91b
 N2 2.10a 2.09a 0.60a 0.61a 2.30a 2.26a

N-split
 S1 2.04a 2.03a 0.61a 0.63a 2.30a 2.19a
 S2 1.97ab 1.89b 0.53b 0.54b 2.14b 2.07b
 S3 1.89c 1.87c 0.50c 0.50c 1.99c 2.00c
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20.5% in 2021–22. The N remobilization under B1 was significantly higher by 8.1% in 2020–21 but remains similar 
in 2021–22. Further, between the N-level, N2 was significantly higher than N1 by 13.6% and 20.2% in 2020–21 and 
2021–22, respectively. While, N remobilization remains at par among the N-splits in both years. The N remobilization 
efficiency (NRE) in both years were at par between B0 and B1, while with N1 the NRE was enhanced by 5.3% over N2 
in 2020–21 but were found similar in 2021–22. Further, among the N-splits, there observed no significant difference 
in 2020–21, while in 2021–22 significantly higher NRE of 10.7% was recorded with S3 compared to S1 but remains 
at par with S2. The contribution of N remobilization to grain N among the treatments did not observe significant 
difference in both years.
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3.4  Dry matter accumulation

The data pertaining to dry matter accumulation of wheat at 30 and 60 DAS is given in Supplementary Table 3, while for 
anthesis and harvest under different treatments have been furnished in Table 6. The application of bio-decomposer 
did not affect the dry matter accumulation at 30 and 60 DAS in both years. While, between the nitrogen levels, N2 
produced significantly higher dry matter of 7.9–9.7% (30 DAS) and 5.8–5.9% (60 DAS), respectively over N1. Among 
the N-splits, S1 resulted in statistically higher dry matter accumulation compared to S3 but at par with S2 in both the 
stages of the crop and years. The increment of S1 over S3 was to the tune of 8.5–12.2% (30 DAS) and 7.8–7.9% (60 
DAS). Further, the dry matter accumulation at flowering did not differ with and without bio-decomposer application, 
but with the N-level, N2 had significantly higher dry matter of 5.8% and 5.5% in 2020–21 and 2021–22, respectively 
over the N1. Similarly, among the N-splits, S1 produced maximum dry matter in both years which was at par with S2 
but significantly more than S3 by 5.2% (2020–21) and 7.1(2021–22). Similarly, at harvest the total dry matter remains 
similar to each other between B0 and B1 in both years, but with N-level N2 had significantly higher dry matter 
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ters above the bar are not significantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference (Tukey’s HSD) test

Table 5  Wheat N 
remobilization (NR), post-
anthesis N accumulation, NR 
Efficiency, and contribution 
of NR to grain under bio-
decomposer, nitrogen level, 
and nitrogen splitting

*  B0- without application of bio-decomposer; B1- with bio-decomposer application; N1- nitrogen at 
150 kg ha−1; N2- nitrogen at 180 kg ha−1: S1- 50:25:25; S2- 40:30:30; S3-30:35:35. Data in the column followed 
by different letters are significantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference 
(Tukey’s HSD) test

Treatment Post-anthesis N accu-
mulation (g  m−2)

NR (g  m−2) NR Efficiency (%) Contribution of NR 
to grain (%)

2020–21 2021–22 2020–21 2021–22 2020–21 2021–22 2020–21 2021–22

Bio-decomposer
 B0 15.53a 14.34a 10.48b 10.51a 60.3a 60.8a 41.4a 43.3a
 B1 16.77a 16.27a 11.40a 11.05a 61.2a 60.5a 41.1a 40.7a

N-Level
 N1 13.92b 13.57b 10.14b 9.57b 62.4a 60.6a 43.1a 42.4a
 N2 18.38a 17.04a 11.74a 11.99a 59.1b 60.6a 39.4a 41.6a

N-split
 S1 18.99a 17.42a 11.13a 10.94a 58.0a 56.7c 38.3a 40.2a
 S2 15.62b 14.65b 11.20a 10.83a 61.6a 61.6ab 41.9a 42.5a
 S3 13.84bc 13.85bc 10.50a 10.56a 62.6a 63.5a 43.6a 43.4a
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accumulation of 5.2% and 5.6% in 2020–21 and 2021–22. Among the N-splits, maximum dry matter accumulation 
was recorded with S1 in both years, wherein it was similar to S2 but significantly higher than S3 by 5.8% and 5.9% in 
2020–21 and 2021–22, respectively (Table 6).

3.5  Post‑anthesis dry matter accumulation, remobilization, and contribution to grain yield

Bio-decomposer did not influence the post-anthesis dry matter accumulation (Post-anthesis-DMA) in both years (Table 6). 
However, between the N-level, N2 had significantly 11.3% more post-DMA over N1 in 2020–21, though it remains similar 
in 2021–22. Further, among the N-splits, maximum post-DMA was recorded with S1 in both years, wherein it was signifi-
cantly higher by 12.1% and 7.4% compared to N3 in 2020–21 and 2021–22, but at par with S2. The dry matter remobili-
zation (DMR) in both years remains similar with or without bio-decomposer application, while with the N-level, N2 had 
significantly higher DMR to the tune of 21.4% and 26.5% compared to N1 during 2020–21 and 2021–22. Further, among 
the N-splits, a significantly higher DMR was observed with S1, wherein it was at par with S2 but statistically (p < 0.05) more 
than S3 by 33.2% (2020–21) and 32.6% (2021–22), respectively. The dry matter remobilization efficiency (DMRE) with 
B1 was significantly more than B0 in 2020–21, but remain similar in 2021–22. While, the DMRE with N2 was significantly 
higher compared to N1 in both years, and among the N-splits, the highest DMRE was recorded with S1 which was at par 
with S2 but significantly more than S3 in both years. Further, the contribution of dry matter remobilization to grain yield 
remains similar for all the treatments irrespective of the years.

3.6  Yield components

The number of effective tillers with and without bio-decomposer application were at par in both years, while between 
the N-levels, N2 produced significantly higher effective tillers of 5.7% in both years compared to N1 (Table 7). Further, 
among the N-splits, the effective tillers with S1 was maximum in both years, wherein it was at par with S2 but significantly 
more than S3 by 7.3% in 2020–21, while in 2021–22 S1 resulted in significantly higher effective tillers over S2 and S3 to 
the tune of 2.5–7.3%. The spike length remains similar between the treatments during both years of study. Further, the 
number of grains  spike−1 did not differ with the bio-decomposer in both years. Nevertheless, the grains  spike−1 with 
N2 produced 10.8% (2020–21) and 11.2% (2021–22) more compared to N1. The maximum grain  spike−1 was recorded 
with S1 among the N-splits, wherein it remains similar to S2 in both years but significantly higher than S3 to the tune of 
16.5% and 14.4% in 2020–21 and 2021–22, respectively. The grain weight  spike−1 was not influenced by bio-decomposer 
in both years, but between the N-levels, N2 produced significantly heavier grain weight over N1 by 12.7% and 12.4% in 

Table 6  Wheat Dry-matter accumulation (DMA), remobilization (DMR), remobilization-efficiency (DMRE), and its contribution to grain yield 
(DMRG) under bio-decomposer application, nitrogen level, and nitrogen splitting

* B0- without application of bio-decomposer; B1- with bio-decomposer application; N1- nitrogen at 150 kg ha−1; N2- nitrogen at 180 kg ha−1: S1- 
50:25:25; S2- 40:30:30; S3-30:35:35 (N applied at sowing, crown root initiation, and booting). Post-DMA- post-anthesis dry matter accumulation. 
Data in the column followed by different letters are significantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference (Tukey’s 
HSD) test

Treatments Dry-matter accumulation (g  m−2) Post-DMA (g  m−2) DMR (g  m−2) DMRE (%) DMRG (%)

Flowering Harvest

2020–21 2 021–22 2020–21 2021–22 2020–21 2021–22 2020–21 2021–22 s2020–21 2021–22 2020–21 2021–22

Bio-decomposer
 B0 907a 887a 1234a 1221a 344.9a 314.7a 374.9a 355.6a 41.0b 38.9a 51.4a 52.7a
 B1 924a 910a 1277a 1268a 340.1a 344.2a 444.5a 388.3a 47.8a 41.7a 55.8a 51.7a

N-Level
 N1 888b 873b 1222b 1209b 322.0a 320.7a 360.4b 315.0b 40.3b 35.3b 52.1a 49.2a
 N2 943a 924a 1289a 1281a 363.0a 338.2a 459.0a 428.8a 48.5a 45.3a 55.1a 55.1a

N-split
 S1 936a 929a 1299a 1289a 369.5a 352.6a 475.3a 426.1a 50.4a 45.0a 55.8a 54.0a
 S2 923ab 903ab 1243ab 1232ab 327.2a 309.1a 436.5ab 402.6ab 47.2ab 43.5ab 56.2a 55.9a
 S3 887b 863b 1224b 1213b 330.9a 326.6a 317.3c 287.0c 35.6c 32.4c 48.7a 46.6a
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2020–21 and 2021–22. While, among the N-splits, S1 resulted in heaviest grain weight  spike−1 in both years, wherein it 
was statistically at par with S2 but significantly more than S3 by 17.6% (2020–21) and 15.4% (2021–22). The 1000-grain 
weight in both years remains similar between the treatments.

3.7  Grain and straw yields

Bio-decomposer did not have significant impact on grain yield of wheat in both years, but with N-levels, N2 resulted 
in significant yield improvement of 8% and 8.5% respectively in 2020–21 and 2021–22 compared to N1 (Table 8). Fur-
ther, among the N-splits, S1 produced maximum grain yield which was similar to S2, but significantly higher than S3 to 
the tune of 10.1% (2020–21) and 11.8% (2021–22). Similarly, straw yield in both years remains at par with and without 
bio-decomposer, while with N-levels, N2 had significantly higher straw yield of 7.4% and 7.8% over N1 in 2020–21 and 
2021–22. Among the N-splits, the highest straw yield was recorded with S1 in both years, wherein it was statistically 
higher than S3 by 6.9% and 9.9% in 2020–21 and 2021–22, though at par with S2. In addition, the biological yield did not 
observe significant impact with the bio-decomposer though there is 4.4% and 4.7% higher with B1 over B0 in 2020–21 

Table 7  Wheat yield components under bio-decomposer, nitrogen level and nitrogen splitting

*  B0- without application of bio-decomposer; B1- with bio-decomposer application; N1- nitrogen at 150 kg ha−1; N2- nitrogen at 180 kg ha−1: S1- 
50:25:25; S2- 40:30:30; S3-30:35:35 (N applied at sowing, crown root initiation, and booting). Data in the column followed by different letters are 
significantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference (Tukey’s HSD) test

Treatment Effective tillers  m−2 Spike length (cm) Grains  spike−1 Grain weight  spike−1 (g) 1000-grain weight (g)

2020–21 2021–22 2020–21 2021–22 2020–21 2021–22 2020–21 2021–22 2020–21 2021–22

Bio-decomposer
 B0 421.3a 411.8a 13.6a 13.0a 43.9a 42.8a 1.7a 1.6a 38.8a 38.0a
 B1 430.3a 420.8a 14.1a 13.5a 46.5a 45.1a 1.8a 1.7a 39.0a 38.3a

N-level
 N1 413.3b 404.3b 13.3a 12.8a 42.6b 41.3b 1.6b 1.6b 38.7a 38.0a
 N2 438.3a 428.8a 14.4a 13.8a 47.8a 46.5a 1.9a 1.8a 39.1a 38.4a

N-split
 S1 440.2a 430.7a 14.0a 13.5a 49.1a 47.1a 1.9a 1.8a 39.0a 38.3a
 S2 429.4ab 419.9b 13.8a 13.3a 45.6ab 44.3ab 1.8ab 1.7ab 38.9a 38.2a
 S3 407.9c 399.1c 13.6a 13.0a 41.0b 40.3b 1.6b 1.5b 38.8a 38.1a

Table 8  Wheat yields under 
bio-decomposer, nitrogen 
level, and nitrogen splitting

*  B0- without application of bio-decomposer; B1- with bio-decomposer application; N1- nitrogen at 
150 kg ha−1; N2- nitrogen at 180 kg ha−1: S1- 50:25:25; S2- 40:30:30; S3-30:35:35 (N applied at sowing, crown 
root initiation, and booting). Data in the column followed by different letters are significantly different at 
p ≤ 0.05 as analysed by Tukey’s honest significant difference (Tukey’s HSD) test

Treatment Yield (t  ha−1)

Grain yield Straw yield Biological yield

2020–21 2021–22 2020–21 2021–22 2020–21 2021–22

Bio-decomposer
 B0 4.92a 4.62a 6.87a 6.70a 11.79a 11.40a
 B1 5.14a 4.86a 7.19a 7.10a 12.33a 11.97a

N-level
 N1 4.82b 4.61b 6.76b 6.62b 11.58b 11.23b
 N2 5.24a 5.04a 7.30a 7.18a 12.54a 12.15a

N-split
 S1 5.33a 5.15a 7.30a 7.27a 12.63a 12.41a
 S2 4.96ab 4.69ab 7.00ab 6.88ab 12.00ab 11.57ab
 S3 4.79b 4.54b 6.79b 6.55b 11.59b 11.09b
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and 2021–22. The N-levels had significant impact on biological yield with N2 resulted in significantly higher yield of 
7.7% (2020–21) and 7.6% (2021–22) compared to N1. Furthermore, the N-splits with S1 produced maximum biological 
yield in both years, which was at par to S2 but significantly higher than S3 by 8.2% and 10.6% in 2020–21 and 2021–22, 
respectively.

3.8  Urease activity and soil microbial biomass carbon

The urease activity (UA) in the upper soil layer (0.00–0.15 m) at 30 and 60 DAS with B1 was significantly higher by 6.8% 
and 6.2% over B0 in 2020–21 (Fig. 4a). While, between the N-level, N2 had significantly higher UA of 10.8% and 9.4% 
compared to N1, while among the N-splits, S1 resulted in maximum UA wherein it was at par with S2 but significantly 
more than S3 to the tune of 8.2% and 12.3% at 30 and 60 DAS. Similarly, in 2021–22 (Fig. 4b), the soil UA in the soil depth 
of 0.00–0.15 m with B1 was statistically higher by 7.8% and 9.1% at 30 and 60 DAS. Further, with N2 the UA was increased 
by 9.5% and 8.8% over N1, respectively at 30 and 60 DAS. Among the N-splits, S1 produced the highest UA which was 
significantly more than S3 by 13.8% and 12.8%, but found similar to S2 at 30 and 60 DAS. Furthermore, the SMBC at har-
vest in 2021–22 (Fig. 5) from 0.00–0.15 m soil depth with B1 was significantly higher than B0 by 8.9%. Indeed, different 
N-level and N-splits did not have significant impact on soil-MBC.

4  Discussion

4.1  Nitrogen concentration and uptake and post‑anthesis accumulation

The incorporation of rice straw results in soil nitrates immobilization due to high C:N ratio, thereby reducing the plants N 
uptake leading to N deficiency [41, 42]. Hence, to accelerate the decomposition process, the application of bio-decom-
poser (beneficial microbial formulation) coupled with a timely supply of optimum N fertilizer could create a congenial 
environment for better crop growth and development. The lower N concentration and uptake with N1(150 kg  ha−1) as 
compared to N2 (180 kg  ha−1) could be due to low N availability in rice crop residues, resulting in temporary immobiliza-
tion of inorganic N [43, 44], wherein the soil decomposers have to obtain the inorganic N from the N- fertilizer applied 
for building their cellular components [44, 45]. Meanwhile, with a higher rate of N-application (N2), the excess nitrogen 
could meet the N requirement of the microbes for the breakdown of the organic matter resulting in higher available N 
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Fig. 4  Soil urease activity determined at 30 and 60 DAS in (a) 2020–21 and (b)2021–22 seasons, as effected by the bio-decomposer applica-
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the bar are not significantly different at p ≤ 0.05 as analysed by Tukey’s honest significant difference (Tukey’s HSD) test
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to crop particularly in the early stages. Further, higher proportion of N as basal might have subdued the temporary N 
lock-up in the soil [46] thereby enhancing the availability of N to the crop and improving its concentration and uptake.

Further, previous studies reported that the total N concentration was primarily associated with the variation in dry 
matter [26, 47]. The N concentration in grain at maturity has been propounded to be greatly influenced by the remobi-
lization of N accumulated before anthesis [48, 49], while its contribution from post-anthesis uptake depends on the soil 
N status, genotype, and water availability during the grain filling period [50–52].

4.2  Dry matter accumulation and post‑anthesis dry matter accumulation, remobilization, and contribution 
to grain yield

The dry matter and nutrient accumulation and remobilization for wheat grown with an increased N rate and higher basal 
N were comparatively higher than the treatments with recommended dose of nitrogen and lower nitrogen at basal which 
could lead to a larger accumulation of assimilates available for remobilization with higher assimilate demand during the 
grain filling. In addition, dry matter partitioning and remobilization have been noted to be affected by factors such as 
climatic conditions, varieties, planting patterns, and management practices [53]. The higher dry matter remobilization 
(DMR) could be due to an increase in mineralization of organic residue which increases the nutrient concentrations in 
the soil and attributes to better early crop establishment and improved root growth and volume thereby enhancing the 
plant uptake resulting in increasing cellular activities ultimately lead to a higher synthesis of photosynthates remobiliza-
tion. The total dry matter remobilized under the higher nitrogen dose (N2) was enhanced by 21.4% and 26.5% in both 
years (Table 6). In wheat, current photosynthesis, and the remobilization of reserves from the stem and other plant parts 
provide the carbon required during the grain filling phase [54].

The dry matter remobilization efficiency (DMRE) in the present study varied with different treatments. This could be 
the result of decreased in dry matter accumulation and the photosynthetic rate at anthesis due to stress at the initial 
stage of the crop without decomposer and lesser dose at basal application, yet improved the remobilization of pho-
tosynthates to the spikes. Similar findings under the water stress conditions were reported by [24, 55]. Further, it has 
been reported in wheat that the contribution from remobilization of dry matter to grain yield varies from 7 to 57% [56], 
which was in line with our study, wherein it ranged between 15–29% among the treatments (Table 6). Nevertheless, the 
contribution of dry matter remobilization to grain yield among the treatments was found to be at par with each other. 
Nitrogen stress, particularly due to the temporary lock-up of applied N during the initial stage of the crop has been 
found to decrease the remobilization and contribution to grain yield [57, 58]. Meanwhile, because of the stress during 
post-anthesis, the accumulation and assimilation might have been reduced, as it is demonstrated in the current study, 
where post-anthesis dry matter accumulation with the treatments B0, N1, S3 decreased by 15 to 29% (Table 6). Hence, 
more the dry matter and N accumulated before anthesis, higher the rates of dry matter translocation to grain and the 
risk of net N losses at maturity [59].
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4.3  Yield components and yields

Application of bio-decomposer caused grain yield benefits of 4.6% over without bio-decomposer application, which 
could be attributed to hastening the composting process of RS through microbial bioaugmentation [60, 61] thereby 
augmenting the nutrients available to the crop and eventually resulting in an improved yield of the crop. In addi-
tion, the combined use of RS along with inorganic fertilizers particularly N has been reported to enhance the crop 
yield under the RWCS [62]. Previous studies revealed that the application of higher N at 180 kg  ha−1 over 60 kg  ha−1 
when the RS is incorporated had a lesser reduction in wheat yield [63]. The present study further confirmed that 
higher N needs to be applied when residue is incorporated to achieve greater yield, as N2 had 9% (two years mean) 
higher grain yield compared to N1. The higher rate of N application when residue is incorporated is to overcome the 
temporary immobilization of applied fertilizer and makes it more available to the crop in early growth stages [64]. 
Subsequently, the higher grain yield under N2 and S1 could be attributed to higher nitrogen mineralization and 
overcoming the stress (N immobilization) at the initial stage of the crop thereby increasing the dry matter accumula-
tion (Supplementary Table 3), and yield components viz., number of grains/spike and grain weight/spike (Table 7). 
Similar findings were reported by [65, 66]. Furthermore, N dose and N split influenced the number of grains/spike 
significantly during both years. The reason could be better mineralization of inorganic residues in the initial growing 
period resulted in supplying of available nutrients to the crop and nutrient uptake which might help in the efficient 
partitioning and allocation of photosynthates from source to sink [67]. Moreover, the increase in grain weight/spike 
was observed with the higher dose of nitrogen [68]. The lower grain yield in the second year (Table 7) as compared 
to the first year could be due to heavy rain (Supplementary Table 1) during the anthesis of the crop which led to 
chlorosis, and reduced photosynthetic ability of the crop. Besides, due to water logging, leaching and denitrification 
of N caused chlorosis and thereby reduced photosynthetic capacity and N availability to the crop [69]. The higher 
straw yield with higher N dose (N2) and 50% N (S1) applied as basal may be ascribed to enhance the growth of the 
crop, especially the tillers number, which ultimately culminates in straw yield. Increasing the recommended N dose 
by 30 kg  ha−1 and increasing the proportion of total N as basal i.e., 50%, helped the crop to off-set the N stress expe-
rienced during the initial phase in residue loaded plots [67, 70, 71]. The higher straw yield with N2 and S1 is clearly 
outlined in this study (Table 8).

4.4  Urease activity and soil microbial biomass

Urease activity in soil was influenced by the application of bio-decomposer, nitrogen doses, and N-splits. Soil urease 
activity has been reported to increase with conservation tillage and residue incorporation [72]. The activity of the 
urease enzyme is directly proportional to the dose of soil applied urea [7, 73], and therefore, with the higher nitrogen 
dose more is the activity of the urease enzyme. It is a general observation that the activity of urease increased up to 
60–80 DAS and decreases thereafter [74]. The probable reason might be due to N-splits of nitrogen which had been 
applied up to 70–80 DAS (i.e., booting stage in this study), and in response to this the activity of urea hydrolyzing 
microbes increased, thereby increasing the urease enzyme as well [75].

The functions of an agro-soil ecosystem are driven by interactions between soil organic matter and microbial com-
munities, and the concept of soil microbial biomass can help us comprehend these interactions [76]. Soil microbial 
biomasses assist in regulating soil fertility through the process of immobilization and mineralization for nutrients 
like carbon and nitrogen [77] and are identified as sensitive indicators of crop management practices [78, 79]. Crop 
residue acts as a readily available food source and provides a wide range of nutrients and congenial environment to 
microbes which resulted in higher microbial biomasses [80]. Thus, resulting in higher SMBC (8.9%) in the soil with 
the application of bio-decomposer compared to without bio-decomposer application. Our result is concurrent with 
findings reported by [7]. Considering this, bio-decomposer treatment becomes essential for the long-term viability 
of the soil and ultimately the intensive RWCS, in addition to increasing crop yield.
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5  Conclusion

With the innovative invention of technology such as super-seeder, the illicit and treacherous practice of residue 
burning could significantly reduce by adopting the alternative eco-friendly and sustainable management of crop 
residues without delaying the seeding of the next crop particularly in RWCS. Our study is unique in optimizing both 
rate of fertilizer N and its scheduling to overcome the limitation of immobilization that results to N stress during 
initial stage of the crop for higher and sustainable productivity. The results of the field experiments conducted in 
wheat sown by super-seeder revealed that in combine harvested rice field with residue retention, wheat should be 
supplied with 180 kg N  ha−1 and N-splitting as 50%:25%:25% (Basal: CRI: Booting) for improving the dry matter accu-
mulation, yield attributes, grain and straw yields and higher N-mineralization in soil during initial stage of the crop. 
Besides, use of bio-decomposer could be taken as a new path for efficient use of nitrogen, as it helped in improving 
soil urease activity and SMBC and early release of nitrogen thereby, improved the grain yield. Further investigations 
for long-term studies in nutrients content of soil and plants are necessary.
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