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Abstract
During the advantages of shorter training and higher information throughput, steady-state visual evoked potential 
(SSVEP) is widely used in brain–computer interface (BCI) research. Recently, collecting EEG signals from the ear area (ear-
EEG) has gained increasing attention because it is more comfortable and convenient than scalp electrodes. The ear-EEG-
based BCI system based on ear electrodes has weaker signals and more noise components because the electrodes are 
located far away from the top of the head. In this study, the RandOm Convolutional KErnel Transform (ROCKET) algorithm 
integrated with the Morlet wavelet transform (Morlet-ROCKET) was proposed to solve this issue. This study compared the 
performence of Morlet-ROCKET with two established methods: canonical correlation analysis-based (FBCCA) and Trans-
former methods. The proposed Morlet-ROCKET model demonstrated superior performance across multiple measures, 
including increased classification accuracy in 1 s, 3 s, and 4 s time windows and higher area under the curve (AUC) values 
in receiver operating characteristic (ROC) analysis. The analysis result proved that with efficient data processing algo-
rithms, ear-EEG-based BCI systems can also have good performance, and providing support for the popularization of BCI.

Highlights

•	 This paper employs ear-EEG to record SSVEP signals, showcasing a new approach in signal acquisition.
•	 It introduces Morlet-ROCKET, an innovative method characterized by low computational complexity.
•	 The proposed method has demonstrated enhanced performance compared to conventional methods, such as FBCCA 

and transformer, indicating its effectiveness in EEG signal analysis.
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1  Introduction

The Brain–Computer Interface (BCI) is an innovative technology which facilitates direct communication between the 
brain and computers or external devices. This technology has immense potential to improve the interaction capabilities 
of individuals with disabilities, as well as applications in industrial production and aerospace engineering [1, 2]. Traditional 
BCI systems use scalp electrodes based on the international 10–20 standard for recording brain signals. However, this 
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on-scalp EEG recording approach requires stable attachment using caps, headsets, or adhesives, leading to discomfort 
and obtrusiveness for users. To address these issues, ‘ear-EEG’ was proposed, which involves placing electrodes around 
the ear, significantly enhancing invisibility, mobility, and comfort for the wearer, and offering a less intrusive experience 
than full-scalp EEG. In BCI research, there has been an increasing focus on steady-state visual evoked potentials (SSVEP) 
due to their superior signal-to-noise ratio (SNR) and the elimination of extensive training requirements [3–9].

In SSVEP-based BCI research, filter bank canonical correlation analysis (FBCCA) is considered more effective than the 
minimum energy combination (MEC) [10, 11] and power spectrum density analysis (PSDA) [12], especially in online 
BCI research [13–16]. However, the lower SNR of ear-EEG could potentially undermine the efficacy of CCA-based 
techniques [17, 18]. While CCA has several advantages, its linear nature limits its ability to capture the complex and 
nonlinear relationships between input and output variables. This limitation has spurred the development of deep 
learning-based techniques for EEG signal processing, such as Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), Long-Short-Term Memory (LSTM) networks, and Transformers [19–23]. Although Trans-
former architectures are compelling, their requirement for large amounts of calculation and large datasets limits their 
development. As an alternative, the RandOm Convolutional KErnel Transform (ROCKET) was proposed [24]. ROCKET, 
employing random convolutional kernels for feature expansion, has demonstrated high classification accuracy and 
robustness in Univariate Time Series Classification (UCR) datasets.

However, due to the low signal-to-noise ratio of ear-EEG signals, these methods struggle to identify feature com-
ponents in ear-EEG effectively. In this study, we propose a novel feature extraction technique based on the ROCKET 
method integrated with the Morlet wavelet transform (Morlet-ROCKET) for ear-EEG analysis. Compared to the tradi-
tional ROCKET method, Morlet-ROCKET shows a significant improvement in recognizing evoked potentials in ear-EEG 
processing. We also compare the Morlet-ROCKET method with existing methods such as FBCCA and Transformers 
to demonstrate its effectiveness. Because the Morlet-ROCKET feature extractor is fixed after initialization, it is more 
suitable for real-time processing and has lower computational complexity than deep learning-based models while 
maintaining high classification accuracy.

2 � Experiments and data preprocessing

This study was approved by the Toyama Prefectural University Ethics Committee for Research Involving Human 
Subjects, and the IRB number assigned is H31-9. In ear-EEG-based SSVEP experiments, 15 participents (eleven males 
and four females; average age 21.9 ± 0.81 years) were engaged and data acquisition employed a state-of-the-art DC 
digital EEG system (BIO-NVX 52) with passive Ag/AgCl electrodes. Two trials were conducted for each participant. 
The experiments was conducted in an EMC shielded space to minimize noise.

Ear-EEG data were recorded through electrode placement around the right ear (R1-R8) and the AFz on the fore-
head as a ground reference (Fig. 1). The sampling rate is 2000Hz. Participants sat in 50 cm from the LCD screen [25] 
and fixated on a 17 cm square stimulus. This stimulus flashing at a 19.3◦ visual angle in alternating black and white.

Stimulus frequencies (5 Hz, 7 Hz, 9 Hz, and 11 Hz) were presented sequentially and each stimulus lasts 12 s. 60 s 
rest intervals were setting to prevent fatigue (Fig. 2). Participants were advised to minimize blinking and allowed 
sufficient eye rest.

Ear-EEG signals were filtered further (4 Hz to 60 Hz) for artifact reduction. The initial and final portions of the data (2 s 
and 1 s, respectively) were discarded to ensure signal stability. The analysis was conducted on segmented data. The data 
was standardized across trials for all four stimulus frequencies to prepare for 4-class classification using ROCKET models. 
Each data window underwent standardization before further processing with FBCCA or Morlet wavelet transformation.

In this study, a Leave-One-Out Cross-Validation technique was employed to evaluate the performance of our pro-
posed model. This method involves using a single observation from the original sample as the validation data, and 
the remaining observations as the training data. This process is repeated such that each observation in the sample 
is used once as the validation data. The dataset was partitioned into distinct training and testing sets prior to further 
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analysis. After being split into training and testing sets, each participant’s data was segmented into non-overlapping 
time windows of 1 s, 2 s, 3 s, and 4 s for analyzing the temporal dynamics of the data and assessing the model’s 
performance across varying time scales. For the statistical comparison of classification accuracies across these dif-
ferent time windows, we utilized the Games-Howell post hoc test. This non-parametric test is particularly suited for 
situations where the assumption of homogeneity of variances is violated, as it does not require equal sample sizes 
or normally distributed data.

3 � Methodology

3.1 � FBCCA​

The typical CCA method recognizes the remaining target frequency in the canonical correlation values. Considering 
X ∈ ℝ

N×d1 ,Y ∈ ℝ
N×d2 , where N corresponds to several observations. d1 and d2 represent the dimension of the observa-

tion. CCA, as a 2-multidimensional variable, finds a pair of linear combinations of the variables �x ∈ ℝ
1×d1 ,�y ∈ ℝ

1×d2 
to maximize the correlation between �xX

T  and �yY
T  , called canonical variants. Mathematically, this relationship can 

be expressed as follows:

Fig. 1   Left: Placement of 
ear-EEG electrodes. Right: The 
experimental arrangement

Fig. 2   Process of the SSVEP 
experiment
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In this context, EEG data typically constitute X , while Y is represented by reference sinusoidal signals and their harmonics. 
For example, for a stimulus frequency of 4 Hz, the reference signals would include frequencies of 4 Hz and its harmonics 
(8 Hz, 12 Hz,...) up to the Nyquist frequency.

FBCCA is a variant designed method based on CCA for SSVEP classification tasks. It could leverage a series of band-
pass filters to decompose the EEG signal into several sub-band components and the CCA will be applied to each sub-
band component [26]. This methodology enhances the extraction and utilization of harmonics within the EEG signal, 
thereby offering improved performance over the standard CCA. In this study, 4 filter banks were implemented and 
each defined by a distinct band-pass filter with a predetermined upper frequency limit of 80 Hz, evenly distributed 
lower limits to cover the full range of SSVEP frequency bands.

3.2 � Morlet wavelet

Morlet wavelet stands as a specialized time-frequency analysis method which is originating in the early 1980s. It is 
designed for the analysis of non-stationary signals as a pivotal tool in signal processing [27]. The Morlet wavelet is 
mathematically defined as the element-wise product of a sinusoidal wave and Gaussian function. The key parameter 
is the full width at half maximum (FWHM) of the Gaussian function. Specific mathematical formulation could be used 
to attain optimal smoothing performance in both the temporal and spectral domains [28] as follows:

where t corresponds to time, f denotes frequency, and h represents the FWHM in seconds.
We considered 2 Hz∼ 60 Hz as the frequency range associated with the Morlet wavelet. Morlet wavelet transform 

was applied to a specific time window of eight-channel ear-EEG data, in order to converting the shape of the data 
from (samples, channels, times) to (samples, frequencies, times). Finally, the output of the Morlet wavelet transform 
was used as the input for ROCKET model.

3.3 � Transformer architecture

The Transformer model is distinguished for its efficiency in various sequence-to-sequence tasks and built on an 
architecture which integrates an encoder with a decoder. However, only encoder component of the model will be 
used in time-series classification tasks like SSVEP signal categorization. Each encoder block in this architecture is 
designed to transform input data through a series of operations that capture the intricacies of sequential information.

The core of Transformer encoder is multi-head attention mechanism. It allows model to focus on different parts of 
the input sequence when processing a particular element. Mathematically, the multi-head attention can be described 
by the following equation:

where queries Q ∈ ℝ
N×Dk , keys K ∈ ℝ

M×Dk , values V ∈ ℝ
M×Dv . N, M stand for lengths of queries and keys Dk ,Dm represent 

the dimensions of keys and values, respectively. The multi-head attention with H dimensions.

(1)�(�xX
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Our Transformer encoder stack comprises three such encoders in series. The output from the final encoder is passed 
through a fully connected layer with 256 units, followed by a dropout layer with a 0.5 rate to prevent overfitting. The 
dimensionality of all model components was set to 256 to maintain consistency. Additional batch normalization and 
a dropout layer at a rate of 0.2 were implemented for regularization (Fig. 3).

3.4 � Multi‑channel ROCKET

ROCKET is a feature extraction method which employs random convolutional kernels to transform time-series data based 
on derived features such as including the maximum value and proportion of positive values (PPV). Unlike typical deep 
neural networks (DNN) required back-propagation to adjust the weights of the layers, ROCKET model demonstrated the 
efficacy of using a vast number of random convolutional kernels to capture features that are pertinent to time-series clas-
sification, leading to a substantial reduction in the training time. An additional benefit of ROCKET is significantly reduced 
number of hyper-parameters compared to a DNN, which not only minimizes the time-consuming and laborious task of 
fine-tuning but also renders the model more accessible and robust. Originally designed for single-channel time series 
data, ROCKET faced limitations when applied to multichannel datasets. To address this, we re-engineered the generation 
of random CNN kernels. The first step involves generating random CNN kernels for a single channel. These kernels are 
then broadcasted to all channels. Finally, the channel axis is averaged to accommodate multichannel data. The detailed 
algorithmic structure of this Multi-channel ROCKET model is outlined in Algorithm 1.

Fig. 3   Detailed structure of 
the Transformer encoder used 
in the study
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Algorithm 1   Multi-Channels RandOm Convolutional KErnel Transform

We employed the ridge classifier which is an extension of the ridge regression, due to its efficacy in handling multi-
collinearity and high-dimensional feature spaces. The classifier was trained using ROCKET-transformed SSVEP signals to 
perform 4-class classification of ear-EEG data. Ridge classifier has emerged as a widely adopted approach for parameter 
estimation in the context of multiple linear regression due to its effectiveness in mitigating the issue of collinearity that 
often plagues this type of analysis by computing the sum of penalty of linear regression and value of weights (see Eq. 
(7)) [29]:

where the X is the design matrix, y is the target, w is the coefficient vector. The classifier in question follows a two-step 
process for binary classification. Firstly, it transforms binary targets into the set {−1, 1} . Then, it approaches the classifica-
tion problem as a regression task with the same optimization objective as previously mentioned. The predicted class is 
determined by the sign of the regressor’s prediction. Multi-class classification analysis was treat as a multi-output regres-
sion task. The classifier identifies the predicted class by selecting the output featuring the highest corresponding value.

This study transformed SSVEP signals using ROCKET with 10,000 convolutional kernels to extract 20,000 features. 
Ridge classifier [30] is well suited for situations in which the number of features is larger than the number of samples. It 
was used to classify the transformed SSVEP signals of ear-EEG.

In conclusion, this study conducted a rigorous comparative analysis to ascertain the effectiveness of three distinct 
computational approaches applied to uniform ear-EEG-based SSVEP data. The methods evaluated were: the established 
CCA-based technique, the cutting-edge deep learning-based Transformer, and the innovative ’semi-machine’ learning 

(4)min
w

||Xw − y||2
2
+ �||w||2

2
,
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method known as ROCKET. Each of these methods were used for analyzing preprocessed input data of ear-EEG record-
ings that were meticulously filtered and standardized. Specifically, the FBCCA method utilized 8-channel SSVEP data 
subjected to these preprocessing steps. In contrast, the data for Transformer and ROCKET methods were further trans-
formed through Morlet wavelet decomposition to enhance feature extraction capabilities (Fig. 4).

4 � Results

4.1 � SSVEP based on ear‑EEG

Figure 5 delineates the SSVEP components based on ear-EEG which elicited by stimuli at varying frequencies and analyzed 
via Morlet wavelet transform. Notably, during the 5 Hz stimulus, the harmonic response at 15 Hz is more prominent than 
the fundamental 5 Hz stimulus. In the 7 Hz stimulus, both fundamental and 21 Hz harmonic exhibit comparable intensity. 
In 9 Hz and 11 Hz stimulus experiments, fundamental components on 9 Hz and 11 Hz are more prominent than harmonic.

4.2 � Classification results of FBCCA, Transformer and Morlet‑ROCKET

When using ROCKET to analyze ear-EEG, wavelet transform is an indispensable data processing process. The value of 
the FWHM (denoted as h in eq (2)) has significant relevance to interpreting the result of the Morlet wavelet transform, 
and it is highly dependent on the specific task. Figure 6 shows the distribution of accuracy of the ROCKET model with 
different FWHMs.

We found that the model demonstrated the best performance when FWHM = 0.75 ⋅ length _ of _ timewindow . The 
accuracy of the target frequencies based on ear-EEG did not increase after h=0.75 in different time windows. The time-
frequency analysis based on ear-EEG revealed the presence of both target frequency components and their respective 
harmonic frequency components. Nonetheless, it’s important to note that there were noticeable noise components 
present in the data.

We applied the original data to the ROCKET model to verify the necessity of the Morlet wavelet transform (Fig. 7). In 
Fig. 7, EEG data without Morlet wavelet has a very low classification accuracy (orange color) in ROCKET model. The sub-
stantial discrepancy observed between the original and transformed data suggests that the Morlet wavelet transform 
plays a critical role in preprocessing the Morlet-ROCKET model. The transformed data-based accuracies of the target 
frequency classification in different time windows were higher than those based on the original data, and statistical 
analysis demonstrated significant differences between them.

Fig. 4   Data processing work-
flow of this research
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This study used ear-EEG-based time-frequency data as input data for the Morlet-ROCKET models. Of these, Leave-
One-Out cross validation was conducted (see Fig. 8). Additionally, the results from a Games-Howell test—conducted 
to compare each method within the same time window—are presented in Fig. 8 which indicate that Morlet-ROCKET 

Fig. 5   Morlet wavelet-transformed ear-EEG data under 5 Hz, 7 Hz, 9 Hz, and 11 Hz stimuli

Fig. 6   Influence of FWHM on 
Morlet wavelet
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outperforms FBCCA and Transformer in specific time window scenarios, with significant accuracy enhancements observ-
able in the 1 s, 3 s, and 4 s windows.

4.3 � Performance of Morlet‑ROCKET model

The confusion matrices in Fig. 9 reveal a direct correlation between the length of the time window and classification 
accuracy, with the latter increasing as the former extends. This trend is further substantiated by the ROC curves in Fig. 10, 
comparing the true positive rate against the false positive rate for the Morlet-ROCKET and Transformer models across 
different time windows. The Morlet-ROCKET model consistently demonstrates superior performance, as evidenced by 
the area under the curve (AUC) values, reinforcing its efficacy in SSVEP signal classification.

The comprehensive evaluation presented herein not only corroborates the superiority of the Morlet-ROCKET model 
over traditional FBCCA and emerging Transformer methods, but also highlights the crucial role of wavelet preprocessing 
in SSVEP signal classification. The methodological advancements introduced by this study could pave the way for more 
robust and accurate BCI systems.

5 � Discussion

Based on the results in Fig. 5, we can see that visual stimulation frequencies such as 5 Hz, 7 Hz, 9 Hz, 11 Hz which are 
commonly used in traditional SSVEP experiments based on head electrodes can still be detected from the electrodes 
around ears. This evidence supports the feasibility of simplifying BCI systems by relocating electrodes to the periphery 
of the ears, which could potentially enhance user comfort and system practicality.

As indicated in Fig. 6, model accuracy enhancement with increased FWHM highlights the SSVEP signal’s dependency 
on frequency resolution over temporal precision. This observation aligns with the frequency-domain characteristics of 

Fig. 7   Performance differ-
ence between original and 
transformed data

Fig. 8   Accuracy comparison 
between FBCCA, Transformer, 
and Morlet-ROCKET meth-
ods. Significance levels: ns 
(not significant), *(p < 0.05 ), 
**(p < 0.01 ), ***(p < 0.001 ), 
****(p < 0.0001 ), respectively 
at the 95% confidence level 
( � = 0.05)
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Fig. 9   Confusion matrices for 
the Morlet-ROCKET model 
across varied time windows

Fig. 10   ROC analysis for the Morlet-ROCKET model compared to the Transformer across different time windows
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SSVEP signals and merits further investigation into the optimal balance between frequency resolution and temporal 
accuracy in SSVEP-based BCIs.

The comparative analysis depicted in Fig. 7 clearly demonstrates a significant enhancement in performance when 
the ROCKET framework utilizes data transformed via Morlet wavelet, compared to its use of original, untransformed 
data. EEG data are inherently characterized by their high levels of noise and non-stationary behavior, which lead to a 
decrease in ROCKET’s performance as the length of the time window extends. The adoption of wavelet transforms acts 
as an effective strategy for diminishing noise and spotlighting signal characteristics that are more stable over time. This 
technique helps in preserving crucial information that might otherwise be lost when analysis is conducted solely with 
raw data. Such information loss is particularly evident in longer time windows due to an increase in signal variability. By 
integrating wavelet transforms, we can mitigate these issues, thereby enhancing the ROCKET model’s ability to analyze 
EEG data across various time spans.

Figure 8 demonstrates the Morlet-ROCKET model’s superior accuracy over conventional FBCCA and Transformer 
approaches, particularly in the 1 s, 3 s, and 4 s time windows. The prerequisite for such enhanced accuracy is the pre-
processing of EEG data via Morlet wavelet transform, suggesting that raw EEG data may be ill-suited for ROCKET-based 
classification without such preprocessing.

The classification accuracies for different frequency stimuli which was detailed by the confusion matrix in Fig. 9, indi-
cate a notable discrepancy in the ROCKET model’s performance across varied time windows. The improved accuracy for 
the 5 Hz stimulus in a 4 s window suggests that extending the time window can have a beneficial impact on the clas-
sification of lower frequency stimuli, potentially due to increased data availability for pattern recognition.

Lastly, the ROC curves in Fig. 10 further substantiate the efficacy of the Morlet-ROCKET model. The AUC values for both 
ROCKET and Transformer models display an upward trend with increasing time window lengths, reinforcing the notion 
that longer time windows may facilitate more accurate SSVEP signal classification.

These results emphasize the importance of preprocessing in SSVEP-based BCIs and suggest that the Morlet-ROCKET 
model, with its ability to accommodate different time windows and stimuli frequencies, could provide a robust framework 
for future BCI applications. Future work should aim to validate these findings in larger participant cohorts and explore 
the integration of this approach into real-world BCI systems.

6 � Conclusion

This study introduced a hybrid model combining Morlet wavelet transform and the ROCKET algorithm for classifying 
SSVEP signals from ear-EEG data. The model displayed remarkable accuracy, outperforming FBCCA and Transformer in 
detecting frequencies of 5 Hz, 7 Hz, 9 Hz, and 11 Hz. With an accuracy of 75.5 ± 6.7% , it significantly exceeds the 40 ∼ 70% 
range reported in prior ear-EEG SSVEP studies [31]. These findings not only validate the model’s efficacy but also high-
light its potential for practical BCI applications, pointing towards a future direction for non-invasive and user-friendly 
BCI systems. Further research is necessary to explore the full potential of this approach in diverse settings and across 
a wider frequency range. However, the ROCKET algorithm’s tendency to saturate with large datasets suggests a scope 
for further optimization. Future research should focus on enhancing the model’s efficiency across a broader frequency 
range and in diverse settings, paving the way for more versatile and effective BCI applications.
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