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Abstract
Background As the global cancer burden increases, it is critical to develop alternative treatments that produce minimal 
side effects, owing to its optical, thermal, and biological anticancer and biomedical applications of graphene and its 
nanocomposites. researchers have devoted the past few years to developing graphene/polymer and graphene/metal 
nanocomposites.
Materials and methods Here a simple, highly stable, non-toxic, eco- friendly chitosan gold nanoparticles (Cs-AuNPs) and 
its nanocomposites with graphene oxide nanosheets (GO) to form novel photostable (GO/AuNPs) nanocomposites. The 
prepared nanomaterials were characterized by UV–Vis, FTIRs, TEM and Raman as shown in graphical abstract. In addition, 
the anticancer efficiency of the prepared nanomaterials in breast cell lines (MCF7, T47D, MDA-MB-468 and MDA-MB-231) 
using SRP assay were evaluated.
Results Results revealed that Cs-AuNPs bound with the GO sheets via electrostatic interaction with high stability with 
uniform decoration. A new FTIRs peak of high intensity was found in the GO/Au nanocomposite confirming the decora-
tion of Cs-AuNPs on the surface of the GO layers. GO/Au nanocomposite has a significant cytotoxic effect on breast cell 
lines as compared to GO only.
Conclusion This work opens perceptions for translational applications of GO/Au nanocomposite on cancer cell lines, 
future work is to use the prepared nanocomposite in photothermal chemotherapy combined treatment.

 * Marwa A. Ramadan, marwali_mus@cu.edu.eg; Sara Gad, sgad@srtacity.sci.eg; Marwa Sharaky, marwa.sharaky@nci.cu.edu.eg; 
Amna H. Faid, amna.hussein@cu.edu.eg | 1Department of Laser Application in Metrology, Photochemistry and Agriculture, National 
Institute for Laser Enhanced Science (NILES) Cairo University (CU), Cairo, Egypt. 2Electronic Materials Research Department, Advanced 
Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 
Egypt. 3Pharmacology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Cairo, Egypt. 4Biochemistry 
Department-Faculty ofPharmacy, Ahram Canadian University, Giza, Egypt. 5Department of Laser Science and Interaction, National Institute 
for Laser Enhanced Science (NILES) Cairo University (CU), Cairo, Egypt.



Vol:.(1234567890)

Research Discover Applied Sciences           (2024) 6:170  | https://doi.org/10.1007/s42452-024-05808-2

Graphical abstract

Article highlights

• Chitosan reduced gold nanoparticles were successfully prepared and incorporated on graphene oxide nanosheets.
• Chitosan reduced gold nanoparticles reduce the viability of the cell population after 48h exposure with the lower 50 

percentage viability concentration.
• Incorporation of Chitosan reduced gold nanoparticles on graphene oxide enhance the cytotoxic effect of graphene 

oxide consequently graphene oxide / gold nanoparticles nanocomposite has a significant cytotoxicity effective against 
all tested breast cancer cells.

Keywords Chitosan coated AuNPs · GO/Au nanocomposite · Laser photostability · Raman spectroscopy · Breast cancer 
cell lines

1 Introduction

Graphene  oxide/metal  nanocomposites  perform  better  than  metallic  nanoparticles  and  graphene 
oxide nanosheets (GO) alone because of their complementary effects [1–6]. Therefore, efforts have been concen-
trated on decorating GO surfaces with AuNPs and investigating their potential uses in a variety of industries, including 
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sensors, cancer detection, photothermal treatment, and drug administration. Graphene-constructed nanocomposites 
are increasingly existence taken into account for their potential biological uses [7–9]. The benefit of NPs’ tiny size is 
that they may continuously enter cells through the plasma membrane, and their unique surface characteristics enable 
them to interact only with certain biomolecules in the cytoplasm, bodily fluids, or tissues [10–17]. An interesting char-
acteristic of AuNPs called surface plasmon resonance (SPR) has been associated with a number of surface-enhanced 
Raman scattering (SERS)-based biomedical applications [18–22] including bio-imaging and biomolecule identifica-
tion. Theragnostic for cancer, particularly for cancer diagnostic and bio sensing applications, can benefit from the 
conjugation of GO with a noble metal like Au because of its specific features [23]. We explore the usage of GO/ Au 
nanocomposites in cancer treatment on breast cancer cell models in this article because of their great features. One of 
the critical elements for diagnosis and therapy is the biocompatibility and clearance of AuNPs. Pharmacological and 
toxicological investigations have demonstrated the biocompatibility of graphene-based derivatives, with hydrophilic 
GO being favored over pure graphene [6, 24]. The characteristics of the GO/AuNPs nanocomposite may also be sig-
nificantly enhanced by functionalizing graphene, making them potent stages for the creation of cheap, sensitive, and 
quick drug delivery structures, biosensors, and photothermal treatment. Combined hard work from researchers are 
being made to enhance the synthetic processes for investigating the unique features of these innovative constituents 
in biomedical applications in diagnostics and treatments [25–30]. Interesting biological actions are also displayed 
by chitosan (Cs) and chitosan nanoparticles, including antibacterial activity, disease resistance in plants, and various 
stimulating or inhibitory activities towards various human cell types [11, 31]. These factors make chitosan an exten-
sively utilized substance in a variety of industries, such as medical, pharmaceuticals, nutrition, and agriculture [22, 
32]. Due to its role as a dispersion and ability to prevent metal particle agglomeration, chitosan was used to create 
valuable metal nanocomposites [33–35]. It is thus of tremendous interest to create chitosan-coated gold (Cs-Au) and 
combine it with GO. In most investigations up until this point, dangerous reducing agents like sodium borohydride 
and hydrazine were employed in the production of GO/Au nanocomposite. These synthesis processes are intricate 
and include several phases [36]. The performance of the GO/MNPs nanocomposites is decreased by the application 
of surfactants because they are powerfully absorbed on the exterior of the metallic NPs. The production of GO/MNPs 
nanocomposites via physical and chemical processes has been the focus of efforts [37]. Green synthesis techniques 
have not been widely used in investigations to create GO/Au nanocomposites [38] and their biological activity in 
human cancer cell models. It is critical to identify potential novel therapeutic compounds that have the potential to 
greatly increase cancer cell apoptosis. People’s interest in nanomedicine is still stimulated by these features.

In present work GO, Cs-AuNPs, and GO/Au nanocomposite were quickly, cheaply, and eco-friendly prepared. In 
addition, the efficiency of the prepared nanomaterials in dealing breast cancer cell line was done.

2  Material and methods

2.1  Synthesis of graphene oxide nanosheets (GO)

Nanosheets of GO were synthesized from oxidation of graphite using a modified Hummers method as in our prior 
research [7, 37, 39].

2.2  Green synthesis of chitosan‑coated gold nanoparticles (CS‑AuNPs) [14, 40]

Cs-AuNPs have been manufactured by means of chitosan as a reducing/capping mediator by thermal reduction 
methods [41]. CS-AuNPs was prepared by reducing tetrachloroaurate with chitosan, in this method 5ml of  10−3M 
solution of  HAuCl4.3H2O (99.9%, Sigma-Aldrich) was reduced by 40ml chitosan 0.2% acetic acid at 100˚C fabricating 
red solution. The Prepared Cs-AuNPs were dried using lypholizer.

2.3  Synthesis of GO/Au nanocomposite

GO/Au nanocomposites are synthesized via the ex-situ method by slowly adding 10 mL Cs-AuNPs with 10 mL GO solution in 
a beaker glass under continuous stirring. The volume ratio between GO and Cs-AuNPs is 1:1, then the mixture homogenized 
with stirring for 30 min and sonication for 30 min at ambient temperature, then GO/Au nanocomposite dried using lypholizer.
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2.4  Laser photostability of Au@CsNs

Diode Pumped Solid State (DPSS) laser 532 nm with 150 mW was used to irradiate GO/Au nanocomposite for 2, 4, 6 and 
8 min then the absorption spectra were observed before and after exposure.

2.5  Characterization of GO, (Cs‑AuNPs) and GO/Au nanocomposite

The absorption spectrum for nanomaterials were measured by means of UV–Vis-NIR spectrophotometer (Cary 5000, 
Agilent, Santa Clara, USA), The analysis was performed via quartz cell with wavelength range of 250–1000 nm. Morphol-
ogy was analyzed by a high-resolution Transmission electron Microscope (HRTEM, Tecnai, G20, FEI, Almelo, Netherlands). 
Droplets from diluted nanomaterials were let fall on carbon-coated copper grid and dried. FTIRs were done using FTIR 
spectrometer (4100 Jasco-Japan) (400–4400  cm−1). Raman spectroscopy for the nanomaterials were systematically ana-
lyzed by (Raman Senterra II, Germany) with a laser wavelength of 532 nm.

2.6  Cytotoxicity assay

Here, a plate of the obtainable cell lines was confirmed for their sensitivity to the prepared nanomaterials. Different con-
centrations GO, (Cs-AuNPs) and GO/Au nanocomposite were used for all tested cell lines. Human breast tumor cell line 
(T47D, MCF7, SKBR3, MDA-MB-231 and MDA-MB-468) were used in this study. It was gained from the American Type Cul-
ture Collection (ATCC, Minnesota USA). The tumor cell line maintained at National Cancer Institute (NCI), Cairo, Egypt. The 
antitumor activities of the prepared nanomaterials and cell lines were estimated by sulphorhodamine-B (SRB) assay [42]. 
Cells were seeded at a density of 3 ×  103 cells/well in 96-well microtiter plates then attached for 24 h before incubation 
with nanomaterials. Subsequent, treated with of changing concentrations of GO, (Cs-AuNPs) and GO/Au nanocomposite 
(200, 400 and 600 ug/ml) µg/ml for T47D, MCF7, SKBR3, MDA-MB-231 and MDA-MB-468 cells. For individual concentra-
tion, three wells were used, and incubation was continued for 48 h. DMSO acted as control vehicle (1% v/v). Latterly, cells 
were fixed with 20% trichloroacetic acid then stained with 0.4% SRB dye. The optical density (O.D.) of individually well 
was analyzed spectrophotometrically at 570 nm by means of ELISA microplate reader (TECAN sunrise™, Germany). The 
mean survival fraction at each drug concentration was calculated as follows: O.D. of the treated cells/O.D. of the control 
cells. The IC50 (concentration that produce 50% of cell growth inhibition) value of each drug was calculated (Graph Pad 
Prizm software, version 5) soft wear [42].

2.7  Statistical analysis

Statistics are obtainable as mean ± standard deviation. Statistical analysis was performed using Graph Pad software Prism 
v5. Statistical analysis of transfection assay data performed using Tukey’s multiple comparison test. Modifications were 
statistically significant if p ≤ 0.05.

3  Results

3.1  Characterization of GO, (Cs‑AuNPs) and GO/Au nanocomposite

GO was produced by oxidizing graphite via a modified Hummers method, which is a mixture of potassium permanganate 
and sulfuric acid, yielding manganese heptoxide (Mn2O7), an active oxidant that oxidizes the unsaturated double bond 
and form GO. Spectrophotometric measurements of GO solutions Fig. 1, showed absorption in the near-infrared and 
visible range, but a strong specific absorption peak in the ultraviolet range around 237 nm highly exfoliated ultrathin 
structure of GO nanosheets with a very smooth surface. AuNPs displayed a surface plasmon-specific resonance at around 
530 nm as shown in Fig. 1, which is specific to surface plasmon resonance. Cs-AuNPs interacted with GO layers through 
electrostatic bonding, physisorption, and charge-transfer interactions. The combination of GO/Au nanocomposites was 
characterized by UV–visible spectroscopy after incorporation with GO, the peak of Cs-AuNPs displayed a small red-shift 
from 530 nm to about 540 nm was observed, which provided strong evidence for the persistence of mono-dispersion 
as well as surface modification. A typical GO band was observed around 240 nm, which indicated that Cs-AuNPs were 
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successfully incorporated with GO nanosheets. The GO/Au nanocomposites solutions appear to be uniform and much 
lighter in color compared with the Cs-AuNPs solution which strongly suggested the incorporation of Cs-AuNPs with GO. 
So, Cs-AuNPs are tightly attached onto the surface of thin layer of GO through electrostatic interaction to modify the 
surface property and photothermal performance of Cs-AuNPs.

Figure 2a, TEM image showed highly exfoliated ultrathin structure of GO nanosheets with a very smooth surface and 
the formation of chitosan stabilized gold nanoparticles was confirmed in Fig. 2b which reveals that spherical Cs-AuNPs 
with diameters of about 20 ± 5 nm. In Fig. 2c, showed the incorporation of Cs-AuNPs with GO and Cs-AuNPs tightly 
attached onto the surface of thin layer of GO through electrostatic interaction.

In Fig. 3a, upon laser irradiation has no change in the absorption peaks which confirm the stability of GO/Au nanocom-
posites. Figure 3b, the broadband FTIR spectrum for Cs-AuNPs, GO and GO/Au nanocomposites, the FTIR-GO spectrum 
shows broad and intense absorption peaks in 1723 and 1245  cm−1, the characteristic –OH, –C=O absorption peaks in 
the GO/Au nanocomposite decrease indicating a successful conversion of GO into a GO/Au nanocomposite. Thus, as 
observed, a new peak of high intensity was found in the GO/Au nanocomposite, confirming the decoration of Cs-AuNPs 
on the surface of the GO layers. In Fig. 3c, the Raman spectroscopy of Cs-AuNPs have three bands that can be observed 
at, 1350, 1580, and 2700  cm−1, which are D, G, and 2D peaks of graphene shell.

3.2  Effect of Cs‑AuNPs and GO/Au nanocomposite on viability of breast cancer cell lines

With the aim of estimating the GO/Au nanocomposite potential for biomedical application, cytotoxicity of GO, 
Cs-AuNPs and GO/AuNPs were evaluated against breast cell lines (MDA-MB-231, T47D, SKBR3, MCF7, MDA-MB-468 
cells) at changed concentrations after 48 h using the SRP assay. GO, AuNPs and GO/Au nanocomposite influenced a 
concentration-dependent cell viability decrease.

Fig. 1  UV-Absorption and a 
digital photograph of the GO, 
Cs-AuNPs and GO/Au nano-
composite
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Outcomes of the current study exposed that all the tested breast cancer cell lines were affected by (200,400, and 
600 ug/ml) concentrations of GO, Cs-AuNPs, GO/Au nanocomposites that were used in this study Table 1, Figs. 4 and 
5, showed that samples has IC50 on all tested cell line which is (T47D, MCF7, SKBR3, MDA-MB-231 and MDA-MB-468 
cells) after 48 h. Cs-AuNPs showed the strongest effect in all breast cell lines.

Fig. 3  a laser photostability 
of GO/Au nanocomposites 
b FTIR spectra of samples c 
Raman spectra of samples
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4  Discussion

Mostly, gold nanoparticles are produced via numerous agents, such as sodium borohydride, chitosan, and even 
alcohol. The second-most prevalent polysaccharide in nature, chitosan, has reducing and capping properties [41], 
Because of its advantageous biological characteristics, including small harmfulness and sensitivity to biodegrada-
tion, chitosan was chosen in this investigation. It has a negative charge and serves as an electrostatic stabilizer for 
polyelectrolytes. Chitosan’s amino group functions as a stabilizer and a reducing agent. Chitosan alone may convert 
 AuCl4− ions to zero-valent gold nanoparticles without the use of another reducing agent. Since the amine groups are 
primarily involved in the reduction of tetrachloroauric acid and the capping of AuNPs in chitosan, these AuNPs dis-
played a surface plasmon-specific resonance at around 530 nm Fig. 1a. Protonation of chitosan amino groups occurs 
in an acidic medium (R-NH3+) on superficial and forms a framework for absorbing oppositely charged  AuCl4− ions. 
The electrostatic attraction among the positively charged chitosan amino groups and the  AuCl4− negatively charged 
ions promotes nanoparticle formation and confers high stability to the nanoparticles. After reduction by chitosan 
chains, the Au cores bound to AuNPs on chitosan due to van der Waals forces and attraction among amino groups 
and Au particles. The chitosan-coated AuNPs exhibited a surface plasmon-specific resonance at ~ 530 nm, as amine 
groups are mainly involved in tetrachloroauric acid reduction Fig. 1a. Protonation of chitosan amino groups happens 
in an acidic medium (R-NH3+) and forms a framework for absorbing oppositely charged  AuCl4− ions. The attraction 
among the positively charged amino groups of chitosan and the negatively charged  AuCl4− ions promotes nanopar-
ticle formation and confers high stability to the nanoparticles. After reduction by chitosan chains, Au cores bound 
to AuNPs and self-assembled on the surface of chitosan through van der Waals forces and high attraction between 
amino groups and Au particles.

Equation 1: Proposed mechanism of reaction between CS and HAuCL4forming AuNPs.
Numerous approaches for the synthesis of various GO/Au nanocomposites have been reported, including chemical 

reduction, thermal reduction, photochemical reduction, and sonochemical reduction. In most of these approaches, water- 
or ethanol-based GO suspensions are reacted with metal precursors in the presence of reducing agents, sodium citrate 
or ascorbic acid, to achieve simultaneous reduction of metal ions to form nanocomposites. produce materials.  HAuCl4 is 
a commonly used metal precursor for the synthesis of Cs-AuNPs. In an ex-situ method, Cs-AuNPs and GO nanoparticles 
are synthesized separately and attached to graphene sheets using electrostatic bonds, p–p bonds, hydrogen bonds, or 
van der Waals interactions for binding. This method ensures a uniform size distribution and it is possible to control the 
amount of Cs-AuNPs on the graph [43]. Therefore, the ex situ process represents a promising technique to overcome 

Table 1  The IC50 breast cancer cell lines after 48h incubation with Cs-AuNPs and GO/Au nanocomposite

Cell lines MCF7 T47D MDA-MB-231 MDA-MB-468 SKBR3

IC50 (µg/ml) SD IC50 (µg/ml) SD IC50 (µg/ml) SD IC50 (µg/ml) SD IC50 (µg/ml) SD

Cs-AuNPs 199 3.70 224 5.00 245 6.00 201 9.00 131 7.00
GO\Au nano-

composite
216 2.40 – 0.00 359 7.00 136 5.00 458 12.00
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Fig. 4  Cytotoxicity at changed concentrations (µg/ml) of GO, Cs-AuNPs and GO/Au nanocomposite on breast cell lines (MCF7, T47D, MDA-
MB-231, MDA-MB-468 and SKBR3) after incubation for 48 h
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the difficulties encountered in the in situ synthesis of nanocomposites [43]. Furthermore, the GO sheets acted as an 
exceptional support and stabilizer for the synthesis of Cs-AuNPs without significant aggregation [44, 45]. can provide a 
range of p-p interactions between Cs-AuNPs and GO. Figure 3b the broadband FTIR spectrum at 3330  cm−1 is from OH 
stretching vibrations and confirms the existence of hydroxyl groups on GO. In addition, FTIR-GO spectrum shows broad 
and intense absorption peaks in 1723 and 1245  cm−1 equivalent to the stretching frequencies of the –C=O (carbonyl) 
and C–O (epoxide) groups, respectively. The band at 1730  cm−1 is mainly caused by the stretching vibrations of the 
carboxyl groups. The contribution of other carbonyl functional groups probably overlaps this band by conversely, the 
characteristic –OH, –C=O absorption peaks in the GO/Au nanocomposite decrease indicating a successful conversion of 
GO into a GO/Au nanocomposite. It shows strong absorption bands at 1063  cm−1, 1113  cm−1, and 1658  cm−1, which are 
ascribed to vibrations of the C–O–C epoxy stretch of the phenolic hydroxyl group, the C–OH stretch, and the GO carbonyl 
groups, respectively. The observed peak at 1420  cm−1 characteristics to the bending mode of the –OHGO group [46, 47]. 
Furthermore, the peak at 1600  cm−1 in GO confirms the occurrence of sp2 hybridization. Upon incorporation of GO into 
Cs-AuNPs, the GO band disappeared, which means that almost all GO particles were quantitatively covered by Cs-AuNPs. 
Thus, as observed, a new peak of high intensity was found in the GO/Au nanocomposite, confirming the decoration of 
Cs-AuNPs on the surface of the GO layers. In Fig. 3c, the Raman spectroscopy of Cs-AuNPs have three bands that can be 
observed at, 1350, 1580, and 2700  cm−1, which are D, G, and 2D peaks of graphene shell. The D and 2D bands are the 
structures of graphitic sp2 materials, and the G band is interrelated to the defects of graphene, shows that the shell is 
not perfect graphene [48]. The D band 1350  cm−1 is related to the phono mode A1g and the G band 1580  cm−1 is cor-
related to the phonon mode E2g that show the degree of graphitization and the 2D band is very sensitive to changes in 
the number of GO layers [49, 50]. It can be seen that there is a re-establishment of a conjugated graphene network after 
the GO has been successfully decorated with Cs-AuNPs [51].

Previous research has shown that GO has anticancer properties in the biomedical field. According to the previous 
explanation, the cytotoxic effects of GO on MDA-MB-468, SKBR3, MDA-MB-231, MCF7, and T47D at 250 g/mL were 40%, 
38%, 22%, 15%, and less than 5%, respectively. This effect was caused by GO’s potent physical interactions with the 
phospholipid layer, which led to the loss of plasma membrane integrity and its resulting injury. According to reports, GO 
assemble inside of cells after entering and physically disrupting the plasma membrane [39]. As shown in Table 1, Cs-AuNPs 
may be enter cells via receptor-mediated endocytosis and phagocytosis pathways. Cs-AuNPs produced a decrease in 
cell viability that reached IC50. Table 1 The IC50 breast cancer cell lines after 48h incubation with Cs-AuNPs and GO/Au 
nanocomposite [52]. It has been established that chitosan and AuNPs both cause cell cycle arrest in the G1 and S phases 
of cancer cells, respectively. Even though AuNPs and chitosan individually cause cell cycle arrest in several cancer cell 
lines, this suggests that cell viability reduction is caused by cell death induction. Previous investigations using different 
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kinds of AuNPs have also shown that ROS production is necessary for inducing cell death. Furthermore, a prior work 
stated that Cs-AuNPs induced ROS production in cancer cells [53, 54]. The viability of the cell population was reduced 
50% after 48h exposure with the lower IC50 concentration (131 μg/mL), indicating the biocompatibility for the Cs-AuNPs. 
However, GO/Au nanocomposite has the optimum concentration up to 50 µg/mL because of the non-toxicity of GO/
Au nanocomposite to breast cell lines up to this concentration. With increasing GO/Au nanocomposite concentration 
from 50 to 500 µg/mL cytotoxicity has increased reaching IC50 value on breast cell lines are shown in Table 1. Our results 
were in agreement with earlier work [4], where they found that GO/Au nanocomposite induced cell cycle arrest which 
ultimately led to cell death by the essential apoptosis pathway in MCF7 and MDA-MB-231.

5  Conclusion

Here, we successfully prepare Cs-AuNPs using chitosan for production of new GO/Au nanocomposites. UV–Vis, FTIR, 
Raman, and TEM analysis of the synthesized GO/Au nanocomposite showed that Cs-AuNPs with diameters of around 
20 ± 5 nm was placed evenly on GO. GO/Au nanocomposite presented brilliant solubility and photostability. The GO/
Au nanocomposite has a significant cytotoxicity and showed highly effective apoptotic activity against breast cancer 
cells than GO. Our results concluded that the novel synthesized GO/Au nanocomposite can be chosen for photothermal 
therapy (PTT) studies in the future work using different laser sources especially in NIR. The novel formulation may support 
the development of improved breast anticancer nanotherapeutics.
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