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Abstract
Estimation and tracking the various joints of the human body in a dynamic environment plays a crucial role and it is a 
challenging task. Based on human–machine interaction, in the current research work the authors attempted to explore 
the real-time positioning of a humanoid arm using a human pose estimation framework. Kinect depth sensor and media 
pipe framework are used to obtain the three-dimensional position information of human skeleton joints. Further, the 
obtained joint coordinates are used to calculate the joint angles using the inverse kinematics approach. These joint 
angles are helpful in controlling the movement of the neck, shoulder, and elbow of a humanoid robot by using Python-
Arduino serial communication. Finally, a comparison study was conducted between the Kinect, MediaPipe, and real-time 
robots while obtaining the joint angles. It has been found that the obtained result from the MediaPipe framework yields 
a minimum standard error compared to Kinect-based joint angles.

Article Highlights

• Development of a real-time framework for obtaining various joint postures of the humanoid arm by using a Kinect 
depth sensor and Media pipe framework

• Implementation of inverse kinematics approach for obtaining various joint angles of the humanoid arm
• Standard error calculation between the joint angles obtained from inverse kinematics (that is, robot joint angles), the 

Kinect depth sensor, and the Media framework.
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1 Introduction

In recent years, research on humanoid robots is getting more and more attention due to their versatile applications 
such as assisting elderly or physically challenged people, healthcare, public entertainment, personal care, education, 
search-rescue operations, and manufacturing. It has been observed that many humanoid robots are mimicking human 
behavior such as walking, talking, grasping, etc. Based on the above applications researchers started to develop human-
oid robots and developed the first humanoid robot in 1930 in the USA. Later on, in 1966, Waseda University developed 
a humanoid robot that is, WABIAN-II, and in 1996, Honda Corporation developed a humanoid robot known as ASIMO. 
Due to the usage of humanoid robots in various fields, many organizations such as Toyota, Samsung, Hanson Robotics, 
NASA, Boston Dynamics, MIT, UBTECH, Columbia University, etc. developed various versions of the humanoid robot [1, 
2]. Many humanoid robots are capable of intelligent behavior due to recent advancements in artificial intelligence (AI), 
machine learning (ML), computer vision, cognitive computing, natural language processing, and accelerated hardware. 
The above-said techniques are helpful in extracting useful information from its environment through sensors. Computer 
vision and artificial intelligence provide a new perspective to humanoid robots for their basic actions like walking and 
grasp manipulation. Moreover, the application of computer vision to contextualize, visualize, and react to their environ-
ment can be predominant. It has been made that computer vision techniques are the building blocks for image and video 
processing. It is mainly concerned with object detection, image processing, gesture recognition, image segmentation, 
object tracking, and pose estimation. One of the most important tasks is to estimate the human pose and track the vari-
ous landmarks (joint locations). Human pose estimation (HPE) predicts and classifies the posture of the human body 
and its joint locations in an image or video format. The capturing method of 2D/3D joint coordinates of the shoulder, 
elbow, wrist, knees, ankles, arms, eyes, and ears, are the key points to describe the pose of a human. There are two main 
categories of pose estimation techniques, (i) 2D pose estimation: this extracts the x and y coordinates of joint location 
for all joint landmarks. (ii) 3D pose estimation: this extracts z-coordinates or depth information along with (x, y) coordi-
nates. This pose estimation can be further categorized as kinematic-based, shape or contour-based, and volume-based 
models [3–8]. Many researchers are using skeleton tracking algorithms that can be based on the classical approach [9] 
as well as intelligent approaches [10–14]. It has been observed that researchers around the world are using deep CNN 
architectures for human pose estimations, some of them are listed in Table 1. Bujalance and Moutarde [15] presented 
a real-time control of the universal robot arm using a pose estimation framework. In this work, the authors adopted 
the open pose and human mesh recovery (HMR) frameworks. Later on, they calculated the inverse kinematics (IK) and 
forward kinematics (FK) to calculate the joint angles from the given pose key points. Chamorro et al. [16] proposed a 
lidar-based gesture recognition system to control the mobile robot for teleoperation. The authors adopt the long short-
term memory (LSTM) and CNN architecture for pose estimation. The proposed work uses static and dynamic input from 
the lidar and with the help of Euclidean clustering initial pose is extracted from a point cloud. Zimmermann et al. [17] 
presented a human pose estimation framework using the open pose library and Voxel Pose Net. The adopted Voxel Pose 
Net is inspired by U-Net or also known as encoder-decoder neural network architecture. In this work, the PR2 robot is 
used to imitate the action of actors using the pose estimation framework and compared with marker-based estimation 
techniques. Gago et al. [18] discussed the application of the LSTM network to convert the natural language into Span-
ish sign language. To understand sign language, the authors used human skeleton or pose estimation. Therefore, they 
adopted open pose and the skeleton retriever library for further acquisition of joints. Finally, these sign languages are 
tested on the TEO humanoid robot. Amini et al. [19] proposed a novel deep-learning model for the 2D pose estimation of 
a humanoid robot. In the current research work, the authors introduced a humanoid robot pose dataset and the current 
model is working based on the bottom-up single-stage encoder-decoder architecture. It is an efficient algorithm when 
compared top-down approaches. Further, a comparative study has been made with other states-of-art models. Michel 
et al. [20] presented a marker less 3D human pose estimation method for tracking joint locations. The authors adopted 
three different approaches namely OpenNI, HYBRID, and FHBT. A 3D human pose estimation is used for positioning of 
NAO robot arm and conducted a comparative study for all three adopted methods. Later on, Liang et al. [21] proposed 
a vision-based marker less pose estimation framework for articulated construction robots. The authors used, a stacked 
hourglass deep neural network to estimate the joint locations for an articulated robot. The concept is similar to human 
pose estimation but it has been used to extract the joint information of articulated robots. Cai et al. [22] discussed a 
patient’s upper limb motion tracking using a Kinect depth camera with VICON markers. The Barret WAM manipulator is 
used to track the patient’s upper limb movement for the rehabilitation exercise. Later on, Kinect v2 with VICON markers 
is used to extract the pose information. Finally, qualitative analysis has been made on joint angles and velocities.
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Gao et al. [23] proposed a parallel deep neural network model to estimate the body pose and dual hand detection. In 
this work, ResNet-Inception layers and Single Shot MultiBox Detector (RI-SSD) are parallelly used to detect dual hands. 
On the other hand, VGG-19 architecture with the COCO dataset is used for human pose estimation. Based on the infor-
mation on RI-SSD and VGG-19 architecture left and right hands are classified. The said information on hand detection 
with pose estimation is further tested on a second-generation astronaut assistant robot. Moreover, Hernandez et al. [24] 
presented a human pose estimation system using a double Kinect sensor to get the actual joint variables and locations. 
Kinect v2 and Albuquerque NM depth sensors are used to extract skeleton information of humans and this information 
is called ground truth. Further, two different state-of-art HPE frameworks namely OpenPose and Detectron 2 are used to 
compare the joint landmarks of human pos. Finally, the joint angles of the shoulder and elbow extracted from OpenPose 
and Detectron2 have been compared with ground truth. McNally et al. [12] proposed a neuro-evolution architecture that 
is based on a 2D convolution neural network along with a weight transfer function. The efficiency of the proposed model 
was increased using a multi-optimization method for validation loss. Jin et al. [25] developed a top-down approach 
called ZoomNet which is based on Faster RCNN and a new COCO-whole body dataset with manual annotation of four 
bounding boxes and 133 key points. Tu et al. [26] discussed a cuboidal proposal network (CPN) with a pose regression 
network (PRN) which is based on voxel-to-voxel network 3D convolutions as a building block. Dai et al. [11] proposed a 
cascaded hierarchical CNN architecture known as 4CHNet for RGB image-based 3D hand pose estimation. Plantard et al. 
[27] presented the Kinect sensor-based ergonomic analysis of virtual mannequin posture analysis. In this work, the joint 
landmarks along with rapid upper body assessment (RULA) analysis have been made using a Kinect sensor. Bashirov 
et al. [28] developed real-time RGB depth-based pose estimation in 3D. For obtaining the real-time pose estimation, hand 
pose, and facial expression the authors used Kinect RGB-D camera. In addition, Zhang et al. [29] proposed a new method 
for pose estimation using a Kinect sensor with a perspective n-points (PnP) algorithm. The proposed PnP algorithm 
is used to get the relative position of various cameras and to map real 3D points of space with the 2D camera image. 
Sarsfield et al. [30] introduced a clinical assessment of human posture using a Kinect sensor. The authors performed a 
comprehensive analysis for pose estimation in rehabilitation applications. They worked on upper body pose estimation 
for stroke rehabilitation cases. They concluded that pose estimation yields significant errors when comparing the joint 
variables of the shoulder, arm, and elbow. Saeed et al. [5] proposed a frame-based approach for head pose estimation 
using a haar-cascade algorithm. They created a frame using a 2D color image with a 3D depth point cloud using feature 
extraction. Wu et al. [31] discussed a model based recursive matching algorithm for the pose estimation. This algorithm 
uses a 2D image with 3D point cloud data as an input for further training the model to fit. The proposed algorithm has 
been compared with Kinect real-time pose estimation and the obtained results shows higher accuracy. Obdrzalek et al. 
[32] presented the accuracy of joint localization and robustness of pose estimation with respect to orientation and 
occlusion using a Kinect sensor. They have used an impulse motion capture system for tracking LED markers attached 
to various joint locations. This work gives the accuracy of Kinect pose estimation using motion capture for the training 
of elderly people. Further, a more detailed and comprehensive study of the works of literature can be found in an article 
by Bazarevsky et al. [33].

Based on the above literature, it has been observed that many researchers are contributing to deep learning-based pose-
tracking algorithms. On the other hand, Kinect v1 and v2 sensors are frequently used to create 3D point clouds and datasets 
for further HPE. The main challenge of the HPE algorithm is real-time implementation and minimization of joint angle errors. 
Therefore, a real-time inverse kinematic solver is employed to calculate the joint angles for the given elbow-wrist coordinates. 
These methods are quite accurate and have also been implemented on various robots. On the other hand, OpenPose, HMR, 
OpenNI, VoxelNet, PoseNet, etc. as discussed in the works of literature are the most popular pose estimation algorithms and 
are being adopted by many researchers. Apart from these state-of-the-art algorithms, the MediaPipe framework also yields 
minimum error and perfectly classifies the various joint landmarks. As per the authors’ knowledge, the real-time positioning 
of a humanoid robot arm using the MediaPipe framework is not reported. Also, the performance of the MediaPipe pose esti-
mation framework in terms of the standard error is missing. The current research article mainly deals with the Kinect sensor-
based skeleton tracking and MediaPipe HPE framework for the extraction of joint angles of human pose landmarks and its 
implementation on real-time humanoid robot prototypes. The performance of the adopted algorithms has been compared 
in terms of standard error. The main contributions of this work include a comprehensive study of various HPE algorithms 
and their implementation in real-time. The authors also developed a 3D-printed robot prototype used to implement the 
HPE framework. Also, two different methods Kinect-based skeleton tracking [49] and MediaPipe [33, 50, 51] frameworks are 
considered for pose estimation. Later on, an inverse kinematic algorithm is used to calculate the joint angles of a real-time 
robot as well as the adopted HPE framework. Comparison has been made in terms of joint angles for the adopted framework 
and also with a real-time robot. Finally, the standard error for all joint landmarks and arm angles is calculated. It was found 
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that the standard error for the MediaPipe-based solution was less as compared to Kinect based skeleton tracking method. 
Jong et al. [52] discussed the combination of a more sophisticated humanoid model and a fast optimization method to esti-
mate the joint angles of 3D pose estimation based on a humanoid model. Further, Alberto et al. [53] proposed a systematic 
procedure for collaborative tasks in a dynamic environment. The proposed methodology mainly focuses on the contribution 
and the mapping of reference frames.

2  Mathematical formulation and its algorithms

Many researchers have developed multiple pose estimation algorithms but, these algorithms can be based on learning 
approaches or human model-based approaches. These methods act as the building block for joint tracking and pose esti-
mations. The most conventional approach is to calculate the joint angles using inverse kinematic (IK) algorithms which yield 
fast and accurate results based on the given end effector position and orientation. To test the IK algorithm along with HPE 
frameworks, a custom 3D-printed humanoid robot prototype is used which is shown in Fig. 1. The prototype humanoid robot 
is equipped with micro servo motors in all joints.

2.1  Forward and inverse kinematics

The kinematics of the humanoid robot’s upper arm is solved by using an analytical approach. It consists of both forward and 
inverse kinematic equations. Initially, the forward kinematics of the robotic manipulator is solved after assigning the coor-
dinate frames at each joint of the humanoid robotic arm to obtain the Position and orientation of the end effector. Figure 2 
shows the assigning of the coordinate frames at each joint of the robotic arm. Once the forward kinematics approach is solved 
based on the position and orientation of the end effector the authors used the inverse kinematics approach for obtaining 
the joint angles. The mathematical equations related to inverse kinematics are mentioned in Eqs. (1) and (2).

 where θ = atan2(Y1, X1), θi = atan2(l2sinθ2, l1 + l2cosθ2).
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Fig. 1  Prototype 3D printed 
humanoid robot
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The algorithm for the upper arm is given as follows:
IK Algorithm

2.2  MediaPipe based HPE

The earlier discussed Inverse kinematic algorithm can be further implemented on the MediaPipe HPE framework to calculate 
the joint angles and position of the human arm. These joint angles are configured by positive and negative planes as shown 
in Fig. 3. If the hand falls in a positive plane the joint angle is calculated based on the arc tangent of the wrist coordinate 
while negative angles are calculated when the hand falls on a negative plane. Based on this concept, the position control of 
the robotic arm and its joint variables are communicated through the python-Arduino pyserial library. These obtained joint 
variables are communicated every millisecond and based on the received joint information, the robot arm mimics human 
gestures. The detected joint landmarks and corresponding joint angles are calculated using an inverse kinematic algorithm.

Further, the proposed MediaPipe graph for the pose estimation is shown in Fig. 4a, b. The proposed flow chart shows 
the flow and node connectivity of the proposed framework. The flow chart requires the input that is, audio or video which 
can be proceeded or transformed by its modular components shown in yellow and light blue components. These com-
ponents are also known as a pipeline. Each pipeline is connected to specific input and output nodes and these nodes in 
the flow chart are implemented as a calculator. Figures 5 and 6 consists of PoseTracking and PoseRenderer components. 
Moreover, MediaPipe consists of three major components:

1. Input framework for sensory information (i.e., audio/video),
2. Tools for performance evaluations, and

Fig. 2  Coordinate frames 
assigned at each joint of the 
robotic arm
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3. Processing components known as calculators.

These components are the backbone for pose detection, object tracking, image segmentation, motion tracking, box 
tracing, etc. However, there are many HPE models have been proposed in recent years but MediaPipe is one of the most 
efficient frameworks developed to build various machine learning-based solutions. It has the flexibility to deploy mobile, 

Fig. 3  Coordinate planes for 
positive and negative joint 
angles

Fig. 4  Flow chart shows a MediaPipe main pipeline b pose tracking procedure
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web, edge, or cloud-based applications. Therefore, leveraging this framework for controlling the humanoid robot arm 
in real-time.

In Fig. 4a, “Input_frames_gpu” specifies the input to the graph which contains default 100 frames that can be queued 
for further processing. This node is further connected with the “Image Transformation” calculator which flips the input 
image horizontally. Node “Pose Tracking” This node performs pose tracking using a subgraph calculator: “Pose Tracking 
Subgraph” uses the flipped input_frames_gpu as input image and pose landmarks outputs normalized rectangle infor-
mation with pose detections. At last, the Pose Renderer Subgraph Node renders the pose on the input frames using the 
“PoseRendererSubgraph” calculator. Multiple input streams: Takes the flipped images, pose landmarks, normalized rectan-
gle, and pose detections as input and outputs the final frames with rendered poses to the “output_frames_gpu” stream.

Fig. 5  Flow chart shows the 
pose detection procedure
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In summary, this MediaPipe graph takes input frames from “input_frames_gpu,” performs image transformation, flips 
the frames horizontally, then uses a subgraph for pose tracking, and finally renders the poses on the input frames, pro-
ducing the output frames in the “output_frames_gpu” stream. Figure 4b depicts the subgraph within the MediaPipe 
framework, specifically for pose tracking. This subgraph is referenced in the main graph as a node with the type “Pose-
TrackingSubgraph.” The subgraph takes an input video stream, performs various processing steps related to pose detec-
tion and landmark localization, and outputs pose-related information. In summary, this subgraph processes input video 
frames, performs pose detection and landmark localization, and outputs pose-related information, such as landmarks, 
normalized rectangles, and pose detections. The flow is controlled based on the presence of a pose in the previous frame, 
and feedback mechanisms ensure continuity in decision-making across frames.

Figures 5 and 6 consists of PoseTracking and PoseRenderer components. MediaPipe subgraph specifically for pose 
detection. This subgraph is used in the larger pipeline described in the previous responses. In summary, this subgraph 
takes an input video, transforms the images, runs a pose detection model, performs post-processing steps such as non-
max suppression, adjusts detections for letterboxing, and outputs the final pose-related information, including pose 
detections and normalized rectangles. This subgraph is part of the overall pose-tracking pipeline described in the previ-
ous responses. Figure 6 depicts another subgraph in the MediaPipe framework, specifically for rendering the results of the 

Fig. 6  Flowchart shows the pose renderer procedure



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:152  | https://doi.org/10.1007/s42452-024-05734-3 Research

pose tracking pipeline. This subgraph is referenced in the main graph as a node with the type “PoseRendererSubgraph”. 
In summary, this subgraph takes input streams containing pose detections, landmarks, and normalized rectangles, 
calculates the necessary rendering information, and outputs a final rendered image with annotations and overlays. The 
rendered image is then used as part of the overall pose-tracking pipeline described in the previous responses.

2.3  RGB‑D‑based skeleton tracking

The main challenge of these computer vision-based algorithms is to calculate the depth in real-time. This depth of infor-
mation is crucial to avoid the uncertainty present in the environment and also to grasp any object of concern. To face 
these challenges, the Microsoft Kinect sensor can be used to calculate the depth information and position control of the 
robot arm. On the other hand, the mapping of multiple joint coordinate frames with respect to human pose landmarks is 
quite noisy and inaccurate for RGB cameras. Even though the reference coordinate of joint landmarks varies with respect 
to each frame the Kinect infrared (IR) sensor provides exact information. IR sensors with RGB sensors create 3D point 
clouds or depth profiles of an object. These points can be further used to create the joint landmarks of the human pose 
[51–55]. The wrist coordinates are extracted from the skeleton and fed to the inverse kinematics solver which is helpful 
to calculate the joint angles. These joint angles are communicated through a pyserial module. In the current research 
work, the authors considered Python 3.7.5 and pyserial 3.5 versions. Figure 7 shows the basic steps of the Kinect-based 
HPE approach [56].

3  Results and discussion

The performance of each framework discussed in the previous section is analyzed individually. Further, the evaluation 
of accuracies in terms of analytical inverse kinematic solutions is compared. Later on, real-time joint angles are recorded 
for calculating the error. A comparison has been made in terms of the standard error of Kinect-based skeleton tracking 
and MediaPipe framework as shown in Fig. 8.

Figure 9a–e shows the various joint angles such as left and right shoulder elbow and elbow wrist, and head angles 
obtained from the robot, Mediapipe, and Kinect sensor. It has been observed that the joint angles obtained from the 
Kinect sensor cause multiple misclassifications when compared to MediaPipe. In Mediapipe the joint angle data is 
obtained from the normal webcam which produces a better result than the Kinect sensor.

Further, the proposed system shows the robustness of the adopted pose estimation framework by using HPE. The 
details of various joint angles produced by all frameworks are collected and saved in a csv file and a sample of the col-
lected data is represented in a boxplot as shown in Fig. 10. It has been observed that all the dynamic poses are perfectly 
mimicked and mapped onto real-time humanoid robot arm control. Moreover, a sample of frames recorded from the 
Kinect-based skeleton tracking is shown in Fig. 11. Figure 11 shows the 18 different dynamic poses depicted by the Kinect 
sensor; all these samples are collected from recorded video.

Fig. 7  Flow chart shows the 
overall structure of the pro-
posed framework
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Figure 12 shows the different postures and corresponding angles obtained from the MediaPipe framework. Similar 
to the Kinect sensor, here also obtained eighteen different dynamic poses. Further, Fig. 13 shows that few samples are 
obtained in real-time 3D world coordinates of human postures. These 3D coordinates are measured in meters with the 
origin at the hip center. Based on the concept of positive and negative planes, the angles are shown accordingly. Finally, 
real-time dynamic control of the humanoid robotic arm using these frameworks is shown in Fig. 14. Although it is quite 
difficult to analyze these pictorial representations of pose and corresponding joint angles. Therefore, standard errors 
are discussed in the next section.

Figure 15 shows the error bar plot for each key point of a human pose as well as humanoid robot joint angles. These 
plots were drawn by collecting the postures data in real time. In the current research work, the authors used the Python 
matplotlib library is leveraged for plotting all the graphs. It is visible from the error bar plot that Kinect-based joint angles 
are far from the real-time robot joint angles. As already discussed, the number of outliers is also present in Kinect-based 
positioning. These error bars are coded with orange, red, and green colors for better visualizations. The length of the 
cap or capsize gives the error between the actual and predicted angles from all frameworks. Furthermore, the standard 
errors produced by each framework are given in Table 2. It has been observed that the error produced by Kinect-based 
joint angles compared to MediaPipe is maximum. The standard error for REW is 3.72 and for head angles, it is 0.7 as 
compared to MediaPipe.

4  Conclusions

A human pose estimation framework based on real-time position control of a humanoid robot arm has been presented 
in this work. Initially, the proposed human and robot joint angles are captured from RGBD and 2D video webcams in real-
time. Later on, the said proposed system is captured from Kinect-based skeleton tracking and the MediaPipe framework. 
Based on the obtained results, the position control of the humanoid robot arm using the MediaPipe pose framework with 
a regular webcam is also feasible. Although depth-based estimations are more popular, the availability of such platforms 
is not as common as compared to regular webcams or USB cameras. It is evident from the results that the MediaPipe 
framework tends to outperform when compared to Kinect-based skeleton tracking in all possible joint movements. The 
result shows that the robot can mimic a human pose in real time, regardless of surrounding luminescence or the pres-
ence of an unknown user in the frame. Moreover, the results of the comparison are demonstrated for both static and 
dynamic conditions of human body movement. Further, more complex robot configurations can also be considered for 
the development of human–robot interactions. The proposed frameworks are efficient and produce less error. Therefore, 
these frameworks can also be implemented for gesture-based control, medical rehabilitation, and assisting the elderly.

Fig. 8  Standard error-based 
comparison of all joint vari-
ables



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:152  | https://doi.org/10.1007/s42452-024-05734-3 Research

Fig. 9  Various joint angles obtained from MediaPipe, and the Kinect sensor of the robot. a Left shoulder elbow, b right shoulder elbow, c left 
elbow wrist, d right elbow wrist, and e head
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Fig. 10  Various joint angles are shown in the boxplot

Fig. 11  Kinect sensor-based skeleton tracking and corresponding joint angles

Fig. 12  MediaPipe-based joint landmarks and angles
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Fig. 13  Samples of MediaPipe pose estimation real-world 3D coordinates

Fig. 14  Real-time joint angles and positioning of the robotic hand

Fig. 15  Error bar plot various joint angles a LEW, b REW, c LSE, d RSE, and e Head
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