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Abstract

The resource-constrained loT devices have limited resources such as processing power, memory, and battery capacity.
Therefore it is challenging to adopt traditional cryptographic algorithms on them. In order to find a solution, the National
Institute of Standards and Technology (NIST) initiated the Lightweight Cryptography (LWC) competition to standardize
cryptographic algorithms for resource-constrained devices. The primary aim of our work is to implement and analyse
selected finalist algorithms from the NIST competition using modern cryptanalysis techniques, with a focus on statistical
fault attacks. Traditional analysis methods, such as linear and differential analysis, were not prioritized as most finalist
algorithms have established defences against these methods. We implemented six of the selected finalist algorithms
from the competition: Ascon, Elephant, GIFT-COFB, ISAP, TinyJambu, and Xoodyak. We chose TinyJumbu for statistical
fault analysis because of its attractiveness, compact block size, and provision of a more lightweight keyed permutation.

Highlights

1. We reviewed the constructions and modes of operations in the NIST LWC finalists.

2. We implemented six finalist algorithms from the LWC competition: Ascon, Elephant, GIFT-COFB, ISAP, TinyJambu,
and Xoodyak.

3. We present our results on statistical fault analysis against the TinyJambu algorithm.
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1 Introduction

During the Internet of Things (loT) age, diminutive, affordable, and energy-efficient devices serve a crucial role across
many applications. To illustrate, a cardiac implant embedded within a patient’s body necessitates dimensions of com-
pactness while upholding prolonged operation without the need for frequent battery replacements or recharges. These
devices are commonly recognized as resource-constrained, underscoring the paramount importance of security. The crux
of the matter lies in the limited resources inherent to these devices, potentially leading to performance challenges when
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executing conventional cryptographic algorithms. Hence, in recent times, scholars have been dedicated to formulating
lightweight cryptography and exploring a spectrum of efficient cryptographic technologies.

The lightweight cryptographic algorithms are efficient even in low-end devices such as smart access cards, car keys, or
RFID tags. Efficiency comes in different forms. They encrypt/decrypt much faster than standard cryptography algorithms
and use less memory and storage. Usually, lightweight features are achieved using fewer numbers, rounds, or simpler
structures. However, most lightweight cryptography algorithms have different and modern techniques to maintain high
security. Furthermore, some lightweight cryptography algorithms are fast in hardware, and some are fast in software.
However, a thorough analysis of these algorithms is required since they are still not as mature as standard cryptographic
algorithms.

1.1 The NIST lightweight cryptography competition

National Institute of Standards and Technology (NIST), a globally recognized agency for fostering innovation and indus-
try competition, initiated a transformative path in cryptography through milestones like the Data Encryption Standard
(DES). Their ongoing venture, the Lightweight Cryptography (LWC) project, aims to standardize efficient cryptographic
algorithms for devices with limited resources. The LWC project’s inception was marked by the Lightweight Cryptography
Workshop in 2015, gathering insights on securing such devices. Following this, NIST hosted a second workshop in 2016
and progressed by issuing the NISTIR 8114 Report on Lightweight Cryptography in 2017, along with a draft whitepaper
outlining profiles for the lightweight cryptography standardization process.

In 2018, NIST initiated the Lightweight Cryptography competition, receiving 57 algorithm submissions by the dead-
line. Initially, 56 algorithms were chosen for the first round, and 32 progressed to the second round in 2019. Following
evaluations in the second round, ten finalist algorithms were selected in 2021: Ascon, Elephant, GIFT-COFB, Grain128-
AEAD, ISAP, PHOTON-Beetle, Romulus, SPARKLE, TinyJambu, and Xoodyak. NIST employs both internal assessments and
third-party analyses to determine the winners.

All algorithms must enable Authenticated Encryption with Associated Data (AEAD) capability. Submissions can encom-
pass either a single algorithm or an algorithm family, with an optional inclusion of a hash function. Algorithm designers
need to specify actual values for adjustable parameters. A security strength declaration must accompany each variation
of the algorithm. Additionally, designers are required to furnish references to third-party analyses of the algorithms.

1.2 Our contribution

The primary aim of this study is to implement and analyse selected finalist algorithms from the NIST lightweight cryp-
tography competition using modern cryptanalysis techniques. This analysis is crucial to assess their security against
advanced attack methods. Implementing these algorithms also aids in identifying security weaknesses and performance
challenges, particularly on resource-constrained devices.

This research contributes to the final evaluation of the NIST competition, potentially leading to the establishment of
the world’s first standardized lightweight cryptography algorithm. Leveraging third-party analyses, NIST's evaluation
benefits from this study’s findings. Six algorithms were chosen for implementation due to their diverse structures and
modes of operation. The study focuses on statistical fault attacks, as it offers novel approaches with potential against
lightweight cryptography algorithms. We did not prioritize traditional analysis techniques like linear and differential
analysis because most finalist algorithms have defences against them. We conducted a statistical fault attack analysis
against TinyJambu. Our choice to implement statistical fault analysis on TinyJambu was mainly due to its compact block
size, attractiveness, and provision of a more lightweight keyed permutation.

1.3 Organization of the paper

The paper is organized as follows: Sect. 2 discusses the constructions and modes of operations utilized in the six chosen
algorithms. Further, Sect. 2 provides a concise discussion about the LWC finalist algorithms for implementation. Section 3
outlines the overarching methodology for the statistical fault attack. Additionally, it details the specific approach adopted
for conducting these attacks, building upon the general attack methodologies. Section 4 details the implementation of
the attack methodology. Moreover, the experimental setup for the cryptanalysis is explained in section 4. Finally, Sect. 5
provides the conclusion of the paper.
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2 Constructions of the NIST LWC finalists

In the beginning, we will delve into the various structures and techniques that have been employed in the six algorithms
that have been selected. Subsequently, we will proceed with a brief and informative discussion about the finalist algo-
rithms of the Lightweight Cryptography Competition (LWC) that have been singled out for implementation.

2.1 Constructions and primitives utilized for the LWC finalists

Before delving into the intricacies of lightweight cryptographic algorithms, it is crucial to have a clear understanding of
their constructions and primitives. These fundamental building blocks form the foundation of these algorithms and are
responsible for their efficient and secure operation. Therefore, gaining a comprehensive understanding of these com-
ponents is essential before proceeding further. We discuss the constructions and primitives used in various lightweight
cryptographic algorithms in the below sections.

2.1.1 Sponge

The Sponge construction introduced by Bertoni et al. [1] has emerged as a prominent and widely employed framework
within the NIST Lightweight Cryptography (LWC) competition’s finalists. While initially designed for secure hash functions,
the Sponge construction exhibits qualities conducive to authenticated encryption, especially in lightweight contexts.
It follows an iterative approach akin to a random oracle but is susceptible to inner-state collisions. Characterized by
simplicity and efficiency, the Sponge function incorporates a variable-length input and produces an endless output.
Operating with a fixed-size state and two core processes-absorbing and squeezing-it divides the state into confiden-
tial and output-generation segments. In each iteration, the function absorbs a set input length, transforms the entire
state, and then squeezes out the output. As asserted by Bertoni et al. [1], when utilized as a hash function, the Sponge
construction demonstrates collision complexities of 2€+3)/2 for inner collisions and 2+3/2 for output collisions, with
c representing the inner state size. Furthermore, the authors claim security against pre-image and second pre-image
attacks. Bertoni et al. also elaborates on adapting the Sponge construction for authenticated cryptography and stream
ciphers, achieved by embedding the secret key within the inner state to safeguard it from direct exposure in the output,
with increased key secrecy as the capacity grows.

2.1.2 Duplex

Duplex [2], a cryptographic construction related to the Sponge construction, is designed as a more streamlined way
of generating message digests (MACs) compared to Sponge-based designs. It notably serves as one of the earliest
complete authenticated encryption constructions for permutation-based ciphers without necessitating a key schedul-
ing algorithm. With applications extending to pseudo-random bit generation, it's utilized in well-known lightweight
cryptographic algorithms like Ascon. The Duplex function accepts plaintext, data header (associated data), and a key to
yield ciphertext and a MAC tag via a process known as SpongeWrap. In the decryption process (unwrapping), the input
comprises the wrapping key, ciphertext, associated data, and tag, yielding the plaintext if the tag is valid or an error
if not. Duplex maintains the state between encryption (or decryption) calls, termed “duplexing", a departure from the
standard Sponge construction. Security against generic attacks is readily provable, offering flexibility in choosing the
bit rate and padding function. However, downsides include the inability to execute duplex-based encryption in parallel
due to its reliance on the previous state, and a lack of inherent support for nonces, resulting in identical output for the
same message sequence.

2.1.3 SPONGENT

SPONGENT [3], built upon the Sponge construction, functions as a cryptographic primitive in Elephant and various other
NIST Lightweight Cryptography (LWC) algorithms. Featuring thirteen variants such as SPONGENT-128/256/128, SPON-
GENT-160/320/160, SPONGENT-224/448/224, and SPONGENT-88/80/8, its permutation draws connections from PRESENT
[4]. The permutation involves an ICounter updated via a linear feedback shift register (LFSR), a 4-bit S-box substitution
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layer, and a permutation layer. The authors assert that SPONGENT's design curbs the linear hull effect, PRESENT's primary
vulnerability. Claiming an upper bound of 2728 for differential characteristic probability across six rounds, it resists dif-
ferential cryptanalysis and linear attacks. SPONGENT offers robust security against collision and pre-image attacks when
employed as a hash function, with an additional advantage of being efficiently implementable in hardware with minimal
gate area, even as small as 738 GE for the SPONGENT-88/80/8 variant.

2.1.4 KECCAK

KECCAK [5] forms a family of Sponge-based cryptographic algorithms widely employed in lightweight cryptographic
designs like ISAP and Elephant. Offering a simple and versatile structure, KECCAK encompasses numerous variations. Its
KECCAK-f permutation is optimized for hardware utilizing Single Instruction, Multiple Data (SIMD) and CPU pipelining,
taking a bit-oriented and parallelizable approach. Comprising seven variants with state sizes ranging from 25 to 1600
bits and diverse round counts contingent on state size, the permutation integrates multiple mappings that furnish dif-
ferential propagation, correlation, and other security-enhancing traits. This construction withstands various cryptanalysis
approaches, such as higher-order differentials, impossible differentials, differential-linear attacks, boomerang attacks,
and integral cryptanalysis, attributed to its intrinsic properties. The asymmetry within different rounds additionally
thwarts slide attacks.

2.2 Review of selected NIST LWC finalist algorithms

Ten finalist algorithms were selected in 2021 for the NIST LWC project. These include Ascon, Elephant, GIFT-COFB,
Grain128-AEAD, ISAP, PHOTON-Beetle, Romulus, SPARKLE, TinyJambu, and Xoodyak. Let us review the six selected NIST
LWC finalist algorithms: Ascon, Elephant, GIFT-COFB, ISAP, TinyJambu, and Xoodyak.

2.2.1 Ascon

Ascon [6, 7], a block cipher encryption with two main variants-Ascon-128 and Ascon-128a-stands as one of the final
algorithms in the CAESAR competition. A new variant, Ascon-80pq, has been developed to resist quantum key-search
attacks. The submission also introduces hash functions, Ascon-HASH and Ascon-HASHA. Rooted in a 320-bit permuta-
tion structure, Ascon aims for efficient performance in both hardware and software. With fixed parameters, Ascon-128
and Ascon-128a employ a 128-bit key, nonce, and tag, differing in their data block sizes of 64 and 128 bits, respectively.
Operating in a duplex mode, specifically MonkeyDuplex, both encryption and decryption culminate in generating the
Message Authentication Code (MAQ).

Security claims include 128-bit security across all Ascon variations, even with accidental nonce reuse. Key recovery
complexity is estimated at 2% for Ascon-128a and 2'28 for Ascon-128. Ascon-80pq bolsters resistance against Grover’s
algorithm-based key search with its larger key size. Ascon’s hash functions exhibit security against collision, pre-image,
length extension attacks, and second pre-image attacks. Timing attacks are thwarted by bit-sliced S-boxes. Notable
performance features include operations based on 64-bit words and bit-wise operations, leading to a throughput of
4.9 — 7.3 Gbps on less than 10 kGE hardware. Also, the lack of inverse operations enhances its efficiency.

The specification delves into design rationale, highlighting the advantages of Ascon’s Sponge-based structure. It offers
guidance on variant selection, outlines known attacks, and provides analysis of differential, linear, and algebraic proper-
ties. However, a gap remains in testing practical side-channel attacks. An implementation section covers performance
metrics but does not extend to low-end devices like 8-bit microcontrollers.

2.2.2 Elephant

The second algorithm in the NIST Lightweight Cryptography (LWC) finalist list is Elephant [8], functioning as a block
cipher reliant on permutations and employing the encrypt-then-MAC approach for authentication. Notably, its inverse-
free design allows for parallelization in both software and hardware. Elephant encompasses three variations-Dumbo,
Jumbo, and Delirium. While Dumbo and Jumbo are grounded in Spongent [3] hashing, Delirium employs Keccak [5] as
its core primitive. All three variants utilize Linear Feedback Shift Registers (LFSRs) for masking, with respective block sizes
of 160-bits, 176-bits, and 200-bits. The main masking technique involves XORing an LFSR and a permutation (Spongent

@ Discover



Discover Applied Sciences (2024) 6:55 | https://doi.org/10.1007/542452-024-05701-y Research

or Keccak) with the plaintext, producing ciphertext in encryption and decrypting it with the mask to retrieve plaintext.
Specifications encompass permutations and tag sizes (64 bits for Dumbo and Jumbo, 128 bits for Delirium).

The Elephant’s analysis encompasses formal multi-user security of its authenticated encryption mode, deriving upper
bounds for adversary advantages. The authors assert security levels of 112-bit, 127-bit, and 127-bit for Dumbo, Jumbo,
and Delirium, respectively. While the analysis section covers theoretical differential, linear, and integral cryptanalysis on
Spongent and Keccak permutations, third-party cryptanalysis details are lacking, particularly concerning side-channel
attacks. Although a list of third-party analyses for Spongent and Keccak is provided, more third-party security assess-
ments are necessary for Elephant’s overall validation.

2.2.3 GIFT-COFB

GIFT-COFB [9] is a lightweight cryptographic algorithm rooted in the GIFT block cipher. It employs the Combined Feed-
Back (COFB) mode for authenticated encryption, obviating costly inverse operations for decryption. With recommended
128-bit block and tag parameters, GIFT-COFB relies on GIFT-128 [10] as its cryptographic primitive. GIFT-128, a 40-round
substitution-permutation network cipher, operates with a 128-bit key. It features an initialization phase, cell substitu-
tion, bit permutation, and round key addition, necessitates key scheduling and round constants, and offers a Look-Up
Table (LUT) variant for runtime enhancement. Providing clear algorithm steps and test vectors, GIFT-COFB also outlines
hardware and software implementations. The hardware version requires 3927 gate equivalents (GE) and 40 cycles to
encrypt a plaintext block, with power consumption at 156.3 yW. While not parallelizable by design, GIFT-COFB employs
efficient bit-slice software implementations. The security analysis establishes GIFT-COFB’s upper bounds against adver-
saries seeking to break its authenticated encryption, claiming 64-bit security against IND-CPA and 58-bit security against
INT-CTXT. Third-party analyses on GIFT-128 are also highlighted.

2.2.4 ISAP

ISAP [11] constitutes a family of permutation-based authenticated ciphers comprising four variants: ISAP-A-128A, ISAP-
K-128A, ISAP-A-128, and ISAP-K-128. ISAP-A-128A and ISAP-A-128 utilize Ascon-p as their primitive, while ISAP-K-128A
and ISAP-K-128 employ Keccak-p[400]. Employing encrypt-then-MAC mode, ISAP incorporates a re-keying mechanism
for session key generation and features 128-bit key sizes. ISAP-A-128A and ISAP-A-128 boast 320-bit states, whereas
ISAP-K-128A and ISAP-K-128 feature 400-bit states. Notably, ISAP’s implementation avoids inverse operations.

Security claims encompass 128-bit security across all ISAP variants, with a focus on resisting passive side-channel
attacks. The re-keying function mitigates differential power attacks (DPA) and fault attacks, while its Sponge-based
structure bolsters resistance against simple power analysis (SPA) attacks. Caution against nonce reuse with the same
plaintext is emphasized. Both Ascon-p and Keccak cryptographic primitives within ISAP are backed by proven security.

Designed for lightweight software and hardware implementation, ISAP-K-128A’s hardware implementation requires
just a 12 kGE gate area in the TSMC65nm cell library. ISAP-A-128A's software implementation exhibits efficiency with
450 cycles per byte on an AVR ATmega328p microcontroller. Both implementations demonstrate robust security against
certain fault attacks, including Differential Fault Analysis (DFA), Single Fault Analysis (SFA), and Single Instruction Fault
Analysis (SIFA). Furthermore, countermeasures against tag comparison are integrated to enhance security.

2.2.5 TinyJAMBU

TinyJAMBU [12] constitutes an AEAD encryption scheme based on JAMBU, a prominent contender in the CAESAR com-
petition, offering smaller block sizes and a more lightweight keyed permutation. With its main variation, TinyJAMBU-128,
utilizing a 128-bit key and state, the keyed permutation features a nonlinear feedback register (NFRS), particularly nota-
ble for the parallel execution of 32 updates on a 32-bit CPU. Encryption and decryption phases involve initialization,
associated data processing, plaintext/ciphertext processing, and finalization/verification, culminating in a 64-bit tag in
the encryption finalization. TinyJAMBU-192 and TinyJAMBU-256 variations feature 192-bit and 256-bit keys respectively.

Security-wise, TinyJAMBU-128 offers 112-bit security, while TinyJAMBU-192 and TinyJAMBU-256 provide 168-bit and
224-bit security, respectively. The scheme thwarts key recovery even when the nonce is misused, ensuring a maximum
forgery advantage of 27'°. Additionally, it boasts robust protection against differential forgery attacks, with the prob-
ability of a successful differential key recovery attack as low as 278,
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Hardware implementation analysis of TinyJAMBU-128 demonstrates its gate area requirement as 3223 GE for 8 rounds
per clock cycle, achieving a throughput of 135 Mbps. Software performance, measured on an ARM Cortex-M4F micro-
controller, reveals a code size of 872 bytes and a consumption of 394 cycles per byte when encrypting 16 bytes of data.

2.2.6 XOODYAK

XOODYAK [13] emerges as a versatile cryptographic primitive catering to AEAD encryption, hashing, and pseudo-random
bit generation. Centred on the XOODO permutation, it derives inspiration from the Keccak-p permutation and boasts
a 384-bit internal state. XOODYAK operates in hash mode and keyed mode, which are activated when initialized with
a key. Employing the Cyclist mode of operation with the Cyclist object maintaining the state, the specification reports
encryption and decryption cycles per byte as 91.2 and 91.3, respectively, based on ARM Cortex-M0 microcontroller
results, accompanied by a code size of 3494 bytes. Performance analyses extend to ASIC and FPGA domains, with ASIC
implementation necessitating a minimum gate area of 8101 GE at a 200 MHz frequency and FPGA deployment con-
ducted on a Xilinx Artix-7 board. Despite comprehensive performance details, the XOODYAK specification lacks practical
cryptoanalysis information.

3 Statistical fault analysis of TinyJambu

Statistical fault attacks were employed to analyse the TinyJambu algorithm in this work. The attacks were executed on
self-implemented versions of the algorithm, utilizing C++/C programming to carry out the attacks and simulate them on
a personal computer (PC). Python was used for statistical analysis within the statistical fault attack. This section outlines
the overarching methodology for the statistical fault attack. Additionally, it delves into the specific approach adopted
for conducting these attacks, building upon the general attack methodologies.

Statistical fault attacks were first introduced in Fuhr et al. [14]. One of the main advantages of this attack is that It
only requires a set of ciphertexts. In other words, the knowledge of the plaintext input to the encryption function is not
required, making it a powerful attack against many types of cryptography algorithms. The only requirement is that all the
faulty ciphertexts should be collected using the same key. Usually, random plaintexts are used during the initialization
phase of the attack. The first-ever statistical fault attack was launched against the AES algorithm. AES has a substitution
and permutation-based structure. The key recovery attack targets the 8th and the 9th round of the AES permutation.
Another similar attack, which was able to recover the state of the permutation, targeted the 6th and the 7th rounds.

The main idea for the attack depends on the fact that the output is uniformly distributed since the algorithms try to
mimic the random function. The attacker can recover the state or the key bytes by finding the statistical distribution of the
faulty bytes and the correlation between the faulty bytes and the output. Let us first consider the fault attack in general.

3.1 Fault attacks

Fault attacks involve deliberately injecting faults into a cryptographic system to exploit vulnerabilities and recover the
internal state or key of the cipher. Various methods are employed for injecting these faults, including power glitches,
timing glitches, laser, light, and electromagnetic (EM) pulses. Power glitches involve abrupt voltage changes, while tim-
ing glitches manipulate the clock pulse to affect register values. Laser-based methods focus a laser beam on the chip’s
location, necessitating chip de-packaging and advanced hardware knowledge. EM pulses target analog blocks via pulse
or harmonic injection.

Following fault injection, the analysis phase aims to recover the key or state. This analysis falls into three main catego-
ries: difference-based, collision-based, and statistics-based. Difference-based methods exploit the cipher’s confusion and
diffusion properties, often relying on the difference between outputs with and without faults. Differential Fault Attack
(DFA) and Algebraic Fault Attack (AFA) are examples, with DFA suitable for SPN-based ciphers and AFA focusing on alge-
braic equations. Linear and integral attacks are advanced versions of linear cryptanalysis. Collision-based attacks seek
identical outputs for the same input with and without faults. The attacker gathers outputs for specific inputs, introduces
faults, and identifies input pairs resulting in identical outputs to recover the cipher’s internal state.
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3.2 Statistical fault attacks

Statistics-based fault attacks are cryptanalysis techniques that leverage statistical methods to recover secret values by
introducing faults into a system. This approach offers a notable advantage in terms of low time complexity compared to
other methods. Initially proposed by Fuhr et al. [14], the technique was first applied to analyse AES. In this method, the
attacker creates an inverse relationship for the round operation that includes key values. A set of output values is then
collected for a range of random plaintexts and a secret key with injected faults in the state. These output values exhibit
adistribution based on the applied fault injection method. The attack’s success depends on achieving a well-biased fault
distribution. The distribution is used to make educated guesses about the key. The guessing process is conducted byte
by byte, making use of statistical methods for each key byte. The attack is especially efficient since there are only 255
possible byte values to consider. The challenge primarily lies in fault injection. The attack employs three main statistical
methods-maximum likelihood, mean Hamming weight, and square Euclidean imbalance-to deduce the correct key byte
using fault ciphertext or tags.

1. Maximum likelihood method If the exact distribution of the faulty bytes is known maximum likelihood method can
be used to find the correct key byte hypothesis.

2. Mean Hamming weight method In the mean Hamming weight method, the attack does not have to know the exact
distribution of the faulty bytes, but the output should be well biased. The attack needs to know whether the distribu-
tion is biased towards one or zero.

3. Square Euclidean Imbalance (SEl) method This attack is useful when the attacker only knows the distribution is biased.
No knowledge of the shape of the distribution is required. The main idea of this attack is to measure the distance
between the actual distribution and the uniform distribution.

In this project, the TinyJambu algorithm was analysed using a statistical fault attack. The structure of the TinyJambu
algorithm will be explained below.

3.3 Structure of the TinyJambu algorithm

TinyJambu has a keyed permutation based on a non-linear feedback shift register (NFSR). This non-linear feedback shift
register updates the 128-bit internal state of the cipher in each round. This update occurs one bit per round. But in a
practical implementation, a few bytes (usually 32) will be updated at the same round, decreasing the runtime of the algo-
rithms. However, the output of the permutation will be the same for both methods. The update function is given below:
feedback = sp72 @ 5777 @ (~ (s)5°&spz2)) @ 55,2 D 575, D Kgy

For the attack, the inverse of this relationship should be used to calculate the values of the state bytes after injecting
faults.

TinyJambu has four main phases for encrypting: initialization, associated data processing, encryption, and finalization.
In the initialization, the state will be loaded and permutated with the nonce. It uses 640 rounds of non-linear feedback
shift register updates. When processing the associated, the state is updated using the permutation with 640 rounds, and
then the state is updated using the XOR operation. This update occurs block by block. When processing a partial block
of associated data, there are a few extra steps to follow to ensure security.

3.4 Analysis of TinyJambu against the attack

This attack targets the finalization phase of the algorithm. In the finalization, the tag (or the MAC) will be generated based
on the current state. It requires five faults to be injected into five bytes. These faults are injected into the Oth, 6th, 9th,
11th, and 12th bytes. These faults are injected just before the second last round of the permutation. Figure 1 indicates
the affected bytes and their connection to the output tag byte. This connection can be represented as the equation.

n—2 n—2 n—2 n—2 n-2 _ n-—1
So - DSy B (~ (S7°&S557)) B 8, " =575, D Key
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Some of the bytes of the state that contribute to the calculation of the tag value at the last round are not completely
affected by the faults. For example, the byte that starts from the 47th bit of the state (s,,) has a bit that is not affected by
any fault. Another way has to be used to find the distribution of these bytes. The rest of the bits that are not affected by
the faults can be modelled as uniform random bits. In other words, the probability of any of these bits being one (or zero)
is 0.5. Distributions of each bit can be found separately. Then, the probability of each possible value for the complete
byte can be calculated using the AND operation. The following example shows how to calculate the probability of the
faulty byte starting at the 70th bit.

The probability values of each bit being one is 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5. Here, the fault affects the first
six bits, and the last two bytes are uniformly distributed. The probability of the complete byte being the value being
157(10011101) is 0.25 x (1 — 0.25) X (1 — 0.25) X 0.25 X 0.25 X 0.25 X 0.5 X 0.5 = 0.00054. After calculating the prob-
abilities of all the values, the distribution of the expression sg‘z sy 527‘2 @ (~ (5’7’52&5;’5‘2)) ® 531‘2 ® 572‘71 can be found.
When the fault injection is simulated on software, the distribution of the faults is perfectly known. Therefore, the exact
distribution of the expression is known. Then the value of the expression is calculated for a set of random plaintexts. Then
the maximum likelihood values are calculated for each key byte hypothesis. Then the correct key byte can be selected.
The same procedure is followed with the mean Hamming weights method.

4 Experimental setup and implementation

In this section, we provide a comprehensive overview of the implementation details, including how various processes
are handled at the code level. Additionally, we discuss the experimental setup and results for the statistical fault analysis
in detail.

4.1 Implementation of the LWC finalist algorithms

In this project, the six algorithms that were chosen, namely Ascon, Elephant, GIFT-COFB, ISAP, TinyJambu, and Xoodyak,
were implemented using the C programming language.

Those implementations are specially developed for 8-bit microcontrollers. This means that most of the variables
are 8-bit, which makes it easier to handle. The 8-bit microcontrollers have 8-bit registers. If the variables that are
operated on are larger than 8-bit, they will use more than one register to store, increasing the run time and memory
usage. Resource-constrained devices usually have low memory and storage. Therefore, it is better to deal with 8-bit
variables since the program should be space-efficient. Also, operation execution of 8-bit CPUs is done 8-bit wise.
If the operands are longer than 8 bits, the run time will be increased. In addition, the execution time when moving
around variables will be increased. One example is the index variable in the for loop. Most of the time, for loops will
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be used to repeat the rounds, the processing block of data, etc. Usually, the number of repetitions is small. In that
case, it is better to use the uint8_t type instead of the regular int variables.

Implementations for all the algorithms have a common interface to use encryption and decryption. This makes it
easier to test the functionality and, most importantly, makes it easier to measure the performance of the algorithms.
Listing 1 shows the C code for the interface of the algorithm.

void encrypt(uintS_t *cipher_text, uint8_t *tag, uint8_t *plain_text,
uint32_t plain_text_len, uint8_t *key, uint8_t *associated_data,
uint32_t adlen, uint8_t *nonce);

AW e

uint8_t decrypt(uint8_t *plain_text, uint8_t *tag, uint8_t *cipher_text,
uint32_t cipher_text_len, uint8_t *key, uint8_t *associated_data,
uint32_t adlen, uint8_t *nonce);

N o oo

Listing 1 Interface for encryption and decryption

The interface for the encrypt function accepts the plaintext, key, associated data, and nonce as the input, while
the decrypt function has ciphertext instead of the plaintext and the tag as the input. Encrypt function produces the
ciphertext and the tag as the output. The output will also be given as the input argument to the function since the
encrypt or decrypt function does not need to allocate dynamic memory, which is unacceptable in low-end micro-
controllers. Furthermore, the implementations try to reuse the code as much as possible without duplication. Also,
the algorithms and data structures are used to make the implementations more efficient.

4.2 Implemnentation of statistical fault attack

The implementation for statistical fault attack is developed using C++ programming language. As discussed in the
previous section, the implementation for the TinyJambu algorithm is in Clanguage. The interface for the algorithm
is connected to the C++ attack model using a header file.

One of the major concerns when implementing fault attacks in software is to inject fault. To do that, the C codes
for the algorithms should be modified. It uses a random number generator to forcefully change the value of the state
to simulate the fault injection. This attack uses the following fault model. The probability of the state value being
one is 0.25, and the probability of the state value being zero is 0.75. This means the distribution of the fault bytes is
biased towards zero by a great margin. However, having such a perfect distribution for the fault bytes may not be
possible in real life. Listing 2 shows example codes for the fault injection model.

uint8_t generate_faulty_byte ()

1

2 {

3 uint8_t faulty_byte = 0;

4 for (int i = 0; i < 8; i++)

5 {

6 double rand_val = (double)rand() / (double)RAND_MAX;
7 faulty_byte |= (rand_val >= 0.75 ? 0x01 : 0x00) << ij;
8 ¥

9 return faulty_byte;
10 }

Listing 2 Example code for the fault injection model

In the statistical fault attacks, it is necessary to reverse the final round (which is equal to all the other rounds in
the TinyJambu algorithm). In the practical implementation of the TinyJambu, the state is updated to 8-bit. In other
words, the eight rounds of the algorithms are executed at once. It makes it faster on an 8-bit microcontroller. How-
ever, this makes the logic for the inverse of the round function complicated. The basic logic for implementing the
round function depends on the shift and OR operations. This implies that the inverse round function codes should
also depend on these operations. The main step is to recover the previous state before the non-linear feedback shift
register update. The feedback from the previous round is saved at the first byte of the state. Then, this feedback can
be used with a few other bytes from the current state to recover the first byte of the previous state. Listing 3 shows
the C code.
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1 uint32_t update_state_reverse(uint32_t state[4],

2 uint8_t key[16], uint8_t round)

3 {

4 uint32_t feedback = state[3];

5 state [3] = statel[2];

6 state[2] = statel[1];

7 state[1] = state[0];

8 uint32_t s47 = (state[1] >> 15) | (state[2] << 17);
9 uint32_t s70 = (state[2] >> 6) | (state[3] << 26);
10 uint32_t s85 = (state[2] >> 21) | (state[3] << 11);
11 uint32_t s91 = (state[2] >> 27) | (state[3] << 5);
12

13 state[0] = feedback ~ s47 ~ ("(s70 & s85)) ~ s91 -~
14 ((uint32_t*)key) [round & 3];

15 return state[0];

16 }
Listing 3 Statistical fault attack; reversing the final round of the TinyJambu algorithm

Next, this inverse function can be used to find the value of the faulty byte for a given key and a ciphertext. Thereafter, it
uses a random byte sequence generator to generate a set of random plaintexts. The collect_faulty_tag_function returns such
a set of random ciphertexts with the fault-injected cipher. This function uses one of the modern functions that can be used
in C++, generate. It is a part of the algorithms package in C++. It takes a reference to a function or alambda expression as an
input. This function/lambda should generate some value as the output. The generate function will repeatedly call this func-
tion/lambda and put the outputs to a list or similar data structure. This procedure was used to generate a set of ciphertexts
for a set of plaintexts. The distribution of the combination of the faulty bytes could be developed. As explained in the sec-
tion 3, this distribution could be used to guess the correct key bytes. To do that, it was required to implement the functions
for calculating the likelihood value, mean Hamming weight, and the Square Euclidean Imbalance values for the distribution.

To analyse the distribution of the combination of the faulty bytes, it is plotted using the Python Matplotlib library. The C
program outputs the probability values for each byte value to import the data to the Python program. Then, these values
were used as input for the Python program, which plotted the distribution graph. The X-axis represents the byte values, and
the y-axis represents the probability value of the corresponding byte.

4.3 Analysis of statistical fault attacks on TinyJambu

In this section, we discuss the results obtained from the implementation of statistical fault attacks on TinyJambu. The attack
presented in section 3.2 was launched against the TinyJambu algorithm. The first step was to find the distribution for the
expression sp=2 @ 5,2 @ (~ (s772&sp-2)) @ 55,2 @ s7 . Figure 2 shows this distribution. However, the attack could not
recover the key or part of the key as expected. In other words, the probability of success of the attack is low. The second step
was to recover the 8th byte of the key. However, after running the attack many times, it was clear that it was unsuccessful.
The correct key byte was not returned by maximum likelihood, mean hamming weight, or square Euclidean imbalance.

The distribution found for the expression s)=2 @ s7-2 @ (~ (s052&s0-2)) @ si2 @ 7> is clearly biased towards 255. One
requirement of the statistical fault attack is a biased distribution for the faulty byte or the combination of bytes. Next, the
likelihood values were plotted for some random input plaintexts. Figure 3 shows this plot. Each bar represents the likelihood
for the corresponding key-byte hypothesis. According to the likelihood values, the correct key byte guess should be the value
corresponding to the tallest bar. However, in many cases, it was not correct.

Next, the mean Hamming weight method is used to guess the correct key byte. Figure 4 indicates the plot for each key
byte guess’s mean hamming weight values. Since the key byte guess is biased toward the maximum value, the maximum
mean hamming weight should give the most probable key byte guess. However, as in the maximum likelihood method, the

results were not accurate. Furthermore, many values have mean Hamming weights close to the maximum values.

5 Conclusions and future works
In cryptography, ensuring the security of algorithms goes beyond theoretical strengths, as even a robust algorithm

can become vulnerable due to implementation errors. Therefore, the algorithm should be very carefully handled.
Issues such as the Reveal of Unverified Plaintext can cause massive vulnerabilities in the cryptosystems, especially
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Fig.3 The likelihood value for each possible key byte

in the l1oT environment. Addressing these challenges requires a proactive approach. Technologies and solutions
designed to identify and predict threats in advance play a crucial role in mitigating issues associated with imple-
mentation flaws. These measures not only enhance the overall security posture but also contribute to minimizing
the impact of potential vulnerabilities, thereby fortifying cryptosystems against a range of threats [15-17].
Nowadays, cryptanalysts are dedicated to preventing statistical relations between elements in lightweight crypto-
graphic algorithms. A notable example is the TinyJambu algorithm, where a structured design appears to counteract
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statistical attacks, rendering a statistical fault attack unsuccessful. This highlights the importance of considering and
countering various attack vectors in cryptographic algorithm design.

Looking ahead, the focus of future research lies in a comprehensive analysis of other LWC competition finalist algo-
rithms, specifically targeting statistical fault attacks. The algorithms earmarked for analysis include Grain128-AEAD, PHO-
TON-Beetle, Romulus, and SPARKLE. By subjecting these algorithms to rigorous scrutiny, we will aim to glean insights into
their resilience against statistical fault attacks, contributing to the ongoing evolution of secure cryptographic practices.
This highlights the importance of considering and countering various attack vectors in cryptographic algorithm design.
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Fig. 4 The mean Hamming weight value for each possible key byte
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