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Abstract
The rotary inverted pendulum system (RIPS) is an underactuated mechanical system with highly nonlinear dynamics 
and it is difficult to control a RIPS using the classic control models. In the last few years, reinforcement learning (RL) has 
become a popular nonlinear control method. RL has a powerful potential to control systems with high non-linearity and 
complex dynamics, such as RIPS. Nevertheless, RL control for RIPS has not been well studied and there is limited research 
on the development and evaluation of this control method. In this paper, RL control algorithms are developed for the 
swing-up and stabilization control of a single-link rotary inverted pendulum (SLRIP) and compared with classic control 
methods such as PID and LQR. A physical model of the SLRIP system is created using the MATLAB/Simscape Toolbox, 
the model is used as a dynamic simulation in MATLAB/Simulink to train the RL agents. An agent trainer system with 
Q-learning (QL) and deep Q-network learning (DQNL) is proposed for the data training. Furthermore, agent actions are 
actuating the horizontal arm of the system and states are the angles and velocities of the pendulum and the horizontal 
arm. The reward is computed according to the angles of the pendulum and horizontal arm. The reward is zero when 
the pendulum attends the upright position. The RL algorithms are used without a deep understanding of the classical 
controllers and are used to implement the agent. Finally, the outcome indicates the effectiveness of the QL and DQNL 
algorithms compared to the conventional PID and LQR controllers.

Article highlights

•	 Development of model-free reinforcement learning controllers for underactuated mechanical system.
•	 Utilization of QL and DQNL algorithms to enhance the control performance of a highly nonlinear system.
•	 This work represents an indispensable resource for researchers interested in advancing the field of robotic systems 

using the development of non-linear RL controllers.

Keywords  Single-link rotary inverted pendulum (SLRIP) · PID · LQR · Q-learning (QL) · Deep-Q network learning (DQNL)

 *  Zied Ben Hazem, z.hazem@utb.edu.bh | 1Department of Mechatronics Engineering, College of Engineering (COE), University 
of Technology Bahrain, Salmabad 18041, Bahrain.



Vol:.(1234567890)

Research	 Discover Applied Sciences            (2024) 6:49  | https://doi.org/10.1007/s42452-024-05690-y

1  Introduction

Many controllers have been developed to control mechatronics and robotic systems. The structures of controllers are 
mostly considered linear and nonlinear controllers. According to the existing research literature, linear controllers are 
summarized such as proportional (P), proportional-integral (PI), proportional derivative (PD), proportional integral 
derivative (PID), linear-quadratic regulator (LQR), linear-quadratic-gaussian (LQG), H-infinity (H∞) and H2-optimal 
control [1, 2]. Generally, linear controllers are based on the system linearized methods. Linearized models may cause 
instability and poor performance because they cannot represent the full dynamic of nonlinear systems. Linearization 
of the system is an approximation and cannot be considered as an appropriate foundation to develop and analyze 
robust control law designs. Additionally, linear controllers are extremely sensitive to external/internal disturbances 
that can affect the system output. The performance of linear controllers is completely related to the parameters of 
the controller to find optimal parameters for a complex nonlinear system [3]. The performance attained is related 
to the level of the system when it is linear around an operating point. Moreover, the application of linear controllers 
to any mechatronic system is related to its number of degrees of freedom and nonlinear dynamics complexity. The 
analysis of nonlinear systems is more complicated due to the high complexity of dynamics. Hence, the development 
of a sophisticated controller needs a deeper understanding of the system dynamics. During the last decade, differ-
ent types of non-linear controllers have been developed such as sliding mode control [4], model-free controllers [5], 
adaptive nonlinear controllers, neural network (NN) control, hybrid PID with NN controllers, adaptive neuro-fuzzy and 
self-learning controllers [6]. Numerous nonlinear controllers are studied to involve all nonlinear system dynamics. 
Nonlinear controllers take into consideration all dynamic parameters of the system to achieve high control perfor-
mance. For the implementation of a nonlinear controller, a linearization model and gains of states are not required. 
The control of RIPS is a challenge due to the complex nonlinear dynamical model of the system. RIPS always remains 
a control example of an underactuated mechanical system due to its importance in the field of control engineering. 
The RIPS has a high degree of nonlinearity and instability. RIPS is a very important system used for the development 
of balancing control systems such as legged robots, aerial, satellites, robots, two-wheeled transporters, drones and 
rockets [7].

In the last few years, deep learning (DL) has become a novel artificial intelligence methodology to make nonlinear 
controllers intelligent by adding self-learning algorithms in the robotic domain [8]. Artificial neural networks (ANNs) 
could enhance the self-learning of systems to get the required output. Many researchers related to the RIPS have 
found the effectiveness and robustness of controllers using the NN with fuzzy such as radial basis neuro-fuzzy [9] 
and fuzzy-based multi-layer feed-forward neural networks [10].

DL has made a vast contribution to solving the complexity of nonlinearity and instability of the systems. Moreover, 
DL has improved the control performance of systems by setting RL and control in one application. The DL algorithm 
was developed to control RIPS and industrial robot arms. QL is one of the best RL algorithms and it’s usually used to 
control autonomous robots, car parking problems, quadruped robots, and walking robots [11, 12]. RL uses learning 
control policies to solve the problem by optimizing reward signals. Nevertheless, QL is used to estimate the value 
of actions by a maximization step that tends to overvalue rather than undervalue. In this overestimation problem, 
the agent chooses non-optimal operations for any state due to the large Q values of the agent. The RL algorithm 
updates the program according to the rewards and observations obtained from the environment to maximize the 
expected long-term reward [13]. RL is a modelization of how human beings learn by acting on the current state of 
the environment and obtaining rewards. Furthermore, deep reinforcement learning (DRL) is a combination of RL and 
DL. RL takes into consideration the errors of agent learning calculation to make decisions. DRL algorithms may take 
very large inputs and decide the best actions to perform the optimization of the objective. DRL combines DL into the 
solution which allows agents to make decisions from input data without taking into consideration the state space of 
the system. DRL has been used for a different application such as video games, language processing, computer vision, 
transportation, healthcare, finance and robotics. Different algorithms are used in DRL such as QL, DQNL, proximal 
policy optimization (PPO), deep deterministic policy gradient (DDPG), and soft actor-critic (SAC) [14].

There are different works related to RL for pendulum systems. Dao et al. [15] developed an adaptive reinforcement 
learning strategy with sliding mode control for unknown and disturbed wheeled inverted pendulum. Zhang et al. [16] 
proposed a double Q-learning reinforcement learning algorithm based on a neural network for inverted pendulum 
control. Baek et al. [17] developed reinforcement learning to achieve real-time control of a triple-inverted pendulum. 
Pal et al. [18] proposed a reinforced learning approach coupled with a proportional-integral-derivative controller 
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for the swing up and balance of an inverted pendulum. Safeea et al. [19] established a Q-learning approach to the 
continuous control problem of robot inverted pendulum balancing. Lim et al. [20] established a federated reinforce-
ment learning for controlling multiple rotary inverted pendulums in edge computing environments. Chen Ming et al. 
[21] developed a reinforcement learning-based control of nonlinear systems using the Lyapunov stability concept 
and fuzzy reward scheme for a cart pole of a pendulum system. Bi et al. [22] proposed a deep reinforcement learn-
ing approach towards the pendulum swing-up Problem based on TF agents. Manrique Escobar et al. [23] studied a 
deep reinforcement learning control system applied to the swing-up problem of the cart pole. Kukker and Sharma 
[24] proposed a genetic algorithm (GA)-optimized fuzzy Lyapunov RL controller, the controller performance is tested 
under different types of inverted pendulum systems. In [25] Kukker and Sharma developed stochastic genetic (SA) 
algorithm-assisted Fuzzy Q-Learning-based robotic manipulator control.

The RL techniques established in this work have important potential for mechatronics and robotic applications 
compared to the works explored in the literature and their contributions are given below:

•	 The developed RL methods permit the development of nonlinear controllers without understanding the physi-
cal and dynamic behavior of the system to be controlled. These RL methods are becoming more interdiscipli-
nary, where they combine practices and theories from areas such as modern control, computational intelligence, 
applied optimization, and operation research to solve complex multi-objective control problems such as RIPS.

•	 The developed RL methods are intelligent control solutions that demonstrate computational effectiveness in solv-
ing complex control problems. These structures could alleviate the need to build heavy-duty rule-based solution 
mechanisms. The various intelligent approaches are customized to ensure robust swing-up control of the SLRIP 
and to dynamically adapt the strategies to dynamic changes in the environment such as external disturbances 
and unstructured dynamic variations.

•	 The developed RL algorithms hold a huge potential to contribute to the design and implementation of real-time 
controllers for automation and mechatronic systems aiming for optimized performances.

•	 The proposed research strategy will advance the state-of-the-art knowledge in RL with a focus on intelligent 
control applications. Further, this type of research can be employed by a broad range of other robotic systems.

In this paper, the swing-up and stabilization control of a SLRIP is developed by training and testing RL algorithms. 
The developed RL control methods are compared with the PID and LQR swing-up control. The nonlinear dynamic 
equations are developed using the Euler–Lagrange method. The environment of the SLRIP is MATLAB/ Simulink. 
Actions are actuating the horizontal arm. States are the angles and velocities of the pendulum and the horizontal 
arm. The reward is computed according to the angles of the pendulum and horizontal arm. The reward is zero when 
the pendulum attends the upright position. An agent trainer system with Q and Q network learning algorithms is 
proposed for the data training. The QL and DQNL control methods return more accurate results in terms of improve-
ment compared to the PID and LQR control methods.

The rest of this paper is organized as follows. In Sect. 2, the dynamic modeling and nonlinear equations of the 
system are explained. In Sect. 3, the related principles of RL based on QL and DQNL algorithms for the system control 
are described. In Sect. 4, the simulation results are described. Finally, Sect. 5, summarizes this paper.

2 � Dynamic modeling of the SLRIP

The CAD model of the SLRIP is shown in Fig. 1. The SLRIP consists of a flat horizontal arm with a pivot motion and a 
metal pendulum installed on its end. The pivot is fixed on the top shaft of a DC servo motor. A counterbalance mass 
may be fixed to the other end of the flat arm to keep the system inertia in the middle. θ1 and θ2 are angular positions 
of the 1st and 2nd links, respectively. The system has two degrees of freedom (2 DOF). The SLRIP can be modelized 
as a serial arm robot chain to find its kinematic model using the Denavit–Hartenberg (DH) convention. The physi-
cal parameters of the system and their values are given in Table 1. Table 2 shows the DH parameters of the system.

The homogeneous transformation matrix of the system is given in Eqs. (1) and (2). It is calculated using the param-
eters of DH from Table 2.
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Fig. 1   CAD model of the SLRIP

Table 1   List of parameters 
and their values of the SLRIP

Parameter Description Value

m1 Mass of the arm 3.1129 [kg]
m2 Mass of the pendulum 0.08 [kg]
mB Mass of the counterbalance 3.1469 [kg]
Izz1 The inertia of the arm 0.4398 [kg m2]
Izz2 The inertia of the pendulum 0.0025 [kg m2]
L1 Length of the arm 0.44 [m]
L2 Length of the pendulum 0.526 [m]
b1,2 The viscous friction coefficient in the joints of the arm 

and pendulum
0.0024 [N-m-s/Rad]

g Gravity 9.81 [N kg−1]

Table 2   DH parameters Coordinate �i−1 ai−1 di θi

1 0 0 0 θ1

2 −
�

2
0 L1 θ2 −

�

2

3 0 L2 0 0
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where

The dynamic equations of the SLRIP are found according to the kinematic model and may be given in matrix form using 
Eq. (5).

where D(θ), C
(
θ, ̇θ

)
 and G(θ) are mass matrix, Coriolis and Centripetal force vector, and gravity vector, respectively. θ , ̇θ 

and ̈θ are vectors of angular positions, angular velocities, and angular accelerations, respectively. τ1 is the torque input 
for the system. The mathematical model is found using the “Euler–Lagrange” method. Equation (6) is used to calculate 
all terms of the mass matrix.

mi is the mass of the system arms, Ii ∈ R 3 × 3 is the inertia tensor of the system arms. Ai and Bi ∈ R 3 × n are Jacobian 
matrices. Furthermore, Eq. (7) is used to calculate all terms of Coriolis and Centripetal vector:

Equation (9) is used to calculate the gravity vectors:

(1)i−1
i

T =

⎡⎢⎢⎢⎣

cos �i − sin �i 0 ai−1
sin �icosai−1 cos �icosai−1 − sin ai−1 − sin ai−1di

sin �isinai−1 cos �isinai−1 cos ai−1 cos ai−1 di

0 0 0 1

⎤⎥⎥⎥⎦

(2)0
3
T = 0

1
T1
2
T2
3
T

(3)

0
1
T =

⎡⎢⎢⎢⎣

cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0

0

0

0

1

0

0

1

⎤⎥⎥⎥⎦
1
2
T =

⎡⎢⎢⎢⎣

sin θ2 cos θ2 0 0

0 0 1 L1
cos θ2
0

− sin θ2
0

0

0

0

1

⎤⎥⎥⎥⎦

2
3
T =

⎡
⎢⎢⎢⎣

1 0 0 L2
0 1 0 0

0

0

0

0

1

0

0

1

⎤
⎥⎥⎥⎦

(4)0
3
T =

⎡⎢⎢⎢⎣

sin θ2 cos θ1 cos θ2 cos θ1 − sin θ1 L2 cos θ1 sin θ2 − L1 sin θ1
sin θ2 sin θ1 cos θ2 sin θ1 cos θ1 L1 cos θ1 + L2 sin θ1 sin θ2

cos θ2 − sin θ2 0 L2 cos θ2
0 0 0 1

⎤⎥⎥⎥⎦

(5)D(θ) ̈θ + C
(
θ, ̇θ

)
+ G(θ) =

[
𝜏1 − b1

−b2

]

(6)D(θ) =

n∑
i=1

[(
Ai

)T
miAi +

(
Bi
)T
IiBi

]

(7)C
(
θ, ̇θ

)
=

n∑
k=1

n∑
j=1

[
ci
kj
(θ) ̇θk

̇θj

]

(8)ci
kj
(θ) =

�

�θk
Dij(θ) −

1

2

�

�θi
Dkj, 1 ≤ i, j, k ≤ n

(9)G(θ) = −

n∑
k=1

n∑
j=1

[
gk mj A

j

ki
(θ)

]
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The methodology to calculate the matrix elements is given as follows: Δh1
 and Δh2

 are gravity center vectors of the 1st and 
the 2nd links, respectively. The two vectors are determined corresponding to the coordinate systems of arms in Eqs. (10). 
Moreover, Im1 and Im2 are tensors of inertia of the 1st and the 2nd links respectively; given in Eqs. (11).

The coordinates of the mass center of arms are computed corresponding to the main coordinate system.

where

The Jacobian matrix of the 1st arm is obtained by the calculation of the derivative of the vector h1 according to θ1 and θ2 . �i 
denotes the type of joint, in this case �i = 1 because it’s a rotary motion. ‘ i ’ is a unit vector of the 3rd column of the coordinate 
system. Furthermore, the variables z1 and �1 are used. The first arm is a rotational link �1 = 1 and b1 = �1z

1 =
[
0 0 1

]T
 . The 

Jacobian matrix of the 1st arm is calculated below:

J1 of the 1st arm can be divided into two matrices A1 and B1:

(10)Δh1
=
[
0

L1

2
0 1

]
T, Δh2

=
[

L2

2
0 0 1

]T

(11)Im1 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 Izz1

⎤
⎥⎥⎦
, Im2 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 Izz2

⎤
⎥⎥⎦

(12)h1 =
0
1
TΔh1

=

⎡
⎢⎢⎢⎣

cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0

0

0

0

1

0

0

1

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0
L1

2

0

1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−
L1 sin θ1

2
L1 cos θ1

2

0

1

⎤
⎥⎥⎥⎥⎦

(13)h2 =
0
2
TΔh2

=

⎡⎢⎢⎢⎢⎣

L2 cos θ1 sin θ2

2
− L1 sin θ1

L2 sin θ1 sin θ2

2
+ L1 cos θ1

L2 cos θ2

2

1

⎤⎥⎥⎥⎥⎦

(14)0

2
T =

⎡⎢⎢⎢⎣

sin �
2
cos �

1
cos �

2
cos �

1
− sin �

1
−L

1
sin �

1

sin �
2
sin �

1
cos �

2
sin �

1
cos �

1
L
1
cos �

1

cos �
2

− sin�
2

0 0

0 0 0 1

⎤⎥⎥⎥⎦

(15)z1 = 0
1
R i2 =

⎡⎢⎢⎣

cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦

(16)J1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�

��1

�
−

L1 sin �1

2

�
�

��2

�
−

L1 sin �1

2

�

�

��1

�
L1 cos �1

2

�
�

��2

�
L1 cos �1

2

�

0

0

0

1

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
L1 cos �1

2
0

−
L1 sin �1

2
0

0 0

0 0

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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The Jacobian matrix of the 2nd arm is calculated using the derivative of the vector h2 according to θ1 and θ2 . The 2nd arm 
is rotational which means �2 = 1 and b2 = �2z

2 =
[
0 0 1

]T
 . The Jacobian matrix of the 2nd arm is calculated below:

J2 of the 2nd arm is divided into two matrices A2 and B2:

The mass matrices of the two arms are given in Eqs. (21) and (22), respectively.

The inertial tensors of arms are calculated based on the main coordinate system:

D(θ) matrix of the system is provided in Eq. (24):

The elements of the velocity coupling matrix of the two arms are found below:

(17)A1 =

⎡
⎢⎢⎢⎣

−
L1 cos θ1

2
0

−
L1 sin θ1

2

0

0

0

⎤
⎥⎥⎥⎦
, B1 =

⎡⎢⎢⎣

0

0

1

0

0

0

⎤
⎥⎥⎦

(18)z2 = 0
2
R i2 =

⎡
⎢⎢⎣

cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1
sin θ1 sin θ2 acos θ2 sin θ1 cos θ1

cos θ2 − sin θ2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

− sin θ1
cos θ1
0

⎤
⎥⎥⎦

(19)J2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�θ1

�
L2 cos θ1 sin θ2

2
− L1 sin θ1

�
�

�θ2

�
L2 cos θ1 sin θ2

2
− L1 sin θ1

�

�

�θ1

�
L2 sin θ1 sin θ2

2
+ L1 cos θ1

�
�

�θ2

�
L2 sin θ1 sin θ2

2
+ L1 cos θ1

�

�

�θ1

�
L2 cos θ2

2

�
�

�θ2

�
L2 cos θ2

2

�

0 − sin θ1
0 cos θ1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)A2 =

⎡⎢⎢⎢⎣

−
L2 sin θ1 sin θ2

2
− L1 cos θ1

L2 cos θ1 sin θ2

2
− L1 sin θ1
0

L2 cos θ1 cos θ2

2
L2 cos θ2 cos θ1

2
−L2 sin θ2

2

⎤⎥⎥⎥⎦
B2 =

⎡⎢⎢⎣

0

0

1

− sin θ1
cos θ1
0

⎤⎥⎥⎦

(21)D
(
θ1
)
= m1 A

T
1
A1 + BT

1
I1B1 =

[
m1L

2
1

4
+ Izz1 0

0 0

]

(22)D
�
θ2
�
= m2 A

T
2
A2 + BT

2
I2B2 =

⎡⎢⎢⎣
m2

�
L2
2
sin2θ2

4
+ L2

1

�
−
�

L1 L2m2 cos θ2

2

�

−
�

L1 L2m2 cos θ2

2

� �
L2
2
m2

4
+ Izz2

�
⎤⎥⎥⎦

(23)I1 =
0
1
R Im1

0
1
RT, I2 =

0
2
R Im2

0
2
RT

(24)D(θ) = D
�
θ1
�
+ D

�
θ2
�
=

⎡⎢⎢⎣

m1L
2
1

4
+ Izz1 +m2

�
L2
2
sin2θ2

4
+ L2

1

�
−
�

L1 L2m2 cosθ2

2

�

−
�

L1 L2m2 cos θ2

2

� �
L2
2
m2

4
+ Izz2

�
⎤⎥⎥⎦

(25)

C1 =

[
1

2

�

�θ1
D11(θ)

1

2

�

�θ1
D12(θ)

�

�θ2
D11(θ) −

1

2

�

�θ1
D21(θ)

�

�θ2
D12(θ) −

1

2

�

�θ1
D22(θ)

]

=

[
0 0

1

4

(
L2
2
m2 sin

(
2θ2

)) 1

2

(
L1L2m2 sin

(
θ2
))

]
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The C
(
θ, ̇θ

)
 vector is found by the verification of the elements’ equality of the matrices given below.

The C
(
θ, ̇θ

)
 vector of the system is provided below:

The gravity vector of the SLRIP is:

The matrix form of the nonlinear equations of the system is given below:

The control input of the system is the torque �1 of the servo motor. The applied torque is described by Eq. (32). This 
torque equation is implemented in the MATLAB/Simscape model.

where Vm is the motor input voltage, kt is the motor torque constant, km is the motor speed constant, ηm is motor efficiency 
coefficient, Rm is terminal resistance and ̇θ is the angular velocity. A CAD dynamic model of the SLRIP was established 
via MATLAB/Simscape Toolbox to prove the mathematical model. MATLAB/Simscape and CAD models of the SLRIP are 
shown in Fig. 2a, b, respectively. To simulate the two models, the initial conditions of the angular positions of arms are 
chosen as θ1 = 0◦ , and θ2 = 20◦ . Furthermore, the same results were obtained by two models (Fig. 3).

3 � Deep reinforcement learning control for SLRIP

3.1 � Q‑learning

DRL is a combination of DL structure and RL idea, but it focuses more on RL. RL solves decision problems and makes 
RL technology practically and successfully. Furthermore, RL is a kind of machine learning based on that the system 

(26)

C2 =

[
�

�θ1
D21(θ) −

1

2

�

�θ2
D11(θ)

�

�θ1
D22(θ) −

1

2

�

�θ2
D12(θ)

1

2

�

�θ2
D21(θ)

1

2

�

�θ2
D22(θ)

]

=

[
−

1

8

(
L2
2
m2 sin

(
2θ2

))
−

1

4

(
L1L2m2 sin

(
θ2
))

1

4

(
L1L2m2 sin

(
θ2
))
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can learn from its environment by training and error minimization. The two main parts of RL are the environment and 
the agent. The agent is a decision-maker, and the environment defines everything outside the agent. The environ-
ment uses the agent input ( at ) to create the state ( st ) and reward 

(
rt
)
 which are used as inputs for the agent as well. 

RL algorithm is required for the agent to calculate the optimal actions according to the policy (� ) in order to attain 
the maximum value of the reward. RL is a closed-loop system with has a loop connection between the agent and the 

Fig. 2   SLRIP: (a) Simscape model (b) CAD model in Matlab/Simulink

Fig. 3   Comparison of θ
1
 and θ

2
 

obtained from mathematical 
and Simscape models of the 
SLRIP
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environment. A loop can be named a step and an episode has N steps. The process of training is accomplished based 
on the step numbers ( Ns ) and episode numbers ( Ne ), where ( Ns × Ne ) is the loop time. The connection between the 
state and the action is linked using a table called Q or Q-table as policy [26]. Each value in the table is noted as Q

(
si , aj

)
 

where i = (1, 2,… n), j = (1, 2,…m) . Table 3 illustrates an example of Q-Table. The block diagram of the Q-learning for 
SLRIP is shown in Fig. 4. The action is calculated using Eq. (33).

where ε is a value for any random action � ∈ (0, 1] . The RL objective is to determine the optimal policy that has a maxi-
mum reward. The Q-Table is used to find the best action for each state in the environment. A Bellman equation is used 
at each state to get the estimated future state and reward that will be compared with other states.

where the updater or new Q-value is Qnew

(
st , at

)
 . γ is a discount factor and demonstrates the importance of future 

rewards to the current state with � ∈ (0, 1] . rt+1 is the reward received by the agent at time t + 1 while performing an 
action (a) to move from one state to another. maxQ

(
st+1, at+1

)
 is the maximum Q-value of the state st+1 with action at+1 at 

time t + 1 . The agent generates the new action at according to the current state st using Eq. (33), it will give order to the 
environment to do the new state and reward st+1 and rt+1 respectively. The state st+1 is used to find maxQ

(
st+1, at+1

)
 in all 

Q-values related to actions in Table 3. Hence, the Qnew

(
st , at

)
 is calculated and updated in the Q-Table. Different applica-

tions need a high number of states and actions, which makes the Q-table highly large and increases the calculation time 
of all Q-values. Thus, DQNL is used to avoid Q-Table restrictions. The working of the Q-learning algorithm is given below:

(33)at =

{
maxQt

(
si , aj

)
− with probability(1 − ε)

anyaction
(
ai , aj

)
− with probabilityε

(34)Qnew

(
st , at

)
← rt+1 + �

(
maxQ

(
st+1, at+1

))

Table 3   Q-Table States Actions

a
1

a
2

… am

s1 Q
(
s1, a

)
Q
(
s1, a2

)
… Q

(
s1, am

)
s2 Q

(
s2, a1

)
Q
(
s2, a

)
… Q

(
s2, am

)
… … …
sn Q

(
sn, a1

)
Q
(
sn, a2

)
… Q

(
sn, am

)

Fig. 4   Block diagram of the 
Q-Learning control for SLRIP
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Q-learning algorithm

Input data: γ discount factor; ε ∈ (0,1]

Algorithm initialization 
Initialize  ( , ) randomly, except  (terminal)

 (terminal)  ← 0;

Calculation of Q-value and updating the Q-Table for each step in each episode
for each episode do

Initialize state S;

for each step-in episode do 

do
 ←   ( , , ε);

 ( , ) ←  +  (max  ( , ))

 ←

while S isn’t terminal;

end
end

3.2 � Deep Q‑network learning

The DQN approximates the Q-value by using a NN model as an alternative to the Q-table of the previous method. The 
NN creates a prediction model with the input layer which is the environment’ states; the hidden layers, and the output 
layer is the predicted Q-value. Furthermore, an extra NN model is used as a target model to estimate the maxQ

(
st+1, at+1

)
 

and to calculate the Qnew

(
st , at

)
[27].The error between Qnew

(
st , at

)
 and Qnew_NN

(
st , at

)
 will be used to update the weight 

of the prediction model by applying the gradient descent method.
The loss function is given below:

A set of data is a requirement for the training process. Arbitrary rewards and states are created and need to be sent to 
the RL agent. The prediction model is applied to predict the Qnew_NN

(
st , at

)
 by using the policy of Eq. (33) to choose the 

optimal action for the environment. Moreover, the environment is in a closed loop with the new reward and state. The 
set of training data might be given in Eq. (36).

where the Et is saved in an experience reply loop applied in the training step. One random sample Et is chosen for target 
and prediction models with st and st+1 as inputs, respectively. The block diagram of the deep Q-network learning control 
for SLRIP is shown in Fig. 5. Figure 6 shows the flow chart of the DQNL algorithm.

4 � Simulation results and discussion

4.1 � Proposed methods

In this work, the SLRIP is controlled by training and testing RL algorithms, see Fig. 7. Positions and velocities obtained from 
1st and 2nd links are inputs of the RL model. Furthermore, the torque input to the system is the output of the RL model. The 
control of the SLRIP system is based on two processes: the swing-up of and stabilization of the pendulum. The agents are 
developed to compute the swing angle of the pendulum until it achieves the upright position. When the pendulum is near 
the upright position (180° ± 10°) the proximal policy agent switches the stability action. A deep NN agent was implemented 
for the control of the DQNL. The parameters of the DQNL agent are presented in Table 4. The DQNL agent with 1 input layer, 

(35)Loss =
[
Qnew

(
st , at

)
− Qnew_NN

(
st , at

)]2

(36)Et =
(
st , at , rt+1, at+1

)
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25 hidden layers, and 1 output layer is proposed for the swing-up control of the SLRIP. The RL environment is the Simscape 
model of the SLRIP. The observation vector of RL is 

[
θ1, θ2,

̇θ1,
̇θ2
]
 . The reward (r) signal of the RL is given in the equation below:

where T is the torque input:

(37)r = −θ2
2
− 0.2

(
θ1 − θ2

)2
− 0.15 ̇θ1 + T

(38)T =

{
35 ifθ2 ∈ (180◦,±10◦]andθ1 ± 180◦

0 otherwise

}

Fig. 5   Block diagram of the 
Deep Q-network learning 
control for SLRIP

Fig. 6   Flow chart of the DQNL 
algorithm
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Figure 7 shows the Simulink model of the DQNL control of the SLRIP. The training performance of the agent is shown 
in Fig. 8.

The complexity of the DQNL algorithm is related to numerous parameters such as the dimensions of ANN, the number 
of neurons, episodes, iterations, and even the size of the actions and states of the environment. The parameters of the 
simulation and RL algorithms are described in Table 5.

As mentioned in Table 5, the agent’s inputs are the environment observations vector, reward signal from the environ-
ment, and Isdone, a flag to terminate episode simulation. The agent’s output is the action (control signal of the system). 
The parameters of the RL algorithm are the sample rate is 4s, the discount factor is 0.99 and the learning rate is 0.005. 

Fig. 7   Simulink model of the DQNL control of the SLRIP

Table 4   DQNL agent 
parameters

Parameter Value

Environment SLRIP
Reward r = −θ2

2
− 0.2

(
θ1 − θ2

)2
− 0.15 ̇θ1 + T

T =

{
35 if θ2 ∈ (180◦,±10◦] and θ1 ± 180◦

0 otherwise

}

Action θ1 = ±180◦

Fig. 8   Training performance 
of the agent of the SLRIP
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The frequency at which the agent receives feedback from the environment is known as the sample rate, while the extent 
to which the agent updates its internal model based on the newly received information is determined by the learning 
rate. The MATLAB software is utilized to conduct the simulation experiment. 1000 episodes are chosen for the agent 
to train the SLRIP model. The mean reward per episode is around 175. The training concluded once all agents reached 
the stopping criteria for training. The simulation is carried out on a PC with the following configuration: CPU (11th Gen 
Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 1.69 GHz) and RAM (16 GB). The QL algorithm demonstrates convergence after 
a 12-h training process, whereas a mere 0.70 h suffice to train the DQNL algorithm, thereby reducing the training time 
by a significant 94.16%.

The design of QL and DNQL controllers can pose several challenges in simulation, one of the main difficulties is finding 
a balance between exploration and exploitation. The controller needs to explore the environment to find optimal policies. 
The determination of an appropriate exploration strategy is an important task, as random exploration can be inefficient, 
and systematic exploration can lead to sub-optimal performance. The QL and DNQL can struggle with problems that 
have a large state or action space. As the number of possible states or actions increases, the computation and memory 
requirements also increase exponentially. The training of QL and DNQL controllers is sensitive to hyperparameter set-
tings and initial conditions, and they struggle to converge to an optimal policy. The learning process can be unstable, 
with the Q-values oscillating or diverging. Furthermore, ensuring the convergence and stability of the learning algorithm 
requires careful consideration of learning rates, discount factors, and other parameters. In environments where rewards 
are sparse or delayed, it can be challenging for Q-learning and DNQL agents to learn effective policies. Without frequent 
rewards, it may take a considerable amount of time for the agent to learn desired behaviors or to explore the state space 
adequately. Moreover, in environments where rewards are sparse or delayed, it can be challenging for QL and DNQL 
agents to learn effective policies. Without frequent rewards, it may take a considerable amount of time for the agent to 
learn desired behaviors or to explore the state space adequately.

4.2 � Results and discussion

The simulation results and discussion are presented in this section. The DQNL algorithm is established for the swing-up 
control of the SLRIP. The agent should keep the 2nd link in the upright stability position by supplying the system with a 
suitable torque input. DQNL algorithm should find the optimal input torque value that is needed to balance the pendu-
lum. Moreover, the DQNL algorithm could balance the pendulum and make it stable with high efficiency. Additionally, 
the swing-up control of SLRIP using the DRL algorithms was tested with the conventional LQR and PID controllers to 
validate its effectiveness. The simulation results shown in Figs. 9, 10, and 11 indicate that all controllers have succeeded 
in controlling the SLRIP. The performance of controllers was studied based on the comparison of errors such as integral 
time absolute error (ITAE), integral time square error (ITSE), integral absolute error (IAE), and integral square error (ISE) 
and root mean square error (RMSE), which are given in Tables 6, 7, and 8.

Table 5   Parameters of the 
simulation and RL algorithm

Parameters of the simulation and RL algorithms

Agent algorithm DQNL
Environment SLRIP
Number of the input layer 1
Number of hidden layers 25
Number of the output layer 1
Observation

[
θ1, θ2,

̇θ1,
̇θ2
]

Action τ1

Max episodes 1000
Max episode length 500
Time of the feedback controller 0.001
Simulation time 20 s
Sample rate 4 s
Learning rate 0.005
Discount factor 0.99
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According to the results presented in Table 6, it can be inferred that the RMSE serves as a critical parameter for 
evaluating the effectiveness of the controllers. The QL algorithm yields significantly more precise control outcomes, 
demonstrating an improvement percentage of 47.74% and 20.71% in terms of RMSE relative to the PID and LQR control-
lers, respectively. Moreover, the DQNL algorithm yields significantly more precise control outcomes, demonstrating an 
improvement percentage of 56.30% and 33.70% in terms of RMSE relative to the PID and LQR controllers, respectively. 
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Fig. 11   The input control signal of the swing-up controllers

Table 6   Comparison of θ
2
 for 

swing-up controllers in terms 
of IAE, ISE, ITAE, ITSE and RMSE

Errors Controllers

PID LQR QL DQNL

IAE 3.7184 × 10−3 1.6103 × 10−3 978.5668 683.1916

ISE 7.7546 × 10−5 3.3673 × 10−5 2.1160 × 10−5 1.4793 × 10−5

ITAE 1.6738 × 10−8 7.2489 × 10−7 4.4050 × 10−7 3.0754 × 10−7

ITSE 3.4907 × 10−10 1.5158 × 10−10 9.5254 × 10−9 6.6589 × 10−9

RMSE 160.76 105.95 84.0 70.24

Table 7   Comparison of θ
1
 for 

swing-up controllers in terms 
of IAE, ISE, ITAE, ITSE and RMSE

Errors Controllers

PID LQR QL DQNL

E 172.3459 72.4547 62.1360 11.9867
ISE 5.9986 × 10−3 2.1460 × 10−3 2.0577 × 10−3 108.5353

ITAE 7.7582 × 10−6 3.2615 × 10−6 2.7970 × 10−6 5.3958 × 10−5

ITSE 2.7003 × 10−8 9.6602 × 10−7 9.2628 × 10−7 4.8857 × 10−6

RMSE 14.13 8.45 8.28 1.901
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IAE, ISE, ITAE, and ITSE have been computed as popular performance indexes. However, their performance is not the 
same. Accordingly, an optimization algorithm can be incorporated into QL and DQNL algorithms to adjust the IAE, ISE, 
ITAE, and ITSE for both RL controllers.

Based on the results presented in Table 7, it can be inferred that the RMSE serves as a critical parameter for evaluating 
the effectiveness of the controllers. The QL algorithm yields significantly more precise control outcomes, demonstrating 
an improvement percentage of 41.40% and 2.01% in terms of RMSE relative to the PID and LQR controllers, respectively. 
Moreover, the DQNL algorithm yields significantly more precise control outcomes, demonstrating an improvement 
percentage of 48.97% and 14.67% in terms of RMSE relative to the PID and LQR controllers, respectively. IAE, ISE, ITAE, 
and ITSE have been computed as popular performance indexes. However, their performance is not the same. Accord-
ingly, an optimization algorithm can be incorporated into QL and DQNL algorithms to adjust the IAE, ISE, ITAE, and ITSE 
for both RL controllers.

According to the results presented in Table 8, it can be inferred that the RMSE serves as a critical parameter for 
evaluating the effectiveness of the controllers. The QL algorithm yields significantly more precise control outcomes, 
demonstrating an improvement percentage of 39.72% and 5.77% in terms of RMSE relative to the PID and LQR control-
lers, respectively. Moreover, the DQNL algorithm yields significantly more precise control outcomes, demonstrating an 
improvement percentage of 40.29% and 6.66% in terms of RMSE relative to the PID and LQR controllers, respectively. IAE, 
ISE, ITAE, and ITSE have been computed as popular performance indexes. However, their performance is not the same. 
Accordingly, an optimization algorithm can be incorporated into QL and DQNL algorithms to adjust the IAE, ISE, ITAE, 
and ITSE for both RL controllers. Table 9 presents a summary of the improvement percentage in terms of RMSE between 
RL and classical controllers.

In summary, The SLRIP is nonlinear and inherently unstable. It requires precise and adaptive control to maintain stabil-
ity and balance. Traditional control methods developed in this work (PID, LQR) might struggle to handle the complexities 
and dynamic changes of the system. QL and DQNL are model-free techniques that do not require explicit knowledge 
of the system dynamics. They can adaptively learn the control policy by interacting with the system and observing its 
responses, making them suitable for handling nonlinearity and instability. Furthermore, SLRIP requires continuous control 
actions, such as applying torque to the 1st arm to adjust the pendulum’s position. Both QL and DQNL are extended to 
handle continuous control problems by using function approximation techniques. These techniques enable the agent to 
learn a continuous control policy that can effectively balance the pendulum on top of the rotating base. In this work, the 
developed QL and DQNL are relevant for controlling a SLRIP due to their ability to handle nonlinearities, instability, high-
dimensional state spaces, and continuous control actions. These algorithms provide an effective framework for training 
an agent to learn an optimal control policy in such complex and dynamic systems. Based on the findings derived from 
our analysis and considering the latest scholarly publications in the field, the results indicate great promise. It is essential 
to establish a double deep Q-network learning algorithm in order to thoroughly compare its performance with other 

Table 8   Comparison of 
the input control signal for 
swing-up controllers in terms 
of IAE, ISE, ITAE, ITSE, and 
RMSE

Errors Controllers

PID LQR QL DQNL

IAE 12.5831 5.9901 4.0818 3.7589
ISE 37.1928 15.1676 13.4198 13.1669
ITAE 5.6626 × 10−6 2.6956 × 10−6 1.8369 × 10−6 1.6916 × 10−6

ITSE 1.6737 × 10−7 6.8257 × 10−6 6.0391 × 10−6 5.9253 × 10−6

RMSE 1.11 0.71 0.669 0.6627

Table 9   Comparison of 
swing-up controllers in terms 
of the relative improvements’ 
percentages of RMSE

RMSE Controllers

PID versus QL (%) LQR versus QL (%) PID versus DQNL 
(%)

LQR ver-
sus DQNL 
(%)

Pendulum link 47.74 20.71 56.30 33.70
Horizontal link 41.40 2.01 48.97 14.67
Input control signal 39.72 5.77 40.29 6.66
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classical controllers, such as the controller proposed by Y Dai et al. in their work [28]. Furthermore, it is crucial to conduct 
tests with alternative RL agents like the soft actor-critic–proximal policy optimization (SAC–PPO) technique presented in 
[29]. To ensure the reliability and accuracy of the RL algorithms, it is imperative to utilize real experimental setups, similar 
to the one employed by D. Brown et al. [30]. Additionally, to further enhance the control outcomes achieved by the RL 
controllers, it is recommend the development of an adaptive reinforcement learning strategy combined with sliding 
mode control, as demonstrated in [15].

5 � Conclusion

In this paper, the RL algorithms for the swing-up and stabilization control of a SLRIP were developed in MATLAB simula-
tion. The control approach consists of the environment, which is the Simscape model of the SLRIP, and the agent is the 
controller. QL and DQNL are both model-free control algorithms used without a profound background of understanding 
of classical control theory. The QL and DQNL agents were developed for the swing-up and stabilization control action 
of the SLRIP. 1000 episodes were required for the training of the agent. Furthermore, the learning algorithm is sensitive 
to the selection of parameters such as learning rates or discount factors and these parameters may be effective in the 
control of SLRIP. According to the obtained results, the QL control method returns more accurate results in terms of 
improvement percentage from 39.72 to 47.74% and from 2.01 to 20.71% compared to the PID and LQR control methods; 
respectively. Moreover, the DQNL control method returns more accurate results in terms of improvement percentage 
from 40.29 to 56.30% and from 6.66 to 33.70% compared to the PID and LQR control methods; respectively. For future 
works, RL controllers will be validated under a real experimental setup of a SLRIP. Moreover, the developed algorithm 
will be used to control more complex environments such as double and triple-link rotary inverted pendulum systems to 
prove the efficiency of the control algorithm.
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