
Vol.:(0123456789)

 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

Discover Applied Sciences

Research

Study of Q‑learning and deep Q‑network learning control for a rotary
inverted pendulum system

Zied Ben Hazem1

Received: 30 November 2023 / Accepted: 18 January 2024

© The Author(s) 2024   OPEN

Abstract
The rotary inverted pendulum system (RIPS) is an underactuated mechanical system with highly nonlinear dynamics
and it is difficult to control a RIPS using the classic control models. In the last few years, reinforcement learning (RL) has
become a popular nonlinear control method. RL has a powerful potential to control systems with high non-linearity and
complex dynamics, such as RIPS. Nevertheless, RL control for RIPS has not been well studied and there is limited research
on the development and evaluation of this control method. In this paper, RL control algorithms are developed for the
swing-up and stabilization control of a single-link rotary inverted pendulum (SLRIP) and compared with classic control
methods such as PID and LQR. A physical model of the SLRIP system is created using the MATLAB/Simscape Toolbox,
the model is used as a dynamic simulation in MATLAB/Simulink to train the RL agents. An agent trainer system with
Q-learning (QL) and deep Q-network learning (DQNL) is proposed for the data training. Furthermore, agent actions are
actuating the horizontal arm of the system and states are the angles and velocities of the pendulum and the horizontal
arm. The reward is computed according to the angles of the pendulum and horizontal arm. The reward is zero when
the pendulum attends the upright position. The RL algorithms are used without a deep understanding of the classical
controllers and are used to implement the agent. Finally, the outcome indicates the effectiveness of the QL and DQNL
algorithms compared to the conventional PID and LQR controllers.

Article highlights

•	 Development of model-free reinforcement learning controllers for underactuated mechanical system.
•	 Utilization of QL and DQNL algorithms to enhance the control performance of a highly nonlinear system.
•	 This work represents an indispensable resource for researchers interested in advancing the field of robotic systems

using the development of non-linear RL controllers.

Keywords  Single-link rotary inverted pendulum (SLRIP) · PID · LQR · Q-learning (QL) · Deep-Q network learning (DQNL)

 *  Zied Ben Hazem, z.hazem@utb.edu.bh | 1Department of Mechatronics Engineering, College of Engineering (COE), University
of Technology Bahrain, Salmabad 18041, Bahrain.

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

1  Introduction

Many controllers have been developed to control mechatronics and robotic systems. The structures of controllers are
mostly considered linear and nonlinear controllers. According to the existing research literature, linear controllers are
summarized such as proportional (P), proportional-integral (PI), proportional derivative (PD), proportional integral
derivative (PID), linear-quadratic regulator (LQR), linear-quadratic-gaussian (LQG), H-infinity (H∞) and H2-optimal
control [1, 2]. Generally, linear controllers are based on the system linearized methods. Linearized models may cause
instability and poor performance because they cannot represent the full dynamic of nonlinear systems. Linearization
of the system is an approximation and cannot be considered as an appropriate foundation to develop and analyze
robust control law designs. Additionally, linear controllers are extremely sensitive to external/internal disturbances
that can affect the system output. The performance of linear controllers is completely related to the parameters of
the controller to find optimal parameters for a complex nonlinear system [3]. The performance attained is related
to the level of the system when it is linear around an operating point. Moreover, the application of linear controllers
to any mechatronic system is related to its number of degrees of freedom and nonlinear dynamics complexity. The
analysis of nonlinear systems is more complicated due to the high complexity of dynamics. Hence, the development
of a sophisticated controller needs a deeper understanding of the system dynamics. During the last decade, differ-
ent types of non-linear controllers have been developed such as sliding mode control [4], model-free controllers [5],
adaptive nonlinear controllers, neural network (NN) control, hybrid PID with NN controllers, adaptive neuro-fuzzy and
self-learning controllers [6]. Numerous nonlinear controllers are studied to involve all nonlinear system dynamics.
Nonlinear controllers take into consideration all dynamic parameters of the system to achieve high control perfor-
mance. For the implementation of a nonlinear controller, a linearization model and gains of states are not required.
The control of RIPS is a challenge due to the complex nonlinear dynamical model of the system. RIPS always remains
a control example of an underactuated mechanical system due to its importance in the field of control engineering.
The RIPS has a high degree of nonlinearity and instability. RIPS is a very important system used for the development
of balancing control systems such as legged robots, aerial, satellites, robots, two-wheeled transporters, drones and
rockets [7].

In the last few years, deep learning (DL) has become a novel artificial intelligence methodology to make nonlinear
controllers intelligent by adding self-learning algorithms in the robotic domain [8]. Artificial neural networks (ANNs)
could enhance the self-learning of systems to get the required output. Many researchers related to the RIPS have
found the effectiveness and robustness of controllers using the NN with fuzzy such as radial basis neuro-fuzzy [9]
and fuzzy-based multi-layer feed-forward neural networks [10].

DL has made a vast contribution to solving the complexity of nonlinearity and instability of the systems. Moreover,
DL has improved the control performance of systems by setting RL and control in one application. The DL algorithm
was developed to control RIPS and industrial robot arms. QL is one of the best RL algorithms and it’s usually used to
control autonomous robots, car parking problems, quadruped robots, and walking robots [11, 12]. RL uses learning
control policies to solve the problem by optimizing reward signals. Nevertheless, QL is used to estimate the value
of actions by a maximization step that tends to overvalue rather than undervalue. In this overestimation problem,
the agent chooses non-optimal operations for any state due to the large Q values of the agent. The RL algorithm
updates the program according to the rewards and observations obtained from the environment to maximize the
expected long-term reward [13]. RL is a modelization of how human beings learn by acting on the current state of
the environment and obtaining rewards. Furthermore, deep reinforcement learning (DRL) is a combination of RL and
DL. RL takes into consideration the errors of agent learning calculation to make decisions. DRL algorithms may take
very large inputs and decide the best actions to perform the optimization of the objective. DRL combines DL into the
solution which allows agents to make decisions from input data without taking into consideration the state space of
the system. DRL has been used for a different application such as video games, language processing, computer vision,
transportation, healthcare, finance and robotics. Different algorithms are used in DRL such as QL, DQNL, proximal
policy optimization (PPO), deep deterministic policy gradient (DDPG), and soft actor-critic (SAC) [14].

There are different works related to RL for pendulum systems. Dao et al. [15] developed an adaptive reinforcement
learning strategy with sliding mode control for unknown and disturbed wheeled inverted pendulum. Zhang et al. [16]
proposed a double Q-learning reinforcement learning algorithm based on a neural network for inverted pendulum
control. Baek et al. [17] developed reinforcement learning to achieve real-time control of a triple-inverted pendulum.
Pal et al. [18] proposed a reinforced learning approach coupled with a proportional-integral-derivative controller

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

for the swing up and balance of an inverted pendulum. Safeea et al. [19] established a Q-learning approach to the
continuous control problem of robot inverted pendulum balancing. Lim et al. [20] established a federated reinforce-
ment learning for controlling multiple rotary inverted pendulums in edge computing environments. Chen Ming et al.
[21] developed a reinforcement learning-based control of nonlinear systems using the Lyapunov stability concept
and fuzzy reward scheme for a cart pole of a pendulum system. Bi et al. [22] proposed a deep reinforcement learn-
ing approach towards the pendulum swing-up Problem based on TF agents. Manrique Escobar et al. [23] studied a
deep reinforcement learning control system applied to the swing-up problem of the cart pole. Kukker and Sharma
[24] proposed a genetic algorithm (GA)-optimized fuzzy Lyapunov RL controller, the controller performance is tested
under different types of inverted pendulum systems. In [25] Kukker and Sharma developed stochastic genetic (SA)
algorithm-assisted Fuzzy Q-Learning-based robotic manipulator control.

The RL techniques established in this work have important potential for mechatronics and robotic applications
compared to the works explored in the literature and their contributions are given below:

•	 The developed RL methods permit the development of nonlinear controllers without understanding the physi-
cal and dynamic behavior of the system to be controlled. These RL methods are becoming more interdiscipli-
nary, where they combine practices and theories from areas such as modern control, computational intelligence,
applied optimization, and operation research to solve complex multi-objective control problems such as RIPS.

•	 The developed RL methods are intelligent control solutions that demonstrate computational effectiveness in solv-
ing complex control problems. These structures could alleviate the need to build heavy-duty rule-based solution
mechanisms. The various intelligent approaches are customized to ensure robust swing-up control of the SLRIP
and to dynamically adapt the strategies to dynamic changes in the environment such as external disturbances
and unstructured dynamic variations.

•	 The developed RL algorithms hold a huge potential to contribute to the design and implementation of real-time
controllers for automation and mechatronic systems aiming for optimized performances.

•	 The proposed research strategy will advance the state-of-the-art knowledge in RL with a focus on intelligent
control applications. Further, this type of research can be employed by a broad range of other robotic systems.

In this paper, the swing-up and stabilization control of a SLRIP is developed by training and testing RL algorithms.
The developed RL control methods are compared with the PID and LQR swing-up control. The nonlinear dynamic
equations are developed using the Euler–Lagrange method. The environment of the SLRIP is MATLAB/ Simulink.
Actions are actuating the horizontal arm. States are the angles and velocities of the pendulum and the horizontal
arm. The reward is computed according to the angles of the pendulum and horizontal arm. The reward is zero when
the pendulum attends the upright position. An agent trainer system with Q and Q network learning algorithms is
proposed for the data training. The QL and DQNL control methods return more accurate results in terms of improve-
ment compared to the PID and LQR control methods.

The rest of this paper is organized as follows. In Sect. 2, the dynamic modeling and nonlinear equations of the
system are explained. In Sect. 3, the related principles of RL based on QL and DQNL algorithms for the system control
are described. In Sect. 4, the simulation results are described. Finally, Sect. 5, summarizes this paper.

2 � Dynamic modeling of the SLRIP

The CAD model of the SLRIP is shown in Fig. 1. The SLRIP consists of a flat horizontal arm with a pivot motion and a
metal pendulum installed on its end. The pivot is fixed on the top shaft of a DC servo motor. A counterbalance mass
may be fixed to the other end of the flat arm to keep the system inertia in the middle. θ1 and θ2 are angular positions
of the 1st and 2nd links, respectively. The system has two degrees of freedom (2 DOF). The SLRIP can be modelized
as a serial arm robot chain to find its kinematic model using the Denavit–Hartenberg (DH) convention. The physi-
cal parameters of the system and their values are given in Table 1. Table 2 shows the DH parameters of the system.

The homogeneous transformation matrix of the system is given in Eqs. (1) and (2). It is calculated using the param-
eters of DH from Table 2.

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

Fig. 1   CAD model of the SLRIP

Table 1   List of parameters
and their values of the SLRIP

Parameter Description Value

m1 Mass of the arm 3.1129 [kg]
m2 Mass of the pendulum 0.08 [kg]
mB Mass of the counterbalance 3.1469 [kg]
Izz1 The inertia of the arm 0.4398 [kg m2]
Izz2 The inertia of the pendulum 0.0025 [kg m2]
L1 Length of the arm 0.44 [m]
L2 Length of the pendulum 0.526 [m]
b1,2 The viscous friction coefficient in the joints of the arm

and pendulum
0.0024 [N-m-s/Rad]

g Gravity 9.81 [N kg−1]

Table 2   DH parameters Coordinate �i−1 ai−1 di θi

1 0 0 0 θ1

2 −
�

2
0 L1 θ2 −

�

2

3 0 L2 0 0

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

where

The dynamic equations of the SLRIP are found according to the kinematic model and may be given in matrix form using
Eq. (5).

where D(θ), C
(
θ, ̇θ

)
 and G(θ) are mass matrix, Coriolis and Centripetal force vector, and gravity vector, respectively. θ , ̇θ

and ̈θ are vectors of angular positions, angular velocities, and angular accelerations, respectively. τ1 is the torque input
for the system. The mathematical model is found using the “Euler–Lagrange” method. Equation (6) is used to calculate
all terms of the mass matrix.

mi is the mass of the system arms, Ii ∈ R 3 × 3 is the inertia tensor of the system arms. Ai and Bi ∈ R 3 × n are Jacobian
matrices. Furthermore, Eq. (7) is used to calculate all terms of Coriolis and Centripetal vector:

Equation (9) is used to calculate the gravity vectors:

(1)i−1
i

T =

⎡⎢⎢⎢⎣

cos �i − sin �i 0 ai−1
sin �icosai−1 cos �icosai−1 − sin ai−1 − sin ai−1di

sin �isinai−1 cos �isinai−1 cos ai−1 cos ai−1 di

0 0 0 1

⎤⎥⎥⎥⎦

(2)0
3
T = 0

1
T1
2
T2
3
T

(3)

0
1
T =

⎡⎢⎢⎢⎣

cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0

0

0

0

1

0

0

1

⎤⎥⎥⎥⎦
1
2
T =

⎡⎢⎢⎢⎣

sin θ2 cos θ2 0 0

0 0 1 L1
cos θ2
0

− sin θ2
0

0

0

0

1

⎤⎥⎥⎥⎦

2
3
T =

⎡
⎢⎢⎢⎣

1 0 0 L2
0 1 0 0

0

0

0

0

1

0

0

1

⎤
⎥⎥⎥⎦

(4)0
3
T =

⎡⎢⎢⎢⎣

sin θ2 cos θ1 cos θ2 cos θ1 − sin θ1 L2 cos θ1 sin θ2 − L1 sin θ1
sin θ2 sin θ1 cos θ2 sin θ1 cos θ1 L1 cos θ1 + L2 sin θ1 sin θ2

cos θ2 − sin θ2 0 L2 cos θ2
0 0 0 1

⎤⎥⎥⎥⎦

(5)D(θ) ̈θ + C
(
θ, ̇θ

)
+ G(θ) =

[
𝜏1 − b1

−b2

]

(6)D(θ) =

n∑
i=1

[(
Ai

)T
miAi +

(
Bi
)T
IiBi

]

(7)C
(
θ, ̇θ

)
=

n∑
k=1

n∑
j=1

[
ci
kj
(θ) ̇θk

̇θj

]

(8)ci
kj
(θ) =

�

�θk
Dij(θ) −

1

2

�

�θi
Dkj, 1 ≤ i, j, k ≤ n

(9)G(θ) = −

n∑
k=1

n∑
j=1

[
gk mj A

j

ki
(θ)

]

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

The methodology to calculate the matrix elements is given as follows: Δh1
 and Δh2

 are gravity center vectors of the 1st and
the 2nd links, respectively. The two vectors are determined corresponding to the coordinate systems of arms in Eqs. (10).
Moreover, Im1 and Im2 are tensors of inertia of the 1st and the 2nd links respectively; given in Eqs. (11).

The coordinates of the mass center of arms are computed corresponding to the main coordinate system.

where

The Jacobian matrix of the 1st arm is obtained by the calculation of the derivative of the vector h1 according to θ1 and θ2 . �i
denotes the type of joint, in this case �i = 1 because it’s a rotary motion. ‘ i ’ is a unit vector of the 3rd column of the coordinate
system. Furthermore, the variables z1 and �1 are used. The first arm is a rotational link �1 = 1 and b1 = �1z

1 =
[
0 0 1

]T
 . The

Jacobian matrix of the 1st arm is calculated below:

J1 of the 1st arm can be divided into two matrices A1 and B1:

(10)Δh1
=
[
0

L1

2
0 1

]
T, Δh2

=
[

L2

2
0 0 1

]T

(11)Im1 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 Izz1

⎤
⎥⎥⎦
, Im2 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 Izz2

⎤
⎥⎥⎦

(12)h1 =
0
1
TΔh1

=

⎡
⎢⎢⎢⎣

cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0

0

0

0

1

0

0

1

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0
L1

2

0

1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−
L1 sin θ1

2
L1 cos θ1

2

0

1

⎤
⎥⎥⎥⎥⎦

(13)h2 =
0
2
TΔh2

=

⎡⎢⎢⎢⎢⎣

L2 cos θ1 sin θ2

2
− L1 sin θ1

L2 sin θ1 sin θ2

2
+ L1 cos θ1

L2 cos θ2

2

1

⎤⎥⎥⎥⎥⎦

(14)0

2
T =

⎡⎢⎢⎢⎣

sin �
2
cos �

1
cos �

2
cos �

1
− sin �

1
−L

1
sin �

1

sin �
2
sin �

1
cos �

2
sin �

1
cos �

1
L
1
cos �

1

cos �
2

− sin�
2

0 0

0 0 0 1

⎤⎥⎥⎥⎦

(15)z1 = 0
1
R i2 =

⎡⎢⎢⎣

cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦

(16)J1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�

��1

�
−

L1 sin �1

2

�
�

��2

�
−

L1 sin �1

2

�

�

��1

�
L1 cos �1

2

�
�

��2

�
L1 cos �1

2

�

0

0

0

1

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
L1 cos �1

2
0

−
L1 sin �1

2
0

0 0

0 0

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

The Jacobian matrix of the 2nd arm is calculated using the derivative of the vector h2 according to θ1 and θ2 . The 2nd arm
is rotational which means �2 = 1 and b2 = �2z

2 =
[
0 0 1

]T
 . The Jacobian matrix of the 2nd arm is calculated below:

J2 of the 2nd arm is divided into two matrices A2 and B2:

The mass matrices of the two arms are given in Eqs. (21) and (22), respectively.

The inertial tensors of arms are calculated based on the main coordinate system:

D(θ) matrix of the system is provided in Eq. (24):

The elements of the velocity coupling matrix of the two arms are found below:

(17)A1 =

⎡
⎢⎢⎢⎣

−
L1 cos θ1

2
0

−
L1 sin θ1

2

0

0

0

⎤
⎥⎥⎥⎦
, B1 =

⎡⎢⎢⎣

0

0

1

0

0

0

⎤
⎥⎥⎦

(18)z2 = 0
2
R i2 =

⎡
⎢⎢⎣

cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1
sin θ1 sin θ2 acos θ2 sin θ1 cos θ1

cos θ2 − sin θ2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

− sin θ1
cos θ1
0

⎤
⎥⎥⎦

(19)J2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�θ1

�
L2 cos θ1 sin θ2

2
− L1 sin θ1

�
�

�θ2

�
L2 cos θ1 sin θ2

2
− L1 sin θ1

�

�

�θ1

�
L2 sin θ1 sin θ2

2
+ L1 cos θ1

�
�

�θ2

�
L2 sin θ1 sin θ2

2
+ L1 cos θ1

�

�

�θ1

�
L2 cos θ2

2

�
�

�θ2

�
L2 cos θ2

2

�

0 − sin θ1
0 cos θ1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)A2 =

⎡⎢⎢⎢⎣

−
L2 sin θ1 sin θ2

2
− L1 cos θ1

L2 cos θ1 sin θ2

2
− L1 sin θ1
0

L2 cos θ1 cos θ2

2
L2 cos θ2 cos θ1

2
−L2 sin θ2

2

⎤⎥⎥⎥⎦
B2 =

⎡⎢⎢⎣

0

0

1

− sin θ1
cos θ1
0

⎤⎥⎥⎦

(21)D
(
θ1
)
= m1 A

T
1
A1 + BT

1
I1B1 =

[
m1L

2
1

4
+ Izz1 0

0 0

]

(22)D
�
θ2
�
= m2 A

T
2
A2 + BT

2
I2B2 =

⎡⎢⎢⎣
m2

�
L2
2
sin2θ2

4
+ L2

1

�
−
�

L1 L2m2 cos θ2

2

�

−
�

L1 L2m2 cos θ2

2

� �
L2
2
m2

4
+ Izz2

�
⎤⎥⎥⎦

(23)I1 =
0
1
R Im1

0
1
RT, I2 =

0
2
R Im2

0
2
RT

(24)D(θ) = D
�
θ1
�
+ D

�
θ2
�
=

⎡⎢⎢⎣

m1L
2
1

4
+ Izz1 +m2

�
L2
2
sin2θ2

4
+ L2

1

�
−
�

L1 L2m2 cosθ2

2

�

−
�

L1 L2m2 cos θ2

2

� �
L2
2
m2

4
+ Izz2

�
⎤⎥⎥⎦

(25)

C1 =

[
1

2

�

�θ1
D11(θ)

1

2

�

�θ1
D12(θ)

�

�θ2
D11(θ) −

1

2

�

�θ1
D21(θ)

�

�θ2
D12(θ) −

1

2

�

�θ1
D22(θ)

]

=

[
0 0

1

4

(
L2
2
m2 sin

(
2θ2

)) 1

2

(
L1L2m2 sin

(
θ2
))

]

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

The C
(
θ, ̇θ

)
 vector is found by the verification of the elements’ equality of the matrices given below.

The C
(
θ, ̇θ

)
 vector of the system is provided below:

The gravity vector of the SLRIP is:

The matrix form of the nonlinear equations of the system is given below:

The control input of the system is the torque �1 of the servo motor. The applied torque is described by Eq. (32). This
torque equation is implemented in the MATLAB/Simscape model.

where Vm is the motor input voltage, kt is the motor torque constant, km is the motor speed constant, ηm is motor efficiency
coefficient, Rm is terminal resistance and ̇θ is the angular velocity. A CAD dynamic model of the SLRIP was established
via MATLAB/Simscape Toolbox to prove the mathematical model. MATLAB/Simscape and CAD models of the SLRIP are
shown in Fig. 2a, b, respectively. To simulate the two models, the initial conditions of the angular positions of arms are
chosen as θ1 = 0◦ , and θ2 = 20◦ . Furthermore, the same results were obtained by two models (Fig. 3).

3 � Deep reinforcement learning control for SLRIP

3.1 � Q‑learning

DRL is a combination of DL structure and RL idea, but it focuses more on RL. RL solves decision problems and makes
RL technology practically and successfully. Furthermore, RL is a kind of machine learning based on that the system

(26)

C2 =

[
�

�θ1
D21(θ) −

1

2

�

�θ2
D11(θ)

�

�θ1
D22(θ) −

1

2

�

�θ2
D12(θ)

1

2

�

�θ2
D21(θ)

1

2

�

�θ2
D22(θ)

]

=

[
−

1

8

(
L2
2
m2 sin

(
2θ2

))
−

1

4

(
L1L2m2 sin

(
θ2
))

1

4

(
L1L2m2 sin

(
θ2
))

0

]

(27)

[
0 0

1

4

(
L2
2
m2 sin

(
2θ2

)) 1

2

(
L1L2m2 sin

(
θ2
))

]
=

[
̇θ2
1

̇θ1
̇θ2

̇θ1
̇θ2

̇θ2
2

]

(28)

[
−

1

8

(
L2
2
m2 sin

(
2θ2

))
−

1

4

(
L1L2m2 sin

(
θ2
))

1

4

(
L1L2m2 sin

(
θ2
))

0

]
=

[
̇θ2
1

̇θ1
̇θ2

̇θ1
̇θ2

̇θ2
2

]

(29)C
(
θ, ̇θ

)
=

[
1

2

(
L1L2m2

̇θ2
2
sin

(
θ2
))

+
1

4

(
L2
2
m2

̇θ1
̇θ2 sin

(
2θ2

))
−

1

8

(
L2
2
̇θ2
1
m2 sin

(
2θ2

))
]

(30)G =

[
0

−
1

2

(
L2g m2 sin

(
θ2
))

]

(31)

⎡⎢⎢⎣

m1L
2
1

4
+ Izz1 +m2

�
L2
2
sin2θ2

4
+ L2

1

�
−
�

L1 L2m2 cosθ2

2

�

−
�

L1 L2m2 cos θ2

2

� �
L2
2
m2

4
+ Izz2

�
⎤⎥⎥⎦

�
̈θ1
̈θ2

�

+

�
1

2

�
L1L2m2

̇θ2
2
sin

�
θ2
��

+
1

4

�
L2
2
m2

̇θ1
̇θ2 sin

�
2θ2

��
−

1

8

�
L2
2
̇θ2
1
m2 sin

�
2θ2

��
�
+

�
0

−
1

2

�
L2g m2 sin

�
θ2
��

�
=

�
𝜏1 − b1

− b2

�
(31)

(32)τ1 =
ηmkt

Rm
Vm −

ηmktkm

Rm

̇θ

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

can learn from its environment by training and error minimization. The two main parts of RL are the environment and
the agent. The agent is a decision-maker, and the environment defines everything outside the agent. The environ-
ment uses the agent input ( at ) to create the state ( st ) and reward

(
rt
)
 which are used as inputs for the agent as well.

RL algorithm is required for the agent to calculate the optimal actions according to the policy (� ) in order to attain
the maximum value of the reward. RL is a closed-loop system with has a loop connection between the agent and the

Fig. 2   SLRIP: (a) Simscape model (b) CAD model in Matlab/Simulink

Fig. 3   Comparison of θ
1
 and θ

2

obtained from mathematical
and Simscape models of the
SLRIP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)

0

1

2

3

4

1
(d
eg

)

1 - SimMechanics model without friction
1 - Mathematical model without friction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)

-20

-10

0

10

20

2(
de

g)

2 - SimMechanics model without friction
2 - mathematical model without friction

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

environment. A loop can be named a step and an episode has N steps. The process of training is accomplished based
on the step numbers ( Ns ) and episode numbers ( Ne ), where ( Ns × Ne ) is the loop time. The connection between the
state and the action is linked using a table called Q or Q-table as policy [26]. Each value in the table is noted as Q

(
si , aj

)

where i = (1, 2,… n), j = (1, 2,…m) . Table 3 illustrates an example of Q-Table. The block diagram of the Q-learning for
SLRIP is shown in Fig. 4. The action is calculated using Eq. (33).

where ε is a value for any random action � ∈ (0, 1] . The RL objective is to determine the optimal policy that has a maxi-
mum reward. The Q-Table is used to find the best action for each state in the environment. A Bellman equation is used
at each state to get the estimated future state and reward that will be compared with other states.

where the updater or new Q-value is Qnew

(
st , at

)
 . γ is a discount factor and demonstrates the importance of future

rewards to the current state with � ∈ (0, 1] . rt+1 is the reward received by the agent at time t + 1 while performing an
action (a) to move from one state to another. maxQ

(
st+1, at+1

)
 is the maximum Q-value of the state st+1 with action at+1 at

time t + 1 . The agent generates the new action at according to the current state st using Eq. (33), it will give order to the
environment to do the new state and reward st+1 and rt+1 respectively. The state st+1 is used to find maxQ

(
st+1, at+1

)
 in all

Q-values related to actions in Table 3. Hence, the Qnew

(
st , at

)
 is calculated and updated in the Q-Table. Different applica-

tions need a high number of states and actions, which makes the Q-table highly large and increases the calculation time
of all Q-values. Thus, DQNL is used to avoid Q-Table restrictions. The working of the Q-learning algorithm is given below:

(33)at =

{
maxQt

(
si , aj

)
− with probability(1 − ε)

anyaction
(
ai , aj

)
− with probabilityε

(34)Qnew

(
st , at

)
← rt+1 + �

(
maxQ

(
st+1, at+1

))

Table 3   Q-Table States Actions

a
1

a
2

… am

s1 Q
(
s1, a

)
Q
(
s1, a2

)
… Q

(
s1, am

)
s2 Q

(
s2, a1

)
Q
(
s2, a

)
… Q

(
s2, am

)
… … …
sn Q

(
sn, a1

)
Q
(
sn, a2

)
… Q

(
sn, am

)

Fig. 4   Block diagram of the
Q-Learning control for SLRIP

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

Q-learning algorithm

Input data: γ discount factor; ε ∈ (0,1]

Algorithm initialization
Initialize (,) randomly, except (terminal)

 (terminal) ← 0;

Calculation of Q-value and updating the Q-Table for each step in each episode
for each episode do

Initialize state S;

for each step-in episode do

do
 ← (, , ε);

 (,) ← + (max (,))

 ←

while S isn’t terminal;

end
end

3.2 � Deep Q‑network learning

The DQN approximates the Q-value by using a NN model as an alternative to the Q-table of the previous method. The
NN creates a prediction model with the input layer which is the environment’ states; the hidden layers, and the output
layer is the predicted Q-value. Furthermore, an extra NN model is used as a target model to estimate the maxQ

(
st+1, at+1

)

and to calculate the Qnew

(
st , at

)
[27].The error between Qnew

(
st , at

)
 and Qnew_NN

(
st , at

)
 will be used to update the weight

of the prediction model by applying the gradient descent method.
The loss function is given below:

A set of data is a requirement for the training process. Arbitrary rewards and states are created and need to be sent to
the RL agent. The prediction model is applied to predict the Qnew_NN

(
st , at

)
 by using the policy of Eq. (33) to choose the

optimal action for the environment. Moreover, the environment is in a closed loop with the new reward and state. The
set of training data might be given in Eq. (36).

where the Et is saved in an experience reply loop applied in the training step. One random sample Et is chosen for target
and prediction models with st and st+1 as inputs, respectively. The block diagram of the deep Q-network learning control
for SLRIP is shown in Fig. 5. Figure 6 shows the flow chart of the DQNL algorithm.

4 � Simulation results and discussion

4.1 � Proposed methods

In this work, the SLRIP is controlled by training and testing RL algorithms, see Fig. 7. Positions and velocities obtained from
1st and 2nd links are inputs of the RL model. Furthermore, the torque input to the system is the output of the RL model. The
control of the SLRIP system is based on two processes: the swing-up of and stabilization of the pendulum. The agents are
developed to compute the swing angle of the pendulum until it achieves the upright position. When the pendulum is near
the upright position (180° ± 10°) the proximal policy agent switches the stability action. A deep NN agent was implemented
for the control of the DQNL. The parameters of the DQNL agent are presented in Table 4. The DQNL agent with 1 input layer,

(35)Loss =
[
Qnew

(
st , at

)
− Qnew_NN

(
st , at

)]2

(36)Et =
(
st , at , rt+1, at+1

)

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

25 hidden layers, and 1 output layer is proposed for the swing-up control of the SLRIP. The RL environment is the Simscape
model of the SLRIP. The observation vector of RL is

[
θ1, θ2,

̇θ1,
̇θ2
]
 . The reward (r) signal of the RL is given in the equation below:

where T is the torque input:

(37)r = −θ2
2
− 0.2

(
θ1 − θ2

)2
− 0.15 ̇θ1 + T

(38)T =

{
35 ifθ2 ∈ (180◦,±10◦]andθ1 ± 180◦

0 otherwise

}

Fig. 5   Block diagram of the
Deep Q-network learning
control for SLRIP

Fig. 6   Flow chart of the DQNL
algorithm

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

Figure 7 shows the Simulink model of the DQNL control of the SLRIP. The training performance of the agent is shown
in Fig. 8.

The complexity of the DQNL algorithm is related to numerous parameters such as the dimensions of ANN, the number
of neurons, episodes, iterations, and even the size of the actions and states of the environment. The parameters of the
simulation and RL algorithms are described in Table 5.

As mentioned in Table 5, the agent’s inputs are the environment observations vector, reward signal from the environ-
ment, and Isdone, a flag to terminate episode simulation. The agent’s output is the action (control signal of the system).
The parameters of the RL algorithm are the sample rate is 4s, the discount factor is 0.99 and the learning rate is 0.005.

Fig. 7   Simulink model of the DQNL control of the SLRIP

Table 4   DQNL agent
parameters

Parameter Value

Environment SLRIP
Reward r = −θ2

2
− 0.2

(
θ1 − θ2

)2
− 0.15 ̇θ1 + T

T =

{
35 if θ2 ∈ (180◦,±10◦] and θ1 ± 180◦

0 otherwise

}

Action θ1 = ±180◦

Fig. 8   Training performance
of the agent of the SLRIP

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

The frequency at which the agent receives feedback from the environment is known as the sample rate, while the extent
to which the agent updates its internal model based on the newly received information is determined by the learning
rate. The MATLAB software is utilized to conduct the simulation experiment. 1000 episodes are chosen for the agent
to train the SLRIP model. The mean reward per episode is around 175. The training concluded once all agents reached
the stopping criteria for training. The simulation is carried out on a PC with the following configuration: CPU (11th Gen
Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 1.69 GHz) and RAM (16 GB). The QL algorithm demonstrates convergence after
a 12-h training process, whereas a mere 0.70 h suffice to train the DQNL algorithm, thereby reducing the training time
by a significant 94.16%.

The design of QL and DNQL controllers can pose several challenges in simulation, one of the main difficulties is finding
a balance between exploration and exploitation. The controller needs to explore the environment to find optimal policies.
The determination of an appropriate exploration strategy is an important task, as random exploration can be inefficient,
and systematic exploration can lead to sub-optimal performance. The QL and DNQL can struggle with problems that
have a large state or action space. As the number of possible states or actions increases, the computation and memory
requirements also increase exponentially. The training of QL and DNQL controllers is sensitive to hyperparameter set-
tings and initial conditions, and they struggle to converge to an optimal policy. The learning process can be unstable,
with the Q-values oscillating or diverging. Furthermore, ensuring the convergence and stability of the learning algorithm
requires careful consideration of learning rates, discount factors, and other parameters. In environments where rewards
are sparse or delayed, it can be challenging for Q-learning and DNQL agents to learn effective policies. Without frequent
rewards, it may take a considerable amount of time for the agent to learn desired behaviors or to explore the state space
adequately. Moreover, in environments where rewards are sparse or delayed, it can be challenging for QL and DNQL
agents to learn effective policies. Without frequent rewards, it may take a considerable amount of time for the agent to
learn desired behaviors or to explore the state space adequately.

4.2 � Results and discussion

The simulation results and discussion are presented in this section. The DQNL algorithm is established for the swing-up
control of the SLRIP. The agent should keep the 2nd link in the upright stability position by supplying the system with a
suitable torque input. DQNL algorithm should find the optimal input torque value that is needed to balance the pendu-
lum. Moreover, the DQNL algorithm could balance the pendulum and make it stable with high efficiency. Additionally,
the swing-up control of SLRIP using the DRL algorithms was tested with the conventional LQR and PID controllers to
validate its effectiveness. The simulation results shown in Figs. 9, 10, and 11 indicate that all controllers have succeeded
in controlling the SLRIP. The performance of controllers was studied based on the comparison of errors such as integral
time absolute error (ITAE), integral time square error (ITSE), integral absolute error (IAE), and integral square error (ISE)
and root mean square error (RMSE), which are given in Tables 6, 7, and 8.

Table 5   Parameters of the
simulation and RL algorithm

Parameters of the simulation and RL algorithms

Agent algorithm DQNL
Environment SLRIP
Number of the input layer 1
Number of hidden layers 25
Number of the output layer 1
Observation

[
θ1, θ2,

̇θ1,
̇θ2
]

Action τ1

Max episodes 1000
Max episode length 500
Time of the feedback controller 0.001
Simulation time 20 s
Sample rate 4 s
Learning rate 0.005
Discount factor 0.99

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

0 5 10 15 20 25 30
time (s)

-200

-100

0

100

200

de
gr
ee

(°
)

2 Swing up control with PID

Stabilization position

0 5 10 15 20 25 30
time (s)

-200

-100

0

100

200

de
gr
ee

(°
)

2 Swing up control with LQR

Stabilization position

0 5 10 15 20 25 30
time (s)

-200

-100

0

100

200

de
gr
ee

(°
)

2 Swing up control with QL

Stabilization position

0 5 10 15 20 25 30
time (s)

-200

-100

0

100

200

de
gr
ee

(°
)

2 Swing up control with DQNL

Stabilization position

Fig. 9   Angle position θ
2
 of the swing-up control of the pendulum link

0 5 10 15 20 25 30
time (s)

-100

-50

0

50

100

de
gr
ee

(°
)

1 Swing up control with PID

0 5 10 15 20 25 30
time (s)

-40

-20

0

20

40

60

de
gr
ee

(°
)

1 Swing up control with LQR

0 5 10 15 20 25 30
time (s)

-40

-20

0

20

40

60

de
gr
ee

(°
)

1 Swing up control with QL

0 5 10 15 20 25 30
time (s)

-100

-50

0

50

100

150

de
gr
ee

(°
)

1 Swing up control with DQNL

Fig. 10   Angle position θ
1
 of the swing-up control of the horizontal link

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

According to the results presented in Table 6, it can be inferred that the RMSE serves as a critical parameter for
evaluating the effectiveness of the controllers. The QL algorithm yields significantly more precise control outcomes,
demonstrating an improvement percentage of 47.74% and 20.71% in terms of RMSE relative to the PID and LQR control-
lers, respectively. Moreover, the DQNL algorithm yields significantly more precise control outcomes, demonstrating an
improvement percentage of 56.30% and 33.70% in terms of RMSE relative to the PID and LQR controllers, respectively.

0 5 10 15 20 25 30
time (s)

-15

-10

-5

0

5

10
N
*m

Torque of the swing up control with PID

0 5 10 15 20 25 30
time (s)

-10

-5

0

5

N
*m

Torque of the swing up control with LQR

0 5 10 15 20 25 30
time (s)

-10

-5

0

5

N
*m

Torque of the swing up control with QL

0 5 10 15 20 25 30
time (s)

-10

-5

0

5

N
*m

Torque of the swing up control with DQNL

Fig. 11   The input control signal of the swing-up controllers

Table 6   Comparison of θ
2
 for

swing-up controllers in terms
of IAE, ISE, ITAE, ITSE and RMSE

Errors Controllers

PID LQR QL DQNL

IAE 3.7184 × 10−3 1.6103 × 10−3 978.5668 683.1916

ISE 7.7546 × 10−5 3.3673 × 10−5 2.1160 × 10−5 1.4793 × 10−5

ITAE 1.6738 × 10−8 7.2489 × 10−7 4.4050 × 10−7 3.0754 × 10−7

ITSE 3.4907 × 10−10 1.5158 × 10−10 9.5254 × 10−9 6.6589 × 10−9

RMSE 160.76 105.95 84.0 70.24

Table 7   Comparison of θ
1
 for

swing-up controllers in terms
of IAE, ISE, ITAE, ITSE and RMSE

Errors Controllers

PID LQR QL DQNL

E 172.3459 72.4547 62.1360 11.9867
ISE 5.9986 × 10−3 2.1460 × 10−3 2.0577 × 10−3 108.5353

ITAE 7.7582 × 10−6 3.2615 × 10−6 2.7970 × 10−6 5.3958 × 10−5

ITSE 2.7003 × 10−8 9.6602 × 10−7 9.2628 × 10−7 4.8857 × 10−6

RMSE 14.13 8.45 8.28 1.901

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

IAE, ISE, ITAE, and ITSE have been computed as popular performance indexes. However, their performance is not the
same. Accordingly, an optimization algorithm can be incorporated into QL and DQNL algorithms to adjust the IAE, ISE,
ITAE, and ITSE for both RL controllers.

Based on the results presented in Table 7, it can be inferred that the RMSE serves as a critical parameter for evaluating
the effectiveness of the controllers. The QL algorithm yields significantly more precise control outcomes, demonstrating
an improvement percentage of 41.40% and 2.01% in terms of RMSE relative to the PID and LQR controllers, respectively.
Moreover, the DQNL algorithm yields significantly more precise control outcomes, demonstrating an improvement
percentage of 48.97% and 14.67% in terms of RMSE relative to the PID and LQR controllers, respectively. IAE, ISE, ITAE,
and ITSE have been computed as popular performance indexes. However, their performance is not the same. Accord-
ingly, an optimization algorithm can be incorporated into QL and DQNL algorithms to adjust the IAE, ISE, ITAE, and ITSE
for both RL controllers.

According to the results presented in Table 8, it can be inferred that the RMSE serves as a critical parameter for
evaluating the effectiveness of the controllers. The QL algorithm yields significantly more precise control outcomes,
demonstrating an improvement percentage of 39.72% and 5.77% in terms of RMSE relative to the PID and LQR control-
lers, respectively. Moreover, the DQNL algorithm yields significantly more precise control outcomes, demonstrating an
improvement percentage of 40.29% and 6.66% in terms of RMSE relative to the PID and LQR controllers, respectively. IAE,
ISE, ITAE, and ITSE have been computed as popular performance indexes. However, their performance is not the same.
Accordingly, an optimization algorithm can be incorporated into QL and DQNL algorithms to adjust the IAE, ISE, ITAE,
and ITSE for both RL controllers. Table 9 presents a summary of the improvement percentage in terms of RMSE between
RL and classical controllers.

In summary, The SLRIP is nonlinear and inherently unstable. It requires precise and adaptive control to maintain stabil-
ity and balance. Traditional control methods developed in this work (PID, LQR) might struggle to handle the complexities
and dynamic changes of the system. QL and DQNL are model-free techniques that do not require explicit knowledge
of the system dynamics. They can adaptively learn the control policy by interacting with the system and observing its
responses, making them suitable for handling nonlinearity and instability. Furthermore, SLRIP requires continuous control
actions, such as applying torque to the 1st arm to adjust the pendulum’s position. Both QL and DQNL are extended to
handle continuous control problems by using function approximation techniques. These techniques enable the agent to
learn a continuous control policy that can effectively balance the pendulum on top of the rotating base. In this work, the
developed QL and DQNL are relevant for controlling a SLRIP due to their ability to handle nonlinearities, instability, high-
dimensional state spaces, and continuous control actions. These algorithms provide an effective framework for training
an agent to learn an optimal control policy in such complex and dynamic systems. Based on the findings derived from
our analysis and considering the latest scholarly publications in the field, the results indicate great promise. It is essential
to establish a double deep Q-network learning algorithm in order to thoroughly compare its performance with other

Table 8   Comparison of
the input control signal for
swing-up controllers in terms
of IAE, ISE, ITAE, ITSE, and
RMSE

Errors Controllers

PID LQR QL DQNL

IAE 12.5831 5.9901 4.0818 3.7589
ISE 37.1928 15.1676 13.4198 13.1669
ITAE 5.6626 × 10−6 2.6956 × 10−6 1.8369 × 10−6 1.6916 × 10−6

ITSE 1.6737 × 10−7 6.8257 × 10−6 6.0391 × 10−6 5.9253 × 10−6

RMSE 1.11 0.71 0.669 0.6627

Table 9   Comparison of
swing-up controllers in terms
of the relative improvements’
percentages of RMSE

RMSE Controllers

PID versus QL (%) LQR versus QL (%) PID versus DQNL
(%)

LQR ver-
sus DQNL
(%)

Pendulum link 47.74 20.71 56.30 33.70
Horizontal link 41.40 2.01 48.97 14.67
Input control signal 39.72 5.77 40.29 6.66

Vol:.(1234567890)

Research	 Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y

classical controllers, such as the controller proposed by Y Dai et al. in their work [28]. Furthermore, it is crucial to conduct
tests with alternative RL agents like the soft actor-critic–proximal policy optimization (SAC–PPO) technique presented in
[29]. To ensure the reliability and accuracy of the RL algorithms, it is imperative to utilize real experimental setups, similar
to the one employed by D. Brown et al. [30]. Additionally, to further enhance the control outcomes achieved by the RL
controllers, it is recommend the development of an adaptive reinforcement learning strategy combined with sliding
mode control, as demonstrated in [15].

5 � Conclusion

In this paper, the RL algorithms for the swing-up and stabilization control of a SLRIP were developed in MATLAB simula-
tion. The control approach consists of the environment, which is the Simscape model of the SLRIP, and the agent is the
controller. QL and DQNL are both model-free control algorithms used without a profound background of understanding
of classical control theory. The QL and DQNL agents were developed for the swing-up and stabilization control action
of the SLRIP. 1000 episodes were required for the training of the agent. Furthermore, the learning algorithm is sensitive
to the selection of parameters such as learning rates or discount factors and these parameters may be effective in the
control of SLRIP. According to the obtained results, the QL control method returns more accurate results in terms of
improvement percentage from 39.72 to 47.74% and from 2.01 to 20.71% compared to the PID and LQR control methods;
respectively. Moreover, the DQNL control method returns more accurate results in terms of improvement percentage
from 40.29 to 56.30% and from 6.66 to 33.70% compared to the PID and LQR control methods; respectively. For future
works, RL controllers will be validated under a real experimental setup of a SLRIP. Moreover, the developed algorithm
will be used to control more complex environments such as double and triple-link rotary inverted pendulum systems to
prove the efficiency of the control algorithm.

Author contributions  Contribution of paper: RL control algorithms are developed for the swing-up and stabilization control of a single-link
rotary inverted pendulum (SLRIP) and compared with classic control methods. -The RL algorithms are used without a deep understanding of
the classical controllers. The outcome indicates the effectiveness of the QL and DQNL algorithms compared to the conventional controllers.
This work presents effective machine-learning approaches in the field of control engineering.

Funding  The publication of this work is supported by the University of Technology Bahrain (UTB) under Grant EX610610.

Data availability  The data of this study are available upon request from the corresponding author.

Declarations 

Competing interests  The author declares no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hazem ZB, Bingül Z. Comprehensive review of different pendulum structures in engineering applications. IEEE Access. 2023. https://​doi.​
org/​10.​1109/​ACCESS.​2023.​32695​80.

	 2.	 Kumar G, Kumar R, Kumar A. A review of the controllers for structural control. Arch Comput Methods Eng. 2023. https://​doi.​org/​10.​1007/​
s11831-​023-​09931-y.

	 3.	 Önen Ü. Model-free controller design for nonlinear underactuated systems with uncertainties and disturbances by using extended state
observer based chattering-free sliding mode control. IEEE Access. 2023;11:2875–85. https://​doi.​org/​10.​1109/​ACCESS.​2023.​32348​64.

	 4.	 Hou M, Zhang X, Chen D, Xu Z. Hierarchical sliding mode control combined with nonlinear disturbance observer for wheeled inverted
pendulum robot trajectory tracking. Appl Sci. 2023;13(7):4350. https://​doi.​org/​10.​3390/​app13​074350.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2023.3269580
https://doi.org/10.1109/ACCESS.2023.3269580
https://doi.org/10.1007/s11831-023-09931-y
https://doi.org/10.1007/s11831-023-09931-y
https://doi.org/10.1109/ACCESS.2023.3234864
https://doi.org/10.3390/app13074350

Vol.:(0123456789)

Discover Applied Sciences (2024) 6:49 | https://doi.org/10.1007/s42452-024-05690-y	 Research

	 5.	 Jingwen H, et al. Control of rotary inverted pendulum using model-free backstepping technique. IEEE Access. 2019;7:96965–73. https://​
doi.​org/​10.​1109/​ACCESS.​2019.​29302​20.

	 6.	 Saifizul AA, Zainon Z, Abu Osman NA, Azlan CA, Ibrahim UU. Intelligent control for self-erecting inverted pendulum via adaptive neuro-
fuzzy inference system. Am J Appl Sci. 2006;3(4):1795–802.

	 7.	 Saleem O, Abbas F, Iqbal J. Complex fractional-order LQIR for inverted-pendulum-type robotic mechanisms: design and experimental
validation. Mathematics. 2023;11(4):913. https://​doi.​org/​10.​3390/​math1​10409​13.

	 8.	 Alatabani LE, Ali ES, Saeed RA. Machine learning and deep learning approaches for robotics applications. In: Artificial intelligence for
robotics and autonomous systems applications. Cham: Springer; 2023. p. 303–33. https://​doi.​org/​10.​1007/​978-3-​031-​28715-2_​10.

	 9.	 Hazem ZB, Bingül Z. A comparative study of anti-swing radial basis neural-fuzzy LQR controller for multi-degree-of-freedom rotary pen-
dulum systems. Neural Comput Appl. 2023. https://​doi.​org/​10.​1007/​s00521-​023-​08599-6.

	10.	 Wai RJ, Chang LJ. Stabilizing and tracking control of nonlinear dual-axis inverted-pendulum system using fuzzy neural network. IEEE
Trans Fuzzy Syst. 2006;14(1):145–68. https://​doi.​org/​10.​1109/​TFUZZ.​2005.​859305.

	11.	 Singh B, Kumar R, Singh VP. Reinforcement learning in robotic applications: a comprehensive survey. Artif Intell Rev. 2022. https://​doi.​
org/​10.​1007/​s10462-​021-​09997-9.

	12.	 Kukker A, Sharma R. Neural reinforcement learning classifier for elbow, finger and hand movements. J Intell Fuzzy Syst. 2018;35(5):5111–21.
https://​doi.​org/​10.​3233/​JIFS-​169795.

	13.	 Israilov S, Fu L, Sánchez-Rodríguez J, Fusco F, Allibert G, Raufaste C, Argentina M. Reinforcement learning approach to control an inverted
pendulum: A general framework for educational purposes. PLoS ONE. 2023;18(2):e0280071. https://​doi.​org/​10.​1371/​journ​al.​pone.​02800​
71.

	14.	 Din AFU, Mir I, Gul F, Akhtar S. Development of reinforced learning based non-linear controller for unmanned aerial vehicle. J Amb Intell
Humaniz Comput. 2023;14(4):4005–22. https://​doi.​org/​10.​1007/​s12652-​022-​04467-8.

	15.	 Dao PN, Liu YC. Adaptive reinforcement learning strategy with sliding mode control for unknown and disturbed wheeled inverted pen-
dulum. Int J Control Autom Syst. 2021;19(2):1139–50. https://​doi.​org/​10.​1007/​s12555-​019-​0912-9.

	16.	 Zhang D, Wang X, Li X, Wang D. Inverted pendulum control of double q-learning reinforcement learning algorithm based on neural
network. Sci Bull Ser D Mech Eng. 2020;82(2):15–26.

	17.	 Baek J, Lee C, Lee YS, Jeon S, Han S. Reinforcement learning to achieve real-time control of triple inverted pendulum. Eng Appl Artif Intell.
2024;128: 107518. https://​doi.​org/​10.​1016/j.​engap​pai.​2023.​107518.

	18.	 Pal AK, Nestorović T. Swing up and balance of an inverted pendulum using reinforced learning approach coupled with a proportional-
integral-derivative controller. In: International conference on electrical, computer, communications and mechatronics engineering (ICEC-
CME), IEEE, pp. 1–6, 2022. https://​doi.​org/​10.​1109/​ICECC​ME559​09.​2022.​99885​06.

	19.	 Safeea M, Neto P. A Q-learning approach to the continuous control problem of robot inverted pendulum balancing. Intell Syst Appl. 2023.
https://​doi.​org/​10.​1016/j.​iswa.​2023.​200313.

	20.	 Lim HK, Kim JB, Kim CM, Hwang GY, Choi HB, Han YH. Federated reinforcement learning for controlling multiple rotary inverted pendulums
in edge computing environments. In: International conference on artificial intelligence in information and communication (ICAIIC), IEEE,
pp. 463–464, 2020. https://​doi.​org/​10.​1109/​ICAII​C48513.​2020.​90652​33

	21.	 Chen M, Lam HK, Shi Q, Xiao B. Reinforcement learning-based control of nonlinear systems using Lyapunov stability concept and fuzzy
reward scheme. IEEE Trans Circuits Syst II Express Briefs. 2019;67(10):2059–63. https://​doi.​org/​10.​1109/​TCSII.​2019.​29476​82.

	22.	 Bi Y, Chen X, Xiao C. A Deep reinforcement learning approach towards pendulum swing-up problem based on TF-Agents. arXiv preprint
arXiv:​2106.​09556, 2021.

	23.	 Manrique Escobar CA, Pappalardo CM, Guida D. A parametric study of a deep reinforcement learning control system applied to the
swing-up problem of the cart-pole. Appl Sci. 2020;10(24):9013. https://​doi.​org/​10.​3390/​app10​249013.

	24.	 Kukker A, Sharma R. Genetic algorithm-optimized fuzzy lyapunov reinforcement learning for nonlinear systems. Arab J Sci Eng.
2020;45(3):1629–38. https://​doi.​org/​10.​1007/​s13369-​019-​04126-9.

	25.	 Kukker A, Sharma R. Stochastic genetic algorithm-assisted fuzzy q-learning for robotic manipulators. Arab J Sci Eng. 2021;46(10):9527–39.
https://​doi.​org/​10.​1007/​s13369-​021-​05379-z.

	26.	 Xi A, Chen C. Walking control of a biped robot on static and rotating platforms based on hybrid reinforcement learning. IEEE Access.
2019;8:148411–24. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30155​06.

	27.	 Dang KN, Van LV. Development of deep reinforcement learning for inverted pendulum. Int J Electr Comput Eng. 2023;13(4):2088–8708.
https://​doi.​org/​10.​11591/​ijece.​v13i4.​pp3895-​3902.

	28.	 Dai Y, Lee K, Lee S. A real-time HIL control system on rotary inverted pendulum hardware platform based on double deep Q-network.
Measur Control. 2021;54(3–4):417–28. https://​doi.​org/​10.​1177/​00202​94021​10003​80.

	29.	 Bhourji RS, Mozaffari S, Alirezaee S. Reinforcement learning ddpg–ppo agent-based control system for rotary inverted pendulum. Arab
J Sci Eng. 2023. https://​doi.​org/​10.​1007/​s13369-​023-​07934-2.

	30.	 Brown D, Strube M. Design of a neural controller using reinforcement learning to control a rotational inverted pendulum. In: International
conference on research and education in mechatronics (REM), IEEE, pp. 1–5, 2020. https://​doi.​org/​10.​1109/​REM49​740.​2020.​93138​87.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2019.2930220
https://doi.org/10.1109/ACCESS.2019.2930220
https://doi.org/10.3390/math11040913
https://doi.org/10.1007/978-3-031-28715-2_10
https://doi.org/10.1007/s00521-023-08599-6
https://doi.org/10.1109/TFUZZ.2005.859305
https://doi.org/10.1007/s10462-021-09997-9
https://doi.org/10.1007/s10462-021-09997-9
https://doi.org/10.3233/JIFS-169795
https://doi.org/10.1371/journal.pone.0280071
https://doi.org/10.1371/journal.pone.0280071
https://doi.org/10.1007/s12652-022-04467-8
https://doi.org/10.1007/s12555-019-0912-9
https://doi.org/10.1016/j.engappai.2023.107518
https://doi.org/10.1109/ICECCME55909.2022.9988506
https://doi.org/10.1016/j.iswa.2023.200313
https://doi.org/10.1109/ICAIIC48513.2020.9065233
https://doi.org/10.1109/TCSII.2019.2947682
http://arxiv.org/abs/2106.09556
https://doi.org/10.3390/app10249013
https://doi.org/10.1007/s13369-019-04126-9
https://doi.org/10.1007/s13369-021-05379-z
https://doi.org/10.1109/ACCESS.2020.3015506
https://doi.org/10.11591/ijece.v13i4.pp3895-3902
https://doi.org/10.1177/00202940211000380
https://doi.org/10.1007/s13369-023-07934-2
https://doi.org/10.1109/REM49740.2020.9313887

	Study of Q-learning and deep Q-network learning control for a rotary inverted pendulum system
	Abstract
	Article highlights
	1 Introduction
	2 Dynamic modeling of the SLRIP
	3 Deep reinforcement learning control for SLRIP
	3.1 Q-learning
	3.2 Deep Q-network learning

	4 Simulation results and discussion
	4.1 Proposed methods
	4.2 Results and discussion

	5 Conclusion
	References

