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Abstract
The equilibrium solubility of carbon dioxide  (CO2) in the solvents is a key essential characteristic that has to be evalu-
ated for successful absorption-based  CO2 capture procedures. In this study, the  CO2 loading capacity of triethanolamine 
(TEA) aqueous solutions was estimated using three famous white-box algorithms namely gene expression programming 
(GEP), genetic programming (GP), and group method of data handling (GMDH). For achieving the aim of this study, 258 
data in a wide range of pressure, temperature, and amine concentration were collected from literature. Temperature, 
partial pressure of  CO2, and amine concentration were used as input parameters. The results demonstrated that GMDH 
correlation is more accurate than GEP and GP with a determination coefficient  (R2) of 0.9813 and root mean square error 
of 0.0222. The  R2 values of 0.9713 and 0.9664 for the GEP and GP, respectively, demonstrated that the GEP and GP also 
showed accurate predictions. In addition, GMDH approach accurately predicted the anticipated trends of the  CO2 loading 
in response to changes in the partial pressure of  CO2 and temperature. The Pearson and Spearman correlation analyses 
were also incorporated in this research which showed that temperature and  CO2 partial pressure have almost the same 
relative effect on  CO2 loading, while amine concentration has the lowest effect on it.

Keywords Triethanolamine (TEA) · Amine aqueous solution · GMDH · CO2 loading · CO2 Capture · CCUS · White-box 
algorithms

1 Introduction

The global energy consumption would significantly increase within the following decades. Figure 1 depicts the energy 
consumption from 2020 to 2050 indicating the surge of the indicator analyzed [1, 2].

The first group of main energy sources, that comprises renewable energy, nuclear energy, and fossil energy, all play an 
important part in providing the need for energy all over the globe. Petroleum, coal, and natural gas (NG) are also the three 
most significant types of fossil energy. According to various investigations, the primary fuel with the most rapid growth 
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through 2040 will be natural gas [3–5]. Figure 2 depicts the overall energy usage by type of fuel. Natural gas is widely 
recognized as the fossil fuel that has the highest levels of safety, cleanliness, and operational effectiveness [5, 6]. This is 
because the carbon dioxide  (CO2) emission of natural gas is about 41% less than that of other fossil fuels when burned [7].

CO2 is one of the resources which has been acknowledged as one of the key contributors to the phenomenon of global 
warming [8, 9]. Consequently, its removal and reuse from the streams and pollutants produced by industrial processes 
and the search for reliable and cost-effective absorbents have attracted considerable attention [10]. Absorbance in aque-
ous amine solutions is the method used substantially in industry for eliminating  CO2 from gases.  CO2 is absorbed by 
aqueous amine solutions via both physical and chemical absorption [11–13]. Figure 3 represents the process schematic 
of the amine-based  CO2 capture.

Triethanolamine (TEA), a tertiary amine, was recognized as one of the first amines utilized considering this purpose 
in industrial gas treatment procedures [14]. While it has been replaced by another type of amine solution such as 
methyldiethanolamine (MDEA) and monoethanolamine (MEA) [15], it is still prescribed for the elimination of acid 
gas. Recent developments have expanded the repertoire of solvents beyond amine-based solutions, ushering in new 
possibilities for carbon capture technologies. Notably, amine blends, as discussed in [16], have gained attention for 
their potential to enhance  CO2 absorption efficiency and reduce energy requirements. Ionic liquids explored com-
prehensively in literature [17], offer intriguing prospects due to their low volatility and tunable properties, which 
can be tailored to specific capture scenarios. The utilization of seawater as a solvent, as exemplified by [18], presents 
an eco-friendly and abundant alternative with unique challenges and advantages. These emerging solvent systems, 
along with others not mentioned here, constitute a dynamic frontier in  CO2 capture research. Hence, a wide variety 
of laboratory solubility data  (H2S and  CO2 in aqueous ethanolamine solutions) with a variety range of temperatures, 
pressures, solvent compositions, and acid gas loadings are now available. This data may be used to better under-
stand the interaction between  H2S and  CO2 [15, 19–22]. At higher power dissipation rates, aqueous TEA solutions can 
absorb  CO2 under equilibrium conditions in high shear jet absorbers. Both the absorption height and the required 
flow rate of the solution are decreased as a result of putting solution in a high shear jet absorber. This absorber will 
be especially effective for the removal of acid gases with low partial pressures, as well as using this in distant fields 
and offshore activities [23, 24].

Fig. 1  World energy demand 
prediction from 2020 to 2050

Fig. 2  World energy demand 
by sources
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The solubility of  CO2 in an aqueous alkanolamine solution and the equilibrium  CO2 loading were both calculated 
using a number of different models [25, 26]. The  CO2 solubility in TEA was investigated by Chung [27] using a modified 
version of the Kent-Eisenberg model, which represents one of the most precise methods that are currently available. 
In their research, a modified Kent–Eisenberg model successfully matched the experimental equilibrium loading 
(solubility)/partial pressure pairs at different temperatures and amine concentration levels. The average absolute 
relative deviation (AARD) for this model was 18.9%, and it included a maximum of 163 data sets. Fouad et al. [26] 
also compared experimental data of TEA at 50, 75, and 100 °C. Their findings indicated that the average absolute fit-
ting error ranges between 46.1% and 47.8%. For the purpose of offering an alternate solution method for modeling 
engineering processes and forecasting the variable of interest, a number of intelligent approaches have been used 
[13, 28–30]. Yarveicy et al. [31] designed the extra tree (ET) algorithm in order to anticipate the capacity for  CO2 
loading. The developed model could predict all the data of TEA (29 data points) with an  R2 of 0.993. The AdaBoost 
classification and regression trees (AdaBoost-CART) was used by Ghiasi et al. [32] to simulate the  CO2 loading for MEA, 
Diethanolamine (DEA), and TEA. Their investigation of  CO2 solubility in TEA included 63 data points with an AARD 
of 1.41%. In addition, the effects of reaction temperature,  CO2 partial pressure, and the concentration of amine on 
the  CO2 absorption performance of MEA, DEA, and TEA were investigated by using adaptive neuro-fuzzy inference 
system (ANFIS) by Ghiasi et al. [28]. Unexpectedly, it was discovered that the predominant experimental condition 
differed for different amins. In particular, the relative effect of inputs on the  CO2 loading was temperature >  CO2 partial 
pressure > concentration of amines for MEA and TEA, but for DEA, the relative effect was adjusted to  CO2 partial pres-
sure > reaction temperature > concentration of amines. This was the case because DEA reacts more slowly than MEA 
and TEA. This study provided useful implications on the variety of amine design, but it has the potential to produce 
error as a result of insufficient amount of experimental data.

To the best of the authors’ knowledge, there are no published white-box correlations for  CO2 loading capacity in 
amine-based solutions. Our present study focuses on TEA-based systems and development of interpretable models 
using advanced white-box approaches, it is paramount to recognize and appreciate the growing diversity of solvent 
options, each contributing to the overarching goal of mitigating  CO2 emissions. Hence, the purpose of this work 
is to assess the capacity of robust correlations to predict the equilibrium absorption of  CO2 in TEA aqueous solu-
tions. To this aim, experimental data of equilibrium absorption of  CO2 in TEA aqueous solutions are gathered from 
the published literatures [19, 27, 33]. To this end, temperature,  CO2 partial pressure, and amine concentration were 
regarded as input variables and  CO2 loading was the output. Three famous robust correlative algorithms, namely 
genetic programming (GP), gene expression programming (GEP), and group method of data handling (GMDH) are 
used to estimate  CO2 loading in an aqueous system containing TEA. In the following section, we will present the 
summary of our collected databank and the pre-processing of the dataset used. Furthermore, Sect. 3 provides a 
detailed explanation of the development of intelligent white-box algorithms. In Sect. 4, we represent various error 
analyses to evaluate the models’ performance, statistically. Besides, Sect. 5 provides the equations for predicting  CO2 
loading using GP, GEP, and GMDH techniques, and also gives a comprehensive graphical and statistical assessment 
of these models.

Fig. 3  The process of amine-
based  CO2 capture
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2  Data gathering and preparation

In order to construct comprehensive correlations, a large database was assembled from literature sources. Experi-
mental values for  CO2 absorption in TEA aqueous solutions were gathered from [19, 27, 33]. Table 1 gives specific 
precise information on the  CO2 partial pressure, temperature, amine concentration, and  CO2 loading capacity of 
TEA aqueous systems. The table illustrates the ranges of inputs/output and statistical parameters that were used 
throughout this investigation.

Figure 4 presents the distribution of all parameters in the form of box plots. The forecast distribution is symmetrical 
when it follows a predictable pattern, sometimes represented as a bell curve. The skewness value is positive when the 
probability function’s left side contains the vast majority of the data, and vice versa. In contrast, kurtosis describes the 
shape of the distribution in relation to the Gaussian distribution. A positive kurtosis, for instance, demonstrates that 

Table 1  Statistical description 
of the dataset used in this 
study

Parameters T (K) CO2 partial pressure 
(kPa)

Amine concentration 
(mol/L)

CO2 loading (mol 
 CO2/mol amine)

Skewness − 0.765 1.299 1.253 0.257
Kurtosis 0.614 2.027 − 1.328 − 0.856
Mean 316.3 36.45 2.6 0.32
Std 16.45 28.34 0.4 0.163
Min 298 1.43 2 0.034
Max 353.2 153.4 3 0.711

Fig. 4  Box Plot for all parameters in this study
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the statistical model has a larger peak than the usual range does [34]. Table 1 and Fig. 4 declare that the distribution 
and fluctuation range of the input variables are sufficiently broad to support the development of a general model 
for the precise prediction of  CO2 loading.

Figure 5 illustrates the input data part plot. Temperature has the greatest influence on the  CO2 loading. It must be 
mentioned that the connection is negative, which suggests that as temperature rises,  CO2 loading decreases and vice 
versa. Another important parameter worth analyzing is pressure. In this case, the relationship is positive.

3  Model development

For achieving the aim of the study, three robust correlation algorithms were developed for estimation of  CO2 loading. 
The flowchart in Fig. 6 shows the steps of the developed models. Three robust correlations namely genetic program-
ming (GP), gene expression programming (GEP), and group method of data handling (GMDH) were considered in this 
research. The main goal of this study is to develop a strong correlation considering a white-box algorithm, and the 
equation developed with this algorithm can be easily used without special software or technical programs, thus, the 
application of this study is high.

Fig. 5  Correlation matrix of input data in this study
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3.1  Genetic programming

Genetic programming (GP) which was proposed by John Koza in 1994 [35], is a famous robust mathematical paradigm 
for modeling and optimizing tasks [36, 37]. GP has been generated on the basis of genetic algorithm for the aim of 
generating precise networks and correlations. GP is capable of recognizing and combining beneficial program sub-
expressions to produce a comprehensive network that maximizes the adaptation between inputs and target values 
[38]. This white-box technique solves problems in extensive ranges of engineering fields, automatically [39]. Besides, 
it is a machine learning (ML) methodology developing evolutionary computational programs to accomplish issues 
for solving problems. Due to GP’s flexibility, this algorithm can regenerate a mathematical correlation for estimation 
of various variables in different industries [40, 41]. The notable benefit of the GP method in comparison to other soft 
computing approaches, is that the GP paradigm prepares white-box techniques which are interpretable by scientists 
and engineers, readily [42].

In GP structure, to generate chromosome to be operated on a dataset, an initial population of haphazard func-
tions is created [43]. Next, the network’s framework is generated simultaneously with tuning the parameters during 
computation processes. These chromosomes make the next population which takes over for the following generation. 
These iterations are repeated until a stopping criterion is satisfied [44]. A schematic flowchart of the GP algorithm 
is shown in Fig. 7.

3.2  Gene expression programming

Gene Expression Programming (GEP) which was proposed by Ferreira in 2001 [45], has appeared as an enhanced 
artificial intelligence based symbolic regression framework [45, 46]. GEP removes some of the Genetic algorithm and 

Fig. 6  Flowchart of the devel-
oped correlations in this study



Vol.:(0123456789)

Discover Applied Sciences            (2024) 6:40  | https://doi.org/10.1007/s42452-024-05674-y Research

GP technique’s restrictions in its procedure, mathematically [47]. This paradigm is a well-known evolutionary algo-
rithm for generation of computer programs, automatically. The two principal parameters in GEP are the expression 
trees (ETs) and chromosomes. On the other hand, GEP involves linear chromosomes with an established length and 
expressive parse trees with different shapes and sizes [48].

This fact that no specific functional representation should be detected to find out the optimum estimation for the 
real measurements, is one of the most noteworthy advantages of the GEP method [49]. In each common GEP, each 
computer program is encoded by fixed-length gene expression string, usually that is developed through nature-
inspired operators like crossover and mutation [50]. Due to the simple rules that detect the platform of the ETs and 
their interactions, it is possible to conclude the phenotypes given the sequence of the genes, immediately [51]. 
Each GEP framework has various genes that are created of a head that consists of a terminal and a function. A simple 
flowchart of the GEP model is presented in Fig. 8. As demonstrated in this figure, steps (b) to (g) will be iterated until 
a stopping requirement is reached.

3.3  Group method of data handling

The first version of Group Method of Data Handling or GMDH algorithm was introduced by Ivakhnenko in the 1960s 
[52]. GMDH tries to solve different problems, mathematically using a set of spectrums of polynomial procedures. This 
data-driven algorithm can overcome the complexity and non-linearity of the networks as it permits producing precise 
and explicit correlations between inputs and output variables [53]. GMDH also known as polynomial neural network 
(PNN) consists of a group of inductive paradigms and can be used in various fields such as optimization, data mining, 
pattern recognition, modeling, and prediction [54]. By applying this heuristic technique, a system can be presented as a 
group of neurons in which different neuron couples in every layer are linked through a quadratic polynomial, and thus 
generate new neurons in the next layer [55]. These layers and relevant neurons provide the linking of input variables to 
the desired output. Figure 9 depicts a schematic flowchart of the GMDH paradigm, and Fig. 10 shows the scheme of the 
GMDH applied in this paper. Possessing a self-organizing nature and smooth accessibility for the users are two remark-
able benefits of the GMDH method [56]. The output value concluded by the primary GMDH method is calculated as [57]:

Fig. 7  Flowchart of the GP 
technique
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Fig. 8  Flowchart of the GEP 
algorithm

Fig. 9  Flowchart of the GMDH technique



Vol.:(0123456789)

Discover Applied Sciences            (2024) 6:40  | https://doi.org/10.1007/s42452-024-05674-y Research

where, xi,j,k,… show the input vectors, a0,i,j,k,… are the polynomial coefficients, and N denotes the number of input vari-
ables. Therefore, the quadratic polynomial functions are performed for mixing the neurons in the previous layer in order 
to generate new variables using the following equation:

Eventually, the best combination of the two independent variables is recognized according to Eq. 3.

In the above formula, Nt stands for the number of training data. Hence, the subsequent independent variable will 
be saved if the prementioned stopping condition is reached [58].

4  Evaluation of models

Using multiple statistical indicators, the precision of the suggested models was evaluated. These are the descriptions 
of the measures listed [59]:

Root mean square error (RMSE):

Standard deviation (SD):
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Fig. 10  Flowchart of the 
developed GMDH in this study
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Mean absolute percentage error (MAPE%):

Mean absolute value (MAE):
This prognosis is equivalent to the value that was anticipated for the absolute error loss or the l1-norm loss, both of 

which serve as measures of risk. If ỹi is the predicted value of the i-th sample, and yi is the actual value, then the follow-
ing formula may be used to determine the mean absolute error (MAE) over n "samples."

Mean Bias Error (MBE):

The Coefficient of determination  (R2):

where ỹi is the predicted value of the i-th sample, yi is the actual value, and yi is the mean of experimental data.
Moreover, graphical analysis was used to validate the models’ correctness.

5  Results and discussion

5.1  Development of the correlations

In this study, three robust correlations of GP, GEP, GMDH were developed for prediction of  CO2 loading in TEA aqueous 
solutions. The modeling details, namely hyperparameters for proposed models, are depicted in Table 2. One of the primary 
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(9)R2 = 1 −
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�2
∑T
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�
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�2

Table 2  Optimal features for 
implemented models

Model Hyperparameter Value

GMDH K-fold validation 5
Neuron input 2
Max number of Layer 12
Initial layer width 4

GP The population size (P) 3000
The number of generations 50
The set of function symbol +, −, *, /, sin, cos, exp, ln
The mutation factor Rand(0,1)
The crossover factor Rand(0,1)

GEP The population size (P) 5000
The number of generations 150
The set of function symbol +, −, *, /, sin, cos, exp, ln
The mutation factor Rand(0,1)
The crossover factor Rand(0,1)
The crossover rate 0.3
The number of iterations 1000
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advantages of these white-box approaches utilized is that it is rather possible and simple to review and apply their anticipa-
tion power employing the comprehensible equations. That is why, this study is dedicated to the presentation of the devel-
oped formulas allowing to estimate  CO2 loading with three input parameters including  CO2 partial pressure (kPa), amine 
concentration ( mol

L
 ), and temperature (K).

For GP algorithm, the following correlation was developed:

For GEP algorithm, the following correlation was developed:

For GMDH algorithm, the following correlation was developed:

(10)

GP

CO2 loading

�
molCO2
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a0 = 0.097705
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c0 = −0.051245

c1 = −1.4244

c2 = 2.2228

c3 = 4.6629

c4 = 0.51884

c5 = 3.2356

c6 = −0.52106

c7 = 1.4637
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where C is amine concentration mol/L, P is  CO2 partial pressure kPa, and T is temperature (K).

5.2  Statistical evaluation of the models

From Table 3, it is observed that all the models utilized are of high reliability. RMSE values are all between 0.02 and 0.036 
which is an extremely low indicators, and SD represents that predictions of all datasets are close to their corresponding 
experimental values, as all of the SD values are below 0.12. Moreover,  R2 is equal to or more than 0.94 in all models, and 
MAPE% values are not more than 9.1%. In addition, MBE and MAE in all cases are far less than even 0.1. Concerning all 
said above, GEP, GP, and GMDH are very strong and robust techniques for the forecasting of  CO2 loading in TEA aqueous 
solutions.

It should be mentioned that despite the effectiveness of all the algorithms applied, GMDH is the most precise and 
credible one. It has the highest  R2 values and lowest RMSE, SD, MAPE, and MAE figures for “Train”, “Test” and “All” groups.

5.3  Graphical evaluation of the models

The most evident representation of all algorithms’ performance is the visual materials. In this paper, five diverse types 
of graphs were utilized including cross plots, data index graphs, residual error plots, error distribution, and cumulative 
frequency graphs.

Cross plot is the method to compare both real and anticipated data. As it is seen in Fig. 11, GEP is the most unprecise 
algorithm among the three developed having the greatest number of substantial outliers. Speaking about GP, errors are 
quite a few, and data points are generally located within the ± 10% error line, however, observations are slightly remote 
from 0% error line which reduces the efficiency of the approach. GMDH, on the other hand, has the “thinnest” line of 
observations located right at 0% line.

Data Index plot is another great way to visualize how good a correlation is in making predictions. This graph depicts 
the comparison between what each data point really is and what the robust correlation predicted it to be. From Fig. 12, 
it is understood that all models utilized cope with the forecast problem really well. The visual imprecision is rather small 
for GP, GEP, and GMDH.

Residual error plot depicts the difference between experimental and anticipated estimates as a function of experimen-
tal  CO2 loading data. As evident from Fig. 13, GMDH has the lowest spread range between − 0.07 and 0.14. Nevertheless, 
the majority of the points lie within − 0.05 and 0.05 intervals. That makes the GMDH the approach with the smallest 
number of outliers. GP and GEP are practically similar in this case having the scope of around − 0.07 and 0.16.

(12)

GMDH ∶

CO2loading

(
molCO2

molamine

)
= − 1.15938 + C × 0.95809 − C × N1 × 0.175229 − C2

× 0.189917 + N1 × 1.36004 + N2
1
× 0.143343

N1 = 0.0182987 + N2 × 0.617315 + N2 × N3 × 2.06751−N2
2
× 0.542134 + N3 × 0.257519−N2

3
∗ 1.31129

N2 = 346.54 − ln (T )∗120.329 − ln (T )*ln(P) × 0.851806 + (ln (T ))
2
× 10.4474 + ln(P × 4.88665 + (ln(P)

2
× 0.0244435

N3 = − 7.38024 − ln(P × 0.199505 + ln(P × C × 0.0662905 + (ln (P)2 × 0.023719 + C × 6.41163 − (C))2 × 1.32279

Table 3  Statistical assessment 
of the developed white-box 
correlations

Algorithms Dataset RMSE SD R2 MAPE% MBE MAE

GEP Test 0.03540 0.11643 0.94802 8.29930 0.00191 0.02379
Train 0.02512 0.11587 0.97659 7.35200 − 0.00064 0.01738
All 0.02750 0.11617 0.97138 7.54290 − 0.00013 0.01867

GP Test 0.03274 0.11838 0.95555 9.05040 − 0.00142 0.02383
Train 0.02903 0.11950 0.96873 8.53590 − 0.00399 0.02109
All 0.02982 0.11943 0.96637 8.63960 − 0.00347 0.02164

GMDH Test 0.02770 0.09465 0.96818 5.91090 − 0.00274 0.01648
Train 0.02062 0.10154 0.98422 5.72520 0.00134 0.01335
All 0.02223 0.10020 0.98130 5.76260 0.00052 0.01398
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Figure 14 shows the error distribution for testing and training data. Error distribution is a kind of the visual representa-
tion which shows the spread of residual error along x-axis. In Fig. 14, GEP and GP are almost identical having the major 
data portion lying at the center and the spread range from − 0.2 and 0.6. On the other hand, the GMDH situation is dif-
ferent as it has the interval of roughly − 0.35 and 0.35. The spread is slightly lower compared to the first two algorithms, 

Fig. 11  Cross plots of the developed models
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and the tails are much more centered when GP and GEP have disproportional data allocation which directly influences 
their accuracy.

Figure 15 is the cumulative frequency which shows absolute relative error versus data frequency. In accordance with 
it, GMDH is the most accurate one and can predict 80% of the data with less than 0.015 absolute residual error. The cor-
responding values for GEP and GP robust correlations were 0.03 and 0.06.

Fig. 12  Comparison of experi-
mental and predicted values 
by data index
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5.4  Trend analysis

As shown, the GMDH algorithm can estimate  CO2 loading based on temperature,  CO2 partial pressure (kPa), and amine 
content (mol/L). It needs to be noted that the samples used in this research were acquired from validated experi-
mental findings. As seen in Figs. 16 and 17, the GMDH model well predicts the experimental trend of the different 
temperatures. Figure 16 shows the expected and experimental outcomes for the samples at 298 K and C = 2.83 mol/L.

The anticipated and experimental outcomes of  CO2 loading are also shown in Fig. 17. The created GMDH model could 
precisely forecast the behavior of samples at 353.2 K and C = 2 mol/L.

5.5  Sensitivity analysis

The relevancy coefficient (r) (also known as the Pearson coefficient) and the output of the GMDH model are con-
sidered to estimate the relative importance of the input coefficients for  CO2 loading. This formula is also known as 
the Pearson correlation coefficient. The r value for each input parameter is calculated using the following procedure 
[60].

(13)r(inp, x) =

∑n

j=1
(inpi,j − inpm,i)(xj − xm)

�∑n

j=1

�
inpi,j − inpm,i

�2 ∑n

j=1

�
xj − xm

�2�0.5

Fig. 13  Residual error plots for the developed models
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where npi,j , inpm,i represent the jth and average values of the ith input value and inpi,j are T(K),  CO2 partial pressure (kPa), 
and amine concentration. xm represents the average of the predicted  CO2 loading and xj is the jth value of the predicted 
 CO2 loading. The input parameters for the sensitivity analysis are shown in Fig. 18 and are temperature (in Kelvin),  CO2 
partial pressure (in kPa), and amine concentration (in moles per liter). The data visualization suggests that temperature 
is the most important factor in determining  CO2 loading. Then,  CO2 partial pressure and amine concentration are impor-
tant, respectively.

Fig. 14  Error distribution of predicted value for all developed algorithms

Fig. 15  Cumulative frequency 
for all developed models
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The nonparametric equivalent of the Pearson correlation coefficient, the Spearman correlation measures the 
strength of the relationship between two variables based on their rankings. One of the following formulae may be 
used to get the Spearman correlation coefficient according to whether there are ties in the sorting (the same rank 
being given to two or more observations) or not.

In the absence of ties, the following formula will work:

where the difference between two rankings is called di. The total number of observations is n.
The whole Spearman correlation formula, which is a slightly modified version of Pearson’s r, must be employed 

to handle tied ranks.

(14)� = 1 −
6
∑

d2
i

n(n2 − 1)

Fig. 16  Trend analysis of the 
developed model, relation-
ship between  CO2 loading 
versus partial pressure at 
T = 298 K and C = 2.83 mol/L
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Fig. 17  Trend analysis of the 
developed model, relation-
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Fig. 18  Sensitivity analysis 
using the GMDH model
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where, x and y variables’ rankings are R(x) and R(y), respectively. The mean rankings are 
−

R(x) and 
−

R(y) . Figure 19 shows 
Spearman correlation analysis. As can be seen in this figure, temperature has the highest negative impact, while  CO2 
partial pressure has the highest positive effect on  CO2 loading.

The main difference between the Pearson and Spearman coefficients that is the Pearson coefficient works only with 
a linear relationship between variables, while the Spearman coefficient works with non-linear relationship. It should 
be also mentioned that Spearman works with rank-ordered variables, while Pearson works with raw data values. The 
Spearman coefficient is higher than Pearson which means that the data used in this study have correlation which is 
monotonic but not linear. Pearson coefficient has a lower coefficient for all parameters as pressure and temperature may 
have a nonlinear relationship with  CO2 loading. Overall, it could be concluded that temperature and  CO2 partial pressure 
have almost the same absolute relative effect on  CO2 loading.

6  Conclusions

In this study, three advanced white-box algorithms were developed for correlating  CO2 loading capacity of trietha-
nolamine (TEA) aqueous solutions using GMDH, GP, and GEP approaches. Temperature of the system, partial pres-
sure of  CO2, and amine concentration in the aqueous phase were considered as input parameters. Sensitive analysis 
(Pearson and Spearman) was used to investigate the impact of input parameters on target value  (CO2 loading). The 
following main conclusions are found in this research:

• According to statistical and graphical analyses, the GMDH robust correlation showed the highest accuracy com-
pared with GEP and GP. The statistical parameters of  R2, RMSE, and MAPE are obtained 0.9813, 0.0222, and 5.76% 
for GMDH; 0.9713, 0.0275, and 7.54% for GEP and 0.9664, 0.0298, and 8.63% for GP. It can be concluded that the 
accuracy order of the model for  CO2 loading prediction in TEA is GMDH > GEP > GP.

• The trend analysis of  CO2 loading versus  CO2 partial pressure at constant temperature was investigated. The trend 
analysis findings demonstrated that the developed GMDH correlation successfully predicted the variation of  CO2 
loading with pressure. In order to provide precise predictions, the suggested GMDH model may be used instead 
of complicated thermodynamic models.

• In addition, two approaches of sensitivity analysis (Spearman coefficient and Pearson coefficient) were used to examine 
the effect of input parameters on  CO2 loading. The Pearson coefficient showed that temperature is the most important 
factor in determining the  CO2 loading, whereas  CO2 partial pressure and amine concentration play smaller roles. The 
Spearman coefficient has different and higher coefficient than Pearson which shows that the dataset has a nonlinear 
relationship between variables. This coefficient showed that the pressure and temperature have almost the same 
impact on  CO2 loading. Overall, it could be concluded that temperature and  CO2 partial pressure have almost the 
same absolute relative effect on  CO2 loading, while amine concentration has the lowest effect on it.
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Fig. 19  Spearman analysis 
using the GMDH model
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