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Abstract
Dyes pollution is a serious environmental problem and heterogeneous catalysis has been proposed as a remediation 
method. In this study, a set of catalysts of synthetic mordenite with iron oxides was synthesized by a simple chemical 
co-precipitation method assisted by subsequent thermal treatment with an oxidation process. Physicochemical char-
acterization of prepared materials was performed by a variety of techniques, including XRD, SEM, EDS, SBET, UV–Vis DR, 
and XPS. Photocatalytic methylene blue (MB) degradation by the synthesized catalyst was evaluated with visible light 
excitation. From the studied set of catalysts, the sample prepared with a thermal treatment at 100 °C in air atmosphere 
for 3 h was capable of degrading ~ 90% of MB after 120 min with visible light of λ = 420 nm exposition and a small portion 
of  H2O2 added. The catalyst used three processes to degrade MB: (1) adsorption of organic residues in the mordenite 
matrix support for electrostatic interactions, (2) photocatalysis heterogeneous reaction with visible light and (3) Fenton 
reaction catalyst with a small portion to  H2O2 by  Fe3O4–Fe2O3 presence. The catalytic efficiency to dye degradation was 
improved by a simple and economical thermal treatment without changing reaction conditions like pH, temperature, 
dose, or other. Studied mordenite iron oxide catalysts can be retrieved and reused at least five times without noticeable 
degradation, taking advantage of their magnetic properties. These catalysts could be proposed an economical, simple, 
and non-toxic alternative for eliminating organic dye pollution using visible light or solar irradiation in wastewater 
remediation related to textile, food, and pharmaceutical industries.

Highlights

• The  Fe3O4–Fe2O3 supported on mordenite catalyst was 
synthesized for the first time by a simple and cost-effec-
tive chemical method.

• Elimination of methylene blue using the catalyst syn-
thesized was accomplished with visible light excitation.

• Reuse of the catalyst for the photodegradation process 
of dyes from aqueous solution was achieved by mag-
netic retrieval.

• It was possible to improve the photocatalytic efficiency 
by facile and economical thermal treatments without 
changing the pH, temperature, dose, or other conditions.
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1 Introduction

Nowadays, environmental problems due to water pollu-
tion have recently drawn much attention from researchers. 
One of the main pollution sources comes from wastewa-
ter containing dyes discharged from textiles, foodstuffs, 
and leather industries [1]. The presence of colored organic 
compounds in dye-bearing effluents generally reduces 
sunlight transmission, affecting photosynthesis and harm-
ing aquatic ecosystems [2–5]. Besides, dyes are complex 
structures with high molecular weight, which are soluble 
in water, degradation-resistant, potentially carcinogenic, 
and mutagenic. Thus, the development of easy, cheap, and 
green methods for water pollution treatment has been a 
priority area in the field of environmental sciences [6, 7].

Methylene blue (MB) is an aromatic heterocyclic basic 
dye. MB is a well-known cationic and primary thiazine 
dye, having λmax of 664 nm absorbance. It is highly water-
soluble and very stable at room temperature. It is a per-
sistent pollution that has many potential applications in 
the textile, pharmaceutical, paper, dyeing, printing, paint, 
medicine, and food industries [8]. It is the most common 
dye in the textile industry. Advanced oxidation processes 
(AOPs) were developed to treat toxic organic pollutants, 
such as MB, through strong redox processes with spe-
cific radicals generated in this process without generat-
ing any additional harmful substances. AOPs approaches 
employed for the photodegradation of MB are ozonation, 
ultraviolet/H2O2 oxidation, electrochemical oxidation/
degradation, catalytic oxidation, Fenton reaction, photo-
catalytic degradation, etc. It is desirable to have more than 
one mechanism that eliminates the presence of methylene 
blue. Besides, efficiency of the heterogeneous photocata-
lyst process depends on variables such as irradiation time, 
light source, dye concentration, pH, oxidant compounds 
and radical scavengers [9, 10].

Photocatalysis has emerged as a promising technology 
way to solve pollution problems. Using photocatalytic pro-
cesses to remove dyes from such effluents might result in 
decolorization and complete degradation [11]. Semicon-
ductors, due to large band gap and properties, have been 
used as photocatalytic material with UV/Visible light and, 
potentially, the practical application of natural solar light 
[12]. For example, in 2021 Al-Jemeli et al. reported degra-
dation of anti-inflammatory drugs by solar photocatalysis 
process [13]. Recently, several authors reported photoca-
talysis as a possible remediation method for the elimina-
tion of organic pollution in water and studied different 
semiconductor hybrid materials for this application, for 
example in 2023 Bassim et al. reported a green synthesis 
of CuO/TiO2 nanoparticles were obtained using a natural 
extract for degrading methylene blue with photocatalysis 

under ultraviolet light irradiation [14]. In 2023, Xin et al. 
reported synthesis of nanoflowers of Bi/BiOBr applied 
for NO removal by photocatalysis using visible light irra-
diation [15]. In 2023, Dawi et al. reported the synthesis of 
 NiTiO3 by hydrothermal method for eliminating  CO2 by 
photocatalytic reduction to  CH4 and water splitting [16]. 
However, most authors have used materials based on 
titanium oxide requiring excitation with ultraviolet light, 
and the difficulty for retrieving the catalyst. Besides, iron 
oxides are considered favorable semiconductors for pho-
tocatalytic reactions due to their band gap of ~ 2.3 eV and 
good absorbers of visible light with the possibility to take 
advantage of solar light, they possess excellent stability, 
can be recyclable, and are highly available [17]. Iron oxides 
absorb visible light and generate reactive charge carriers, 
which can promote chemical reactions by activating the 
adjacent chemical compounds [18–22]. Iron oxides, as 
reported by several authors [23–26], are used as catalysts 
of dye waste degradation through photocatalysis hetero-
geneous reactions or applying the fenton reaction with 
hydrogen peroxide and iron cationic species  (Fe3+ and 
 Fe2+). Furthermore, since iron oxide compounds can be 
manipulated by a magnetic field, catalysts based on iron 
oxides can be retrieved and reutilized.

The performance of catalysts can be improved by 
loading on porous, large surface area supports, such as 
alumina, porous carbon, zeolites, or graphene oxide [27]. 
Zeolites are crystalline hydrated aluminosilicates com-
posed of Si  (Si4+) tetrahedral structures binding with four 
oxygen atoms, where a fraction of Si atoms can be substi-
tuted for Al atoms  (Al3+), forming ionic exchange sites from 
compensation charges. Si/Al atomic ratio is an important 
property in zeolites. Normally, lower values are indicative 
of natural zeolites with major ion exchange capacity and, 
higher values, for synthetic zeolites with good adsorption 
properties to organic substances. They possess ordered 
structures containing one-, two-, or three-dimensional 
cavities and channels with sizes up to 2 nm, through which 
a large number of molecules can pass [28–30]. The union 
and combination of Si, O, and Al atoms form many types 
of Zeolite structures. An important zeolite is mordenite, 
with good properties as catalytic support. Mordenite 
belongs to the pentasil family, which has five membered 
rings as secondary building units. The mordenite structure 
is composed of connected 5-membered rings forming a 
composite building unit “mor” [31]. There are only a few 
articles related to the photocatalysis of wastewater using 
mordenite-type Zeolite. Mordenite has high thermal and 
acid stability and has been used as a catalyst for different 
reactions. Mordenite has also been used in the adsorp-
tive separation of gas or liquid mixtures and for applica-
tions in semiconductors, chemical sensors, and nonlinear 
optics [32]. Semiconductors supported in zeolites forming 
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hybrid materials could be more efficient for photocatalysis 
applications, as has been reported recently by authors for 
different catalytic chemical reactions, like dye pollution 
degradation. For example, few authors have used hybrid 
semiconductor materials supported in zeolites. In 2018, 
Jorfi et al. evaluated the capability of sono-photocatalytic 
process for real wastewater over MgO supported by zeo-
lite, with 76% efficiency after 4 h [33]. In 2018, Rahmani-
Aliabadi et al. informed the synthesis of FeS and  Fe2S3 
supported onto clinoptilolite nanoparticles via sulfidiz-
ing and photocatalytic properties for ciprofloxacin deg-
radation with visible light [34]. In 2020, Padervand et al. 
reported a photocatalyst based on cerium supported in 
zeolite used for degrading acetamiprid insecticide with 
ultraviolet excitation. It was synthesized by coprecipitation 
method and obtained 82% efficiency of degradation after 
180 min under ultraviolet irradiation [35]. In 2022, Torkian 
et al. reported the synthesis and photocatalytic properties 
for amoxicillin degradation of silver ion-exchanged natural 
zeolite/TiO2 photocatalyst nanocomposite with 35% effi-
ciency after 75 min [36]. Also in 2022, Liu et al. reported 
 MoS2 with zeolite photocatalysts synthesized by combin-
ing ultrasonic and hydrothermal methods and it was used 
for degrading tetracycline with 87% efficiency [37]. How-
ever, to our best knowledge, there is no report using iron 
oxides/mordenite as an alternative to the common  TiO2 
catalyst, applying visible light excitation and taking advan-
tage of magnetic retrieval for reusability of the catalyst.

In this paper, we report the methylene blue photo-
degradation capabilities under visible light of a catalyst 
based on  Fe3O4–Fe2O3 particles supported on synthetic 
mordenite (Si/Al = 20), which was synthesized by a facile 
co-precipitation method. Besides, photocatalytic efficiency 
was improved by a simple and economical thermal treat-
ment without changing pH, temperature, dose or other 
conditions. This catalyst seems promising for dye waste-
water treatment remediation with solar radiation, applied 
to textile, food, and pharmaceutical industries.

2  Materials

The following reagent grade materials were acquired 
and utilized without modification. Na(AlO2)(SiO2)x·yH2O 
(Mordenite Si/Al ratio = 20, Zeolyst International, USA); 
Iron (II) chloride tetrahydrate  (FeCl2·4H2O 98%, Sigma-
Aldrich, USA); Iron (III) chloride hexahydrate  (FeCl3·4H2O 
97%, Sigma-Aldrich, USA); Sodium hydroxide (NaOH 
97% Sigma-Aldrich, USA); and Methylene Blue hydrate 
 (C16H18ClN3S·xH2O > 95% Sigma-Aldrich, USA). Deionized 
water (pH ~ 7, σ ≤ 5 ×  10–6 S/m) was also utilized.

3  Methods

Catalyst of  Fe3O4–Fe2O3 supported on mordenite 
 (Fe3O4–Fe2O3/mordenite) was synthesized by co-precipita-
tion. 4 g of synthetic mordenite was added into 60 ml deion-
ized water under magnetic stirring for 10 min to disperse the 
precipitate. Then, 0.76 g  FeCl3 and 0.28 g  FeCl2 (2:1) were 
added to the solution under magnetic stirring for 30 min. 
After using 20 ml of NaOH 4 M, the solution was precipitated, 
and the catalyst was collected by centrifugation at 2500 rpm 
for 15 min and washed with deionized water. The precipitate 
was dried in an oven at 50 °C for 24 h [38–43]. Following, 
the obtained powder was divided into four parts. One part 
was separated and used without thermal treatment, while 
the other three parts were subjected to a partial thermal 
oxidation process at 100 °C, 200 °C and 300 °C for 3 h in air. 
 Fe3O4–Fe2O3 particles were prepared according to reports 
[44–46].

Structural properties were studied by X-ray diffraction 
(XRD) and data was collected using a PhilipsTM X´pert MPD 
diffractometer with a Cu Kα radiation (λ = 1.54056 Å), oper-
ating at room temperature. Morphology was analyzed by 
scanning electron microscopy (SEM) using a JEOL™ model 
JSM 5300 system with energy dispersive spectroscopy (EDS) 
detector Kevex SuperDry II for chemical analysis. All samples 
were placed on carbon tape for analysis. Surface area analy-
sis and textural properties were estimated with a Micromer-
itics Vacprep 061 equipment assisted by  N2 adsorption to 
77 K. Diffuse reflectance spectra were obtained with a Cary 
5000 UV–Vis-NIR spectrophotometer with a scanned wave-
length from 800 to 200 nm. X-ray Photoelectron Spectros-
copy (XPS) measurements were carried out in a SPECS sys-
tem equipped with a hemispherical electron analyzer model 
PHOIBOS 150 WAL and a monochromatic X-ray source, 
model XRC 1000, using Al Kα line (1486.6 eV) at 200 W. Also, 
high-resolution spectra were obtained at a pass energy of 
20 eV. For simplicity, samples are labeled as follows: pristine 
mordenite (M), and prepared catalysts, without thermal 
treatment (MFe), with thermal treatment at 100 °C for 3 h in 
air atmosphere (MFe100), with thermal treatment at 200 °C 
for 3 h in air atmosphere (MFe200), and with thermal treat-
ment at 300 °C for 3 h in air atmosphere (MFe300).

Photocatalytic properties were evaluated in a photo-
chemical reactor Rayonet, model RPR 100, equipped with 
16 lamps with a wavelength of 420 nm. Catalyst degra-
dation was carried out at constant stirring and 100 mL/
min air flow. 250 mL of the solution to 20 ppm of MB with 
125 mg of catalyst were added in a cylindrical quartz cell 
inside the reactor, and the adsorption process was sepa-
rated to keep the solution in dark condition for 30 min and 
subsequently photodegradation reaction with visible light 
excitation for 2 h. A mechanical stirrer was used to achieve 
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a satisfactory suspension of the photocatalyst and the 
homogeneity of the reacting mixture. Samples at 15 min 
intervals were withdrawn. The change of intensity of the 
absorption peak at 664 nm was monitored by UV–Vis spec-
troscopy in a Varian Cary® 50 UV–Vis spectrometer. 2.5 ml 
 H2O2 (30%) was added to the solution photodegradation 
mentioned for evaluating MB elimination by the Fenton 
reaction catalyzed by the  Fe3O4–Fe2O3 supported on mor-
denite samples.

4  Results and discussion

4.1  X‑Ray diffraction

Crystallinity and thermal stability are important proper-
ties of supports used in photodegradation applications. 
Figure 1 shows XRD patterns of M, MFe, MFe100, MFe200 
and MFe300 samples. XRD peaks can be indexed to pure 
mordenite zeolite orthorhombic structure crystallographic 
XRD pattern JCPDS 43–0171, without peaks of other chem-
ical agents. Peaks are sharp, indicating high crystallinity. 
Also, they show a tendency to decrease crystallinity as a 
function of temperature of treatment. There is broadening 
of peaks as temperature increases, which could be related 
to dealumination in the mordenite structure. In addition, 
the insert on the right side of the figure shows the region 
of the peak corresponding to (202) plane. Although the 
signal is relatively weak,  Fe3O4–Fe2O3 supported on mor-
denite samples show this peak at higher angles in com-
parison with the pristine mordenite. It is related to the 
dealumination process because the Si–O bond (1.60 Å) is 
shorter than the Al–O bond (1.74 Å) in mordenite. The lat-
tice shrinks when the Al species is leached from the zeolite 

framework, which means the Al species has successfully 
escaped [47].

4.2  Scanning electron microscopy and elemental 
analysis

In Fig. 2, SEM images reveal rough structures with aggre-
gated particles of various sizes, lower than 1000 nm. Fig-
ure 2b of prepared catalyst without thermal treatment 
shows a similar structure than Fig. 2a of pristine mordenite, 
with more homogeneous and smaller particles. This could 
be due to the incorporation of  Fe3O4–Fe2O3 on mordenite. 
Images of Figs. 2c–e, corresponding to MFe100, MFe200 
and MFe300, show larger size agglomerates, which could 
be due to sintering and/or dealumination.

To know the chemical composition of the  Fe3O4–Fe2O3 
supported on mordenite samples, elemental chemical analy-
sis using EDS was performed on the synthesized catalysts. 
Results presented in Table 1 show the presence of Al, Si, O, 
Na and Fe for all synthesized samples with an indication of 
dealumination process as a function of temperature of the 
thermal treatment.

Following, to know the Fe distribution in the mordenite 
support in studied samples, an elemental mapping for the 
sample of MFe100 was obtained, and results are presented in 
Fig. 3. Al, Si, O, Na and Fe presence is revealed, with Fe atoms 
well distributed on the mordenite support. This homogene-
ous distribution of Fe atoms is very convenient since they are 
used as the catalytic active center for the photodegradation 
of contaminants.

4.3  UV–Vis optical diffuse reflectance

Optical properties of materials are related to the electronic 
structure. The calculated results of diffuse reflectance and 

Fig. 1  XRD patterns of Pristine 
mordenite and  Fe3O4–Fe2O3 
supported on mordenite 
samples
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band gap energy of studied samples are presented in Fig. 4. 
As shown in Fig. 4a, M sample has high diffuse reflectance for 
wavelengths > 400 nm, corresponding to visible light. How-
ever, mordenite samples with iron oxides present low dif-
fuse reflectance for wavelengths > 400 nm, corresponding to 
important visible light absorption, from green to violet. Low 
optical diffuse reflectance for visible light of  Fe3O4–Fe2O3 
supported on mordenite samples can be used for photo-
degradation reaction of contaminants excited by visible 
light. Direct optical band gap energy (Eg) was estimated for 
M, MFe, MFe100, MFe200 and MFe300 samples using the 
equation proposed by Kubelka and Munk in 1931:

where S, R, K and F are the scattering, reflectance, absorp-
tion coefficients, and Kubelka–Munk function, respectively. 
Eg and the absorption coefficient are related through the 
Tauc relation [48]:

K

S
=

(1 − R)

2R
= F(R)

where α is the linear absorption coefficient, � is light fre-
quency, h is the Planck constant, and A is the proportion-
ality constant. The power of the parenthesis, n, is taken 
equal to 2 for direct band gap materials. When incident 
radiation scatters in a perfectly diffuse manner, the absorp-
tion coefficient K becomes equal to 2α. In this case, con-
sidering constant the scattering coefficient S, concerning 
wavelength, the Kubelka–Munk function is proportional to 
the absorption coefficient α. Applying the last equation, 
we obtain the relation [49]:

The 
[

F(R)h�
]2

 vs. h� (photon energy) graph is plotted, 
and the energy band gap of the powder sample can be 
easily extracted.

The value of Eg for studied samples was obtained 
by plotting 

[

F(R)h�
]2

 as function of h� (Fig.  4b) and 

(�h�)n = A(h� − Eg)

[

F(R)h�
]2

= A(h� − Eg)

Fig. 2  SEM Images of studied samples. a M, b MFe, c MFe100, d MFe200 and e MFe300

Table 1  Elemental analysis of 
 Fe3O4–Fe2O3 supported on 
mordenite samples

Element MFe MFe100 MFe200 MFe300

W % At % W % At % W % At % W % At %

Si 32.4 22.8 32.1 22.7 33.7 23.9 33.2 23.4
Al 4.5 3.7 4.3 3.6 3.4 2.9 3.8 3.2
Na 3.6 3.8 3.8 4.1 3.9 4.2 3.1 3.3
O 54.7 67.9 55.2 68.9 53.5 66.9 34.9 68.2
Fe 4.8 1.8 4.6 1.7 5.5 2.1 5.0 1.9
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Fig. 3  SEM–EDS elemental 
mapping of MFe100 sam-
ple composition where the 
first image is the secondary 
electron image and analogous 
elemental mapping of the ele-
ment in the other images

Fig. 4  a UV–Vis diffuse reflectance spectra and b Band gap estimate by Kubelka–Munk method of, pristine mordenite and  Fe3O4–Fe2O3 sup-
ported on mordenite samples
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extrapolation of the linear portion of the curve. The 
obtained results are presented in Fig. 4b. Estimated band 
gap values for pristine mordenite and  Fe3O4–Fe2O3/mor-
denite samples with different thermal treatments in air 
atmosphere are ~ 3.4 eV and ~ 2.25 eV, respectively. These 
results agree with reports of other authors using iron oxide 
nanoparticles with different organic modifiers [40] or using 
iron oxide nanoparticles [39, 50]. Moreover, the band gap 
energy value estimated for the  Fe3O4–Fe2O3 supported on 
mordenite samples shows the possibility of promoting the 
generation of free charge carriers by using visible light, 
improving the photodegradation process.

4.4  X‑ray photoelectron spectroscopy

Survey XPS was obtained to confirm the chemical compo-
sition of  Fe3O4–Fe2O3 supported on mordenite samples. 
Figure 5a shows six signal peaks located at 1072 eV, 103 eV, 
532 eV, 75 eV, 285 eV and 712 eV, corresponding to Na 
1s, Si 2p, O 1s, Al 2p, C 1s, and Fe  2p3/2, respectively. Also, 
high-resolution spectra of the Fe 2p region were obtained 
for MFe, MFe100, MFe200 and MFe300 samples. They were 
obtained with the purpose of detecting changes in oxida-
tion, according to the chemical equation: 

Figures  5b–e show high-resolution spectra and 
deconvolution into six peaks of MFe, MFe100, MF200 
and MFe300 samples. Fe 2p high resolution spectrum is 

Fe
3
O
4
+ O

2
→ Fe

2
O
3
⋅ Fe

3
O
4

composed of two spectral bands located at 725.3 eV, and 
711.9 eV, corresponding to  2p1/2, and  2p3/2 of  Fe3+ spe-
cies, respectively. Also, the other two peaks at a binding 
energy of 723.8 eV and 710.6 eV are attributed to  2p1/2 
and  2p3/2 of the  Fe2+ species, respectively. The remaining 
two weak peaks at 719 eV and 733 eV are satellite peaks. 
These results and assignments agree with reports of other 
authors for  Fe3O4 and  Fe2O3 samples, indicating the suc-
cessful formation of iron oxide compounds in the mor-
denite matrix [51–53]. Table 2 presents oxidation states 
of deconvolution estimates of species present in studied 
samples. They were calculated through the integral of 
deconvoluted signals in individual XPS peaks.  Fe3+ peak 
signal increases with temperature treatment, from 46 At% 
to 55 At%, which could be related to an oxidation process. 
At the same time, the  Fe2+ peak signal decreases with tem-
perature treatment, from 54 At% to 45 At%. Then, because 
of thermal treatment,  Fe2+ in  Fe3O4 partially becomes  Fe3+ 
in  Fe2O3 in studied samples, allowing to obtain  Fe2O3 and 

Fig. 5  a XPS full Survey spectra of  Fe3O4–Fe2O3 supported on mordenite samples and deconvolution of high-resolution XPS spectra of Fe 2p 
b MFe, c MFe100, d MFe200 and e MFe300 samples

Table 2  Atomic percent oxidation states of iron oxide species in 
 Fe3O4–Fe2O3 supported on mordenite samples as a function of 
temperature in oxidative thermal treatment

Fe3O4–Fe2O3 supported on mor-
denite samples

At%  Fe2+ At%  Fe3+

MFe 54 46
MFe100 48 52
MFe200 47 53
MFe300 45 55
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 Fe3O4 in different relative concentrations in the same sam-
ple through a simple oxidative thermal process.

4.5  Surface area analysis

Figure 6 shows results of  N2 adsorption–desorption iso-
therms of (a) MFe, (b) MFe100, (c) MFe200, (d) MFe300 
samples. They exhibit low adsorption at low relative 

pressure and hysteresis characteristic of interparti-
cle mesopores of the aggregates present in zeolites 
[54–56]. Table 3 shows textural parameters of the syn-
thesized catalysts. Adsorbed amount of nitrogen, rep-
resented by SBET, slowly decreases with thermal treat-
ment temperature, which could be due to sintering 
and/or dealumination. Volume and diameter of pore 
show little change within the uncertainty of measure-
ment. A similar effect was observed in previous work 
with hydrotreated Cu-Ag/mordenite catalysts for NO 
reduction [57]. The textural properties are related to 
organic compounds adsorption application and its pos-
sible elimination for the remediation process, due to 
the surface area of the catalyst interacting with organic 
dye pollution via electrostatic forces. Moreover, the pore 
of the catalyst is related to the active catalytic centers 
where dye will be degraded by the photocatalysis and 
fenton process [58, 59].

Fig. 6  Pore size distribution Adsorption–desorption profile of a MFe, b MFe100, c MFe200, d MFe300 samples

Table 3  Textural parameters of  Fe3O4–Fe2O3 supported on mor-
denite samples

Catalyst SBET  (cm2/g) Vpore  (cm3/g) Dpore (nm)

MFe 296 0.06 4.6
MFe100 290 0.06 4.7
MFe200 274 0.05 4.9
MFe300 267 0.05 5.0
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4.6  Photocatalytic MB degradation

Photocatalytic methylene blue (MB) degradation by 
the catalysts synthesized was evaluated with visible 
light excitation. Figure 7 presents the results of UV–vis-
ible absorption spectra after photodegradation of MB 
with visible light for different times of (a) M, (b) MFe, 
(c) MFe100, (d) MFe200 and (e) MFe300; and (f ) MFe100 
together with  H2O2. Studied catalysts with iron oxides 
present different decrements in absorbance as func-
tion of time, indicating MB degradation with visible 
light exposition. Absorbance curves show an important 
contribution from the adsorption effects of MB in the 
dark (black line, − 30 min) before visible light irradia-
tion exposure on  Fe3O4–Fe2O3 supported on mordenite 
which is the typical behavior in synthetic zeolites with 

a high Si/Al ratio and could be due to organic residues 
adsorbed. Figure  8a exhibits results of relative pho-
tocatalytic efficiency, represented by C/Co as a func-
tion of time of exposure, and Fig. 8b shows kinetics of 
photocatalytic degradation of MB with visible light of 
studied catalysts, pristine mordenite and  Fe3O4–Fe2O3 
supported on mordenite samples. MFe100 shows the 
best photocatalytic activity with almost 70% MB deg-
radation after 120  min, without adding a co-catalyst 
(Fig. 8a). The Fenton effect was proved by adding 2.5 ml 
of  H2O2 to MFe100 sample during the MB photocatalytic 
degradation [60, 61]. Figures 8a and b show how add-
ing  H2O2 improves photocatalytic efficiency and kinetics 
of photocatalytic degradation of MB with visible light, 
reaching ~ 90% MB degradation after 120 min. On the 
other hand, M and MFe300 samples do not present 

Fig. 7  UV–visible absorption 
spectra of photodegradation 
of MB with visible light excita-
tion for 120 min with previous 
agitation in dark condition 
(− 30 min to 0 min) of catalysts 
of a M, b MFe, c MFe100, 
d MFe200, e MFe300 and f 
MFe100 together with  H2O2
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considerable photocatalytic activity. Therefore, increas-
ing the temperature of the thermal treatment slightly 
favored more oxidation in the samples, according to XPS 
results, increasing  Fe2O3 concentration in comparison 

with  Fe3O4, also modification of the surface area, crys-
tallinity and morphology, which could be related with 
properties for photocatalytic applications.

Curves of relative concentration as a function of time 
based on the first order kinetic reaction equation [62, 63] 
was matched to study the kinetics of MB photodegrada-
tion, according to the equation:

where C0 and C are respective initial and real-time MB con-
centrations, and k is the first-order degradation rate con-
stant with visible light. Matched lines are shown in Fig. 8b, 
and obtained kinetic constants are described in Table 4. 
Rate constant increases from 0.0043 to 0.0069  min−1 from 
MFe samples to MFe100 corresponding to ~ 60% increase. 

−ln
C

C
0

= kt

Fig. 8  a The relative photocatalytic efficiency (C/Co) as function of 
reaction time (t) and b kinetics of photocatalytic degradation of MB 
with visible light of mordenite pristine and  Fe3O4–Fe2O3 supported 

on mordenite as a function of reaction time (t) in logarithmic scale 
[−ln(C/Co)], and matched straight lines to first-order reaction kinet-
ics

Table 4  Kinetic constants of MB photodegradation of  Fe3O4–Fe2O3 
supported on mordenite samples

Catalyst % MB degrada-
tion

R2 k (min−1)

MFe 53 0.91 4.3 ×  10–3

MFe100 70 0.98 6.9 ×  10–3

MFe200 36 0.97 2.0 ×  10–3

MFe300 14 0.96 5.7 ×  10–4

MFe100 +  H2O2 90 0.98 1.6 ×  10–2

M 9 0.95 6.67 ×  10–4

Fig. 9  a Photocatalytic stability test to five cycles of MFe100 and b magnetic retrieval with a permanent magnet of MFe100 sample
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Also, rate constant increases about four times from 0.0043 
to 0.016  min−1 after MFe100 and a small portion of hydro-
gen peroxide addition on the  Fe3O4–Fe2O3 supported on 
mordenite catalysts. Considering the rate constant reac-
tion of MB degradation of this catalyst, an extrapolation 
indicates it could eliminate 99%, approximately, after 
180 min of visible irradiation.

Stability of the catalyst was investigated by moni-
toring the catalytic activity during successive cycles of 
degradation and results are shown in Fig. 9a, where C0 
and C are the initial and real-time MB concentrations, 
respectively. MFe100 exhibits a very stable photocata-
lytic performance after five cycles of test without sig-
nificant loss of activity. Additionally, Fig. 9b shows one 
of the synthesized catalysts with iron oxides before and 
after bringing closer a magnet, indicating clearly that 
thanks to the magnetic properties of the synthesized 
catalysts it is possible to recover the catalyst through a 
magnetic field, allowing its reusability in applications of 
wastewater photodegradation.

4.7  Mechanism of MB degradation

A possible main mechanism for degradation of MB in 
 Fe3O4–Fe2O3/mordenite +  H2O2 + Visible light system pro-
posed is: (1) MB is adsorbed in the mordenite support 
pores through electrostatic interaction, (2)  HO• radicals 
produced by  H2O2 activated with photo oxide of  Fe2+ and 
 HOO• radicals produced by  H2O2 activated with photore-
duced of  Fe3+ on the surface of  Fe3O4–Fe2O3 supported 

on mordenite samples; and simultaneous process (3) pho-
tocatalysis with visible light photons to photogenerated 
electron–hole pairs that reduces and oxidizes, respectively, 
 O2 and  H2O present, generated reactive species  OO• and 
 HO•, (4) adsorbed MB in  Fe3O4–Fe2O3 supported on mor-
denite sample is attacked by  HO•,  OO•, and  HOO•, produced 
by Fenton reaction and photocatalyst. Active centers of MB 
around the catalyst are provided by the mordenite support 
with a large surface area. Incorporation of  Fe3O4–Fe2O3 
particles on mordenite seems to greatly enhance the 
transformation from  Fe3+ to  Fe2+ or the recycling of iron 
species [64, 65]. This possible photocatalytic mechanism of 
 Fe3O4–Fe2O3 supported on mordenite for MB degradation 
is depicted in Fig. 10.

5  Conclusions

A set of  Fe3O4–Fe2O3 supported on mordenite catalysts 
with different thermal treatments was successfully syn-
thesized by using a simple chemical method and its 
physicochemical properties were confirmed by DRX, 
SEM, EDS, XPS, SBET, UV–Vis DR. Crystalline structure and 
morphology of studied samples are related to thermal 
treatment. Due to the presence of iron oxides, catalyst 
samples synthesized with iron oxides have more vis-
ible light absorption than pristine mordenite. Samples 
have a significant temperature dependence with crys-
tallinity, particle agglomeration, surface area, and other 
textural properties. Sample MFe100 presented the best 

Fig. 10  Catalytic oxidation 
mechanism of MB in  Fe3O4–
Fe2O3 supported on mor-
denite +  H2O2 + Visible light 
system
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photodegradation capabilities with visible light excita-
tion. This behavior could be attributed to methylene 
blue degradation by three processes: adsorption of 
organic residues in the mordenite matrix support due to 
electrostatic interactions, photocatalysis heterogeneous 
reaction with visible light and Fenton reaction catalyst 
with a small portion of  H2O2 by presence of  Fe3O4–Fe2O3. 
Due to the magnetic properties of the  Fe3O4–Fe2O3 sup-
ported on mordenite samples the catalyst could be 
retrieved and reused in the photodegradation process. 
Obtained catalyst MFe100 was able to degrade MB ~ 90% 
after 120 min. The catalysts synthesized with the pres-
ence of  Fe3O4–Fe2O3 using visible light for MB degrada-
tion were prepared following simple and economical 
thermal treatments without changing pH, temperature, 
dose or other conditions. Additionally, catalysts can be 
retrieved and reused at least five times by using a mag-
netic field. These catalysts could be proposed for the 
remediation of wastewater using visible light or solar 
excitation related to textile, food and pharmaceutical 
industries.
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