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Abstract 
Given the prevalence of surveillance cameras in our daily lives, human action recognition from videos holds signifi-
cant practical applications. A persistent challenge in this field is to develop more efficient models capable of real-time 
recognition with high accuracy for widespread implementation. In this research paper, we introduce a novel human 
action recognition model named Context-Aware Memory Attention Network (CAMA-Net), which eliminates the need 
for optical flow extraction and 3D convolution which are computationally intensive. By removing these components, 
CAMA-Net achieves superior efficiency compared to many existing approaches in terms of computation efficiency. A 
pivotal component of CAMA-Net is the Context-Aware Memory Attention Module, an attention module that computes 
the relevance score between key-value pairs obtained from the 2D ResNet backbone. This process establishes correspond-
ences between video frames. To validate our method, we conduct experiments on four well-known action recognition 
datasets: ActivityNet, Diving48, HMDB51 and UCF101. The experimental results convincingly demonstrate the effective-
ness of our proposed model, surpassing the performance of existing 2D-CNN based baseline models.

Article Highlights 

• Recent human action recognition models are not yet 
ready for practical applications due to high computa-
tion needs.

• We propose a 2D CNN-based human action recognition 
method to reduce the computation load.

• The proposed method achieves competitive perfor-
mance compared to most SOTA 2D CNN-based meth-
ods on public datasets.

Keywords Action recognition · Deep learning · Convolutional neural network · Attention

1 Introduction

Human action recognition is a computer vision task to 
identify some human actions from a series of observa-
tions. Every human action, no matter how trivial, is done 

for some purpose. Due to its wide range of applications 
in intelligent video surveillance [1, 2], robotics [3], video 
storage retrieval, smart home monitoring, entertainment 
and autonomous driving vehicles, human action recogni-
tion (HAR) has gained significant popularity in the field of 
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video analytics. HAR relies on computational algorithms 
to identify and understand human actions [4].

With the advance in computational technologies, 
deep learning has replaced traditional machine learning 
in many computer vision tasks, employing multiple lay-
ers of artificial neural networks to achieve state-of-the-art 
(SOTA) accuracy in tasks such as facial recognition, object 
detection etc.

Despite the extensive research conducted in the field 
of HAR, numerous challenges still remain unaddressed. 
HAR from raw videos poses a significant challenge as the 
model must essentially identify actions based on a series 
of observations. To achieve accurate predictions, spatial 
and temporal information are essential, resulting in a 
higher computational demand compared to other com-
puter vision tasks [5, 6], which only require spatial infor-
mation. Consequently, HAR models tend to be complex in 
nature. In the past, researchers relied on designing hand-
crafted feature extractors to encode the necessary features 
for obtaining precise motion representations from video 
sequences, aiming to enhance the accuracy of HAR mod-
els [7–9]. Nevertheless, methods based on hand-crafted 
feature extraction have limitations as they heavily rely on 
human insight and lack the ability to automatically adapt 
to new data. Consequently, their applicability in real-world 
scenarios which are often dynamic and ever-changing, is 
very limited.

Convolutional Neural Networks (CNNs) play a crucial 
role in deep learning and find extensive use in various 
HAR models. They have the ability to directly learn human 
action features from video data without the need for any 
hand-crafted feature pre-processing [10]. Currently, the 
most popular HAR methods include two-stream networks 
based on 3D CNN and Recurrent Neural Networks (RNN) or 
Long Short-Term Memory (LSTM). These methods achieve 
commendable performance, but their computational 
requirements are high, especially when dealing with long 
untrimmed videos. Consequently, researchers have shifted 
their focus towards developing efficient HAR models using 
2D CNN-based approaches.

This paper expands our initial work [11] to showcase 
the comprehensive performance of our proposed 2D CNN-
based model, Context-Aware Memory Attention Network 
(CAMA-Net) which is specifically designed for HAR. CAMA-
Net eliminates the need for optical flow computation and 
3D convolution. We conduct additional extensive experi-
ments on different public datasets, namely ActivityNet 
[12], Diving48 [13], HMDB-51 [14] and UCF-101 [15] to 
prove that our model is robust enough to work in data-
sets with many different activities. In all the datasets, the 
proposed model outperforms the SOTA baselines. In addi-
tion, we perform more ablation studies to showcase the 
contributions of the various entities in CAMA-Net and also 

provide an insight of the inference speed gap between 
2D CNN, 3D CNN and two-stream based HAR models. In 
this paper, we also provide a detailed survey of the related 
work.

The contributions of our paper can be summarized as 
follows:

• We introduce a novel HAR model, named Context 
Aware Memory Attention Network (CAMA-Net), which 
does not rely on optical flow computation or 3D con-
volution which are computationally intensive.

• The Context Aware Memory Attention (CAMA) mod-
ule in CAMA-Net accurately computes the relevance 
scores between key and value pairs obtained from the 
backbone output for the proposed model to learn a 
more discriminative spatio-temporal representation for 
action recognition.

• We comprehensively evaluate the performance and 
robustness of CAMA-Net across four widely-used 
datasets: ActivityNet [12], Diving48 [13], HMDB-51 [14] 
and UCF-101 [15]. These datasets have different video 
lengths and different action classes.

• The experimental results validate its competitive per-
formance when compared to state-of-the-art methods 
in the field of HAR and demonstrate the robustness of 
our proposed model across various datasets.

2  Related works

2.1  Deep learning based action recognition

Over the past few years, deep learning models have 
emerged as the preferred approach for action recognition 
tasks. This is primarily due to their ability to extract high-
level features from input data, which is in stark contrast 
to the comparatively rigid and less adaptable nature of 
hand-crafted feature methods.

At present, the predominant approaches in HAR uti-
lize two-stream networks [16–18]. In these networks, 
one stream takes RGB frames as input, extracting appear-
ance information, while the other stream employs opti-
cal flow as input, capturing motion information. Optical 
flow, which recovers pixel-level motion from variations 
in brightness patterns within spatial-temporal images 
[19–21], is used to effectively track the movement of 
objects.

Motion representation is thus one of the most impor-
tant components for action recognition task. [16–18] use 
optical flow to represent short-term motion and many 
works use it as an additional input source, resulting in 
significant improvement in action recognition perfor-
mance compared to using only the raw data. Current 
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popular optical flow computation approaches [22–24] 
pre-compute the optical flow out-of-band and store 
the information which is inefficient. To address this inef-
ficiency of estimating optical flow, some recent works 
accelerate optical flow estimation by the judicious con-
struction of CNN models, such as FlowNet family [25, 26], 
PWC-Net [27] and SpyNet [28] etc. Nonetheless, these 
models focus on improving the accuracy of the opti-
cal flow estimation which is not directly related to the 
deep learning models for HAR. Other works [18, 29] pro-
pose an encoder-decoder network, where the encoder 
network aims to regenerate the optical flow and the 
decoder network is the action recognition network. 
However, the encoder-decoder architecture also entails 
high computational resource. Hence, it remains chal-
lenging to have the best motion representation which 
is efficient and effective for HAR [30, 31]. To this end, we 
decide to drop optical flow for fast HAR.

Another category of HAR approaches frequently pro-
posed is 3D CNNs due to their well-defined architectures 
for temporal modelling [32–34]. 3D convolutional opera-
tors are built such that they combine the information in 
both the spatial and temporal dimensions within the local 
receptive fields [35, 36]. 3D convolutions and 3D pooling 
are used in 3D CNNs for propagating temporal informa-
tion across all the layers in the network, so it can learn 
features that encode temporal information efficiently. The 
C3D model [33] is first pre-trained on a large-scale public 
video dataset to learn the spatio-temporal features which 
are then used as the input to the linear Support Vector 
Machine (SVM) classifier for action class prediction. I3D 
[37] uses a deep Inflated 3D CNN model by expanding 
the popular Inception model [38] to 3D so it can learn the 
spatiotemporal features in videos for HAR application. T3D 
[39] proposes a temporal 3D CNN model by extending the 
original idea of DenseNet [40], while DTPP [41] modifies 
the temporal pyramid pooling function which originally 
only works for spatial dimension to three space-time 
dimensions and use the 3D structure in a two-stream CNN 
in lieu of the common two-stream 2D CNN.

However, these 3D convolution-based models are 
typically trained and learned using short video snippets 
instead of considering the entire videos. As a result, they 
struggle to accurately capture actions that extend beyond 
their limited temporal context. To address this limitation, 
Slowfast Networks [42] incorporates two pathways operat-
ing at different frame rates. The slow and fast frame rates 
allow for the capture of both spatial semantics and fine 
resolution temporal motion respectively, with lateral con-
nections employed to integrate information from both 
pathways. It is worth noting that, similar to other deep 
learning models, the performance of HAR significantly 
improves when 3D CNN models are trained on large-scale 

video datasets. However, the computational cost associ-
ated with 3D CNN-based methods increases considerably 
due to the extensive number of parameters involved in 
stacked 3D convolutions.

Recurrent Neural Networks (RNN) or Long Short-Term 
Memory (LSTM) [43–45], originally popular in natural lan-
guage processing, have also found application in HAR. 
RNNs are deep learning models that possess a memory 
state, denoted as “h”, which summarizes past information 
to predict future outcomes. Through backpropagation, 
the RNN learns to capture the history or memory vector. 
In HAR, RNNs utilize the input (e.g., frames) and memory 
state (h) to predict the subsequent action. The incorpo-
ration of RNNs in HAR offers the advantage of preserv-
ing temporal information throughout the entire train-
ing process, thereby enhancing the accuracy of action 
recognition.

In general, HAR is like video understanding and can 
be treated as sequence modeling. LRCN [46] connects 
LSTM directly to SOTA CNN models to learn both spa-
tial information and temporal dynamics. Thus, it can be 
perceived as a direct extension of the encoder-decoder 
architecture being applied for video representations. One 
notable advantage of LRCN is its capability to effectively 
handle sequences of varying lengths. To further enhance 
the processing of video data, a novel approach called 
DB-LSTM [47] has been introduced. DB-LSTM combines 
CNN with deep bidirectional LSTM networks [48]. These 
LSTM networks are stacked with multiple layers in both 
the forward and backward passes, thereby increasing the 
network’s depth, enabling it to recognize actions in long 
videos which has been a challenge for most of the com-
mon sequence models.

In contrast to these approaches, our proposed model, 
CAMA-Net, does not rely on pre-computed optical flow. 
Instead, it directly takes raw RGB video frames as input for 
action recognition. This is accomplished via 2D CNN based 
methods together with temporal modelling. We provide 
details on how we integrate 2D ResNet with a memory 
attention network to find the correspondences between 
video frames in the later section.

2.2  Attention mechanism

Recently, attention model is becoming very popular as it 
can focus on the interesting regions in the target videos 
[49–52]. Attention mechanism has first been applied for 
sequence-to-sequence learning in machine translation 
[53].

The two common types of visual attention [54] are hard 
and soft attention. The hard attention uses binary choices 
to choose spatial regions. Several works such as [55, 56] 
use the idea of hard attention in object recognition to 
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extract the most important features in the images. On 
the other hand, in soft attention mechanisms, the spatial 
region of interest is chosen by the weighted averages. 
[57] designs a teacher-student learning-based model by 
utilizing an activation-based attention map and a gra-
dient-based attention map. These attentions are propa-
gated from a strong network to a weak CNN to improve 
the image recognition. Non-local Networks [58] learn 
long-range temporal relationship by using self-attention 
mechanism.

Wang et al. [59] introduces a channel attention block 
that employs 1D convolution to evaluate channel inter-
actions while preserving dimensionality. Misra et al. [60] 
proposes employing triplet attention to determine atten-
tion weights via a three-branch structure, enabling the 
capture of cross-dimension interactions. Wang et al. [61] 
designs a self-attention mechanism that dynamically 
incorporates long-term temporal connections across the 
video sequence by capturing the relationship between the 
current frame and adjacent frame. The Stand-alone Inter-
Frame Attention [62] is an attention mechanism that oper-
ates across multiple frames, computing local self-attention 
for every spatial position. Hao et al. [63] proposes an effec-
tive attention-in-attention technique for enhancing ele-
ment-wise features, exploring the possibility of integrating 
channel context into the spatio-temporal attention learn-
ing module. Visual attention network [64] uses a large ker-
nel attention to support the establishment of self-adaptive 
and extended-range correlations of self-attention.

Due to the advancements in applying attention mech-
anism in different computer vision tasks, we propose a 
novel approach that incorporates self-attention modules 
differently into a CNN-based method. Our way of inte-
gration is simply to find the correspondences between 
selected features using attention mechanism, without 
passing the entire set of features to the CNN model, thus 
reducing the number of learning parameters compared 
to pure CNN model. This integration aims to reduce com-
putational complexity in action recognition tasks while 
maintaining competitive performance.

2.3  2D CNN‑based methods for action recognition

As previously mentioned, the well-defined architectures 
in 3D CNNs make them popular in the field of HAR for 
temporal modeling. While these networks can achieve 
impressive performance, their widespread adoption is 
hindered by high computational requirements and sig-
nificant GPU memory usage. To address these concerns 
and develop efficient HAR algorithms, researchers have 
turned their attention to 2D CNN-based methods. How-
ever, these methods do have their limitations. 2D convo-
lutional operators operate within individual image frames, 

limiting their ability to capture spatial information across 
adjacent frames. If a 2D CNN model is used directly, it will 
only have partial observation, thereby compromising the 
accuracy of action prediction, particularly for longer dura-
tion actions. Therefore, to overcome this challenge and 
improve the performance of 2D CNN-based action rec-
ognition algorithms, it is crucial to incorporate temporal 
modeling techniques.

To address the limitation of sequence length during 
training, the Temporal Segment Network (TSN) [65] intro-
duces a temporal sampling approach for video clips. TSN 
aggregates the features to generate video-level repre-
sentations using an average pooling consensus function. 
Building upon TSN, the Temporal Relation Networks (TRN) 
[66] further enhances the temporal modeling capability by 
leveraging the relationships among video frames in the 
temporal domain.

In recent times, there has been a rise in the popularity 
of feature-level inter-frame difference methods for encod-
ing short-term motion information between neighboring 
frames. For instance, the STM (Spatio-Temporal Motion) 
approach [67] models the motion representation of spa-
tio-temporal features by utilizing the feature difference 
between adjacent frames. Another method called Tem-
poral Shift Module (TSM) [68] employs a temporal shift 
operation to efficiently exchange temporal information 
among features through the channel dimension, thereby 
enhancing the performance of 2D CNN techniques. TANet 
(Temporal Adaptive Network) [69] improves the efficiency 
of action recognition tasks by stacking multiple Tempo-
ral Adaptive Modules (TAM) that encompass both global 
and local branches, enabling the learning of long-range 
temporal information. Furthermore, the Temporal Pyramid 
Network (TPN) [70] introduces feature hierarchy modules 
to aggregate diverse visual information from different fea-
ture levels.

3  Methods

3.1  Model architecture

To achieve faster action recognition, our proposed model, 
CAMA-Net, eliminates the need for pre-computed optical 
flow and solely relies on raw RGB video frames as input.

Figure 1 shows the CAMA-Net architecture. The video 
input is divided into L video clips, and from each video clip, 
a random short snippet is selected. Each snippet consists 
of a set of RGB frames. The snippet is then fed into the 
CNN backbone, followed by adaptive average pooling. The 
resulting outputs are passed through two separate chan-
nels: the Sequence CNN and the Segmental Consensus. 
The former produces a pair of memory features of (B, C, H, 
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W, T) dimension, while the latter generates a pair of query 
features of (B, C, H, W) dimension. Here B is the batch size, 
C is the channel size, H and W are the height and weight 
respectively and T is the sequence length. Sequence CNN 
based channel is basically a sequence of 1 × 1 convolution 
module while Segmental Consensus channel is basically 
an average pooling aggregation function in the temporal 
dimension.

The memory and query features are specifically 
designed to serve different purposes. The memory fea-
tures are analogous to source features or base features, 
encompassing the majority of the content. On the other 
hand, the query features can be considered as summa-
rized or filtered features, capturing the most important 
aspects. Both these features play a crucial role as inputs 

to the CAMA module, where the relevance scores between 
them are computed. These relevance scores serve to 
allow the proposed model to learn a more discriminative 
spatio-temporal representation for action recognition. 
Subsequently, the outputs of the CAMA module and the 
Segmental Consensus are concatenated boosting the pre-
diction performance. This concatenated output provides 
the action class scores for the different snippets.

3.2  CAMA module

Figure 2 shows the details of the CAMA module. Its primary 
role is to determine the relevance between the memory 
key features ( Mk ) and the query key features ( Qk ) through 
the utilization of three relevance functions. Both the 

Fig. 1  Overview of CAMA-Net architecture. The video input is 
divided into L video clips, and from each video clip, a random short 
snippet is selected. Each snippet consists of a set of RGB frames. 
The snippet is then fed into the ConvNet backbone, followed 
by adaptive average pooling. The resulting outputs are passed 
through two separate channels: the Sequence ConvNet and the 
Segmental Consensus. The Sequence ConvNet produces a pair of 

memory features, while the Segmental Consensus generates a pair 
of query features. These memory and query features are input into 
the CAMA module to compute the relevance scores between them. 
Thereafter, the outputs from the CAMA module and the Segmental 
Consensus are concatenated. This concatenated output provides 
the action class scores for the different snippets

Fig. 2  CAMA module. The vital role of CAMA module is to deter-
mine the relevance between the memory key features ( Mk ) and the 
query key features ( Qk ) through the utilization of three relevance 
functions. These computed relevance scores are then summed with 
the memory value features ( Mv ) and concatenated with the query 

value features ( Qv ). The resulting output from the CAMA module is 
subsequently concatenated with the output of the Segmental Con-
sensus module. This concatenated output provides the action class 
scores for the different snippets
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memory and query features possess distinct key features 
( Mk , Qk ) and value features ( Mv , Qv ) as shown in Fig. 2. The 
CAMA module employs three distinct functions to calcu-
late the relevance score between the memory key features 
and the query key features. These scores are combined 
with the memory value and then concatenated with the 
query value. The resulting information is subsequently fed 
into a Fully Connected Network to predict the action class.

Our proposed relevance functions are unique, unlike 
others such as that proposed in [71] which calculates the 
relevance scores between the current features (query key) 
and all the features together (memory key). Our design 
comprises three functions. The first relevance equa-
tion takes a direct approach to determine the relevance 
between the memory key ( Mk ) and query key ( Qk ) by com-
paring their affinity. We used batch matrix multiplication 
for the memory key ( Mk ) and query key ( Qk ) which does 
not involve any learnable parameters. Before relevance 
score computation, we change the way the features are 
organized without changing their contents, as shown as 
in Fig. 3.The first relevance function R(Mk ,Qk) is shown 
below:

In order to improve the accuracy of the relevance score 
calculation, we introduce a second relevance equation 
based on a bi-linear form. This additional equation is 
necessary because the first relevance equation alone is 
insufficient. To enable the bi-linear form, we utilize a new 
metric W ∈ Rck×cv , which facilitates the computation of the 
relevance equation:

We define a third relevance function, which incorporates 
trainable relevance scores ( r|Mk ,Qk ), allowing the net-
work to explicitly learn these scores. The outputs from 

(1)R(Mk ,Qk) = MkQk

(2)R(Mk ,Qk) = MkWQk

these relevance functions are passed through the Softmax 
function. Softmax function is a function that turns a vec-
tor into a vector where its values summed to 1. Here we 
use Softmax function for the last dimension of each out-
put. The relevance scores are then summed to generate a 
context term, denoted as ck . This context term is added to 
the memory value, Mv , and concatenated with the query 
value, Qv . Finally, this combined information is fed into the 
Fully Connected Network for predicting the action class. 
The equation for the context term is as follows:

4  Experiments

4.1  Datasets

We evaluate the performance of the proposed CAMA-
Net on popular benchmark datasets, ActivityNet, Div-
ing48, HMDB-51 and UCF-101. ActivityNet [12] contains 
200 different types of activities and Version 1.3 contains 
around 20,000 untrimmed videos. Diving48 [13] is a fine-
grained video dataset on competitive diving, consisting 
of around 18,000 trimmed video clips of 48 unambiguous 
dive sequences. HMDB51 [14] contains about 7000 vid-
eos comprising 51 categories. UCF-101 [15] contains 101 
action classes with around 13,000 videos.

4.2  Implementation details

We implement the CAMA-Net framework using ResNet50 
and ResNet101 as the backbones. The video sampling 
frame, denoted as T, is set to 24. The shorter size of the 
input video frames is resized to 256 and common data 
augmentation techniques such as random horizontal 
flipping, multi-scale cropping are applied before training 
[65]. The optimal settings for model training are as follows: 
the batch size is set to 6, and the initial learning rate is set 
to 0.00008. The total number of training epochs is 80 for 
HMDB51 and Diving48, 120 for UCF101 and ActivityNet. 
The weight decay is set to 0.0002.

During testing, the video input from the test dataset is 
resized to 256 on the shorter side to maintain consistency 
with the training process. We initialize the model with a 
pre-trained ImageNet model when training on all the data-
sets. Both the model training and testing are conducted 
on two NVIDIA Tesla V100 Tensor Core GPUs.

(3)
ck =

∑
(R(Mk ,Qk))

= softmax(MkQk) + softmax(MkWQk) + softmax(r)

Fig. 3  First relevance score computation. Before any relevance 
score computation, memory key ( Mk ) and query key ( Qk ) are organ-
ized without changing their contents. The first relevance equation 
takes a direct approach to determine the relevance between the 
memory key ( Mk ) and query key ( Qk ) by comparing their affinity. 
Multiplication has been performed considering that the batch size 
of the two features are the same. We used batch matrix multiplica-
tion for the memory key ( Mk ) and query key ( Qk ) which does not 
involve any learnable parameters
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4.3  Performance comparison

The performance of the proposed CAMA-Net is com-
pared with state-of-the-art (SOTA) baselines on the four 
well-known action recognition datasets, namely Activi-
tyNet, Diving48, HMDB51 and UCF101. The performance 
metric used is on top-1 and top-5 accuracies. The results 
are shown in Tables 1, 2, 3 and 4 for the respective data-
sets. It is to be noted that all the models included in the 

comparison solely rely on the pre-trained ImageNet model 
for initialization and do not undergo any additional pre-
training on other large-scale video datasets.

The SOTA baselines being compared are 2D CNN 
based action recognition methods with late fusion of 
temporal information such as TRN [66] and TSN [65], 2D 
CNN with built-in temporal modules such as TANet [69], 
TPN [70] and TSM [68]. The tables show that the pro-
posed CAMA-Net outperforms all the SOTA baselines 
on all four datasets, testifying to its effectiveness of its 
action recognition ability with unique temporal informa-
tion learning techniques.

2D CNN based action recognition methods possess 
the advantage of faster model inference speed when 
compared to 3D CNN based methods and two-stream 
methods (optical flow and RGB frame fusion). To provide 
some insights on the speed difference, we record the 
inference speed of CAMA-Net on UCF-101 dataset in 
number of video frames processed per second and the 
result is shown in Table 5. The inference speed of a semi-
nal 3D CNN based method, C3D [33] which is the first 
3D CNN model for action recognition task and the infer-
ence speed of a two-stream network [16] are also shown. 
As can be seen from Table 5, CAMA-Net is more than 

Table 1  Performance comparison against SOTA baselines on Activi-
tyNet dataset. Higher values are better

Method Backbone Accuracies

Top-1 Top-5

TSN [65] ResNet 50 64.29 87.92
TRN [66] ResNet 50 64.36 87.61
TSM [68] ResNet 50 66.13 88.04
TANet [69] ResNet 50 66.39 87.15
TPN [70] ResNet 50 67.99 88.06
CAMA-Net ResNet 50 68.49 89.06
CAMA-Net ResNet 101 69.49 90.09

Table 2  Performance comparison against SOTA baselines on Div-
ing48 dataset. Higher values are better

Method Backbone Accuracies

Top-1 Top-5

TSN [65] ResNet 50 71.27 95.74
TRN [66] ResNet 50 72.08 96.14
TSM [68] ResNet 50 72.54 96.09
TANet [69] ResNet 50 73.35 95.69
TPN [70] ResNet 50 73.60 96.85
CAMA-Net ResNet 50 74.42 96.45
CAMA-Net ResNet 101 76.85 96.50

Table 3  Performance comparison against SOTA baselines on 
HMDB-51 dataset. Higher values are better

Method Backbone Accuracies

Top-1 Top-5

TSN [65] ResNet 50 47.78 76.60
TANet [69] ResNet 50 49.74 79.67
TRN [66] ResNet 50 52.42 80.72
TPN [70] ResNet 50 52.94 79.22
TSM [68] ResNet 50 54.58 80.00
CAMA-Net ResNet 50 54.84 83.27
CAMA-Net ResNet 101 57.45 84.25

Table 4  Performance comparison against SOTA baselines on UCF-
101 dataset. Higher values are better

Method Backbone Accuracies

Top-1 Top-5

TSN [65] ResNet 50 83.48 96.91
TRN [66] ResNet 50 83.66 95.82
TANet [69] ResNet 50 83.85 96.35
TSM [68] ResNet 50 84.56 96.99
TPN [70] ResNet 50 85.65 96.83
CAMA-Net ResNet 50 86.28 97.36
CAMA-Net ResNet 101 87.18 98.02

Table 5  Performance (model inference speed) comparison 
between 2D CNN based method vs 3D CNN based method vs two-
stream (optical flow+RGB) method on UCF-101 dataset. Higher val-
ues are better

Method 2D CNN (CAMA-
Net)

3D CNN [33] Two-stream [16]

Inference speed 
(number 
of video 
frames/s)

26.6 11.3 3.8



Vol:.(1234567890)

Research SN Applied Sciences           (2023) 5:330  | https://doi.org/10.1007/s42452-023-05568-5

twice faster compared to C3D and ten times faster than 
the two-stream network during inference. For practical 
deployment especially at edge devices, a lightweight 
model with fast inference speed with a little tradeoff in 
recognition accuracy will be most desirable and feasible.

4.4  Ablation study

Similar to the performance comparison in the previous 
section, the performance metrics used in the ablation 
studies are top-1 and top-5 accuracies. The experiments 
are carried out on the UCF101 dataset with ResNet50 as 
the backbone.

Relevance functions used for CAMA module Three dif-
ferent relevance functions have been designed for the 
CAMA module to calculate the relevance score between 
the memory and query features. They are the batch matrix 
multiplication, the bi-linear function and the trainable 
function. To obtain insight on the effectiveness of these 
relevance functions in improving the action recognition 
performance, an experiment is conducted using different 
combinations of the relevance functions. Table 6 shows 
the performance of the different combinations of rel-
evance functions. The best combination using all three 
relevance functions is thus adopted in CAMA module to 
yield the best performance.

Adaptive average pooling An experiment is also car-
ried out to validate that adaptive pooling plays a signifi-
cant role in improving the effectiveness of CAMA-Net. As 
shown in Fig. 1, raw RGB video frames are passed through 
the ResNet50 backbone to extract the encoded fea-
tures. Adaptive average pooling is then applied to these 
encoded features before they are being passed to two sep-
arate channels. Adaptive average pooling is the process 
that applies a 2D adaptive average pooling over an input 

signal composed of several input planes. Table 7 shows the 
performance comparison with and without adaptive aver-
age pooling after the ResNet backbone. The result shows 
that CAMA-Net can achieve the best performance with 
adaptive average pooling.

Concatenation of output of Segmental Consensus and 
output of CAMA module A study is also carried out to show 
the effectiveness of concatenation of the outputs of Seg-
mental Consensus and CAMA module. The concatenation 
of both outputs can reduce bias that result in poor action 
recognition performance and can be considered as a type 
of regularization for CAMA-Net. The performance with and 
without concatenation of these two outputs are shown 
in Table 8. The result shows that CAMA-Net can achieve 
the best performance with the concatenation of these two 
outputs.

Batch normalization An experiment is also carried out to 
ensure that batch normalization is useful to improve the 
effectiveness of CAMA-Net. Batch normalization is a com-
mon method to standardize the inputs of deep learning 
model to a single layer for each mini batch during training 
process. In theory, the learning process can be stabilized, 
and the number of epochs required for the deep learning 
model to train can be reduced. Table 9 shows the perfor-
mance comparison between CAMA-Net with and without 
batch normalization. The result shows that CAMA-Net can 
achieve the best performance with batch normalization.

4.5  Other experiments

Channel sizes of input features for CAMA module To recap, 
the inputs to the CAMA module include memory key ( Mk ), 
memory value ( Mv ), query key ( Qk ) and query value ( Qv ). 
These input features are passed to the CNN module to 
obtain the key value pairs of memory features and query 
features. The filter size of each CNN module is fixed at 1 × 1 . 

Table 6  Study on the relevance functions used in CAMA mod-
ule.  Performance of the different combinations of relevance func-
tions on the UCF101 dataset is shown. Higher values are better

Batch matrix 
multiplication

Bi-linear 
function

Trainable 
function

Accuracies

Top-1 Top-5

✓ ✓ 85.80 97.62
✓ ✓ 86.04 97.49

✓ ✓ ✓ 86.28 97.36

Table 7  Study on adaptive 
average pooling used in 
CAMA-Net. Performance with 
and without adaptive average 
pooling for CAMA-Net on the 
UCF101 dataset is shown. 
Higher values are better

Adaptive aver-
age pooling

Accuracies

Top-1 Top-5

✗ 82.84 95.40
✓ 86.28 97.36

Table 8  Study on 
concatenation of outputs of 
segmental consensus and 
CAMA module. Performance 
with and without output 
concatenation of the two 
modules in CAMA-Net on the 
UCF101 dataset is shown. 
Higher values are better

Concatena-
tion

Accuracies

Top-1 Top-5

✗ 85.78 97.07
✓ 86.28 97.36

Table 9  Study on batch 
normalization used in CAMA-
Net. Performance with and 
without batch normalization 
for CAMA-Net on the UCF101 
dataset is shown. Higher values 
are better

Batch nor-
malization

Accuracies

Top-1 Top-5

✗ 81.23 94.85
✓ 86.28 97.36
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Since all the above features jointly contribute to the per-
formance of our proposed model, an experiment is con-
ducted to vary the channel size of each feature to find the 
optimum. Key channel size is used for memory and query 
key generation while value channel number is used for 
memory and query values generation. Table 10 shows the 
performance result when varying the channel sizes of the 
key and value pairs. The result shows that CAMA-Net can 
achieve the best performance with key channel size of 512 
and value channel size of 2048.

Batch size, sequence length and learning rate Hyperpa-
rameter tuning is very important for a model to achieve 
the best performance. Therefore, extensive experiments 
have been carried out to explore the possible range of val-
ues to narrow down to the most optimum ones. In action 
recognition, batch size, sequence length and learning rate 
are important hyperparameters to achieve good action 
recognition accuracy. Batch size denotes the number of 
videos that will be propagated through the network while 
sequence length denotes the length of the sequence for 
video snippets. The learning rate is a hyperparameter that 
controls how fast the model changes in response to the 
estimated error each time the model weights are updated. 
The performance of varying the batch size, sequence 
length and initial learning rate is shown in Tables 11, 12 
and 13 respectively. The results show that CAMA-Net 
can achieve the best performance with a batch size of 
6, sequence length of 24 and initial learning rate for the 
model training of 0.00008.

5  Conclusion

In this paper, we introduce the Context Aware Memory 
Attention Network (CAMA-Net) for video action recogni-
tion, eliminating the requirement for optical flow extrac-
tion. CAMA-Net offers enhanced efficiency by avoiding 
the computationally intensive 3D convolution. Instead, 
we design a Context Aware Memory Attention (CAMA) 
module, an attention mechanism used to compute the 
relevance score between key-value pairs derived from 
the backbone network outputs. Through extensive experi-
ments conducted on four widely-used benchmark data-
sets, our proposed model demonstrates remarkable per-
formance improvements while maintaining competitive 
efficiency compared to SOTA 2D CNN-based models. Our 
model maintains its performance amid the many different 
action classes regardless of video length.

Vision Transformers (ViT) [72] are actively used in the 
research community to replace Convolutional Neural Net-
works to solve the computer vision tasks, including human 
action recognition. Recently, there are several lightweight 
ViT based models, such as MobileViT [73] and Efficient-
Former [74] which are able to overcome the computational 
intensive problem in computer vision task. For future work, 
we will focus on exploring and improving lightweight ViT 
based models in human action recognition.
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Table 10  Study on varying channel size of input features for CAMA 
module. When varying channel sizes of the input features for CAMA 
module on the UCF-101 dataset is shown. Higher values are better

Key channel size Value channel size Accuracies

Top-1 Top-5

256 1024 85.06 97.09
512 1024 85.75 96.75
256 2048 85.91 97.99
512 2048 86.28 97.36

Table 11  Study on batch 
size used in CAMA-Net 
for model training and 
testing. Performance of the 
different batch sizes for CAMA-
Net on the UCF101 dataset 
is shown. Higher values are 
better

Batch size Accuracies

Top-1 Top-5

12 84.85 97.30
9 85.73 97.33
6 86.28 97.36
3 83.58 96.19

Table 12  Study on varying 
sequence length of 
input videos in CAMA-
Net model training and 
testing. Performance of the 
different sequence lengths of 
video input in CAMA-Net on 
the UCF101 dataset is shown. 
Higher values are better

Sequence 
length

Accuracies

Top-1 Top-5

6 83.19 95.51
12 86.12 96.72
18 85.88 97.20
24 86.28 97.36

Table 13  Study on initial learning rate used in CAMA-Net model 
training and testing.  Performance of the different initial learning 
rates in CAMA-Net on the UCF101 dataset is shown. Higher values 
are better

Initial learning rate Accuracies

Top-1 Top-5

0.00064 82.84 96.11
0.00032 85.01 96.80
0.00016 85.73 96.38
0.00008 86.28 97.36
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