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Abstract
In the current study, we examined the impact of introducing Flumox into the chitosan/calcium lithium (Chitosan-CaLi) 
nanocomposite on its spectroscopic, thermal, and antimicrobial characteristics. The formation of the nanocomposites 
was achieved using the sol–gel method/polymerization, which was chosen for its cost-effectiveness and straightforward 
processing. The UV–Visible optical analysis shows an absorption peak at 290 nm across all samples. Both direct and indi-
rect energy gap types are available where the indirect event exhibits a higher value than the direct transition. There is a 
noticeable decrease in both transition energies with the increase in Flumox content. The findings indicated that as the 
Flumox concentration increased, the Ic50 value also increased, signifying a decrease in antioxidant capacity. The results 
from the obtained systems revealed that chitosan-CaLiO nanoparticles loaded with Flumox exhibited remarkable anti-
microbial activity, particularly against Pseudomonas aeruginosa and Staphylococcus aureus, demonstrating the highest 
growth inhibition rate. However, in the case of Aspergillus niger and Candida albicans, the antimicrobial activity was 
comparatively lower.
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1  Introduction

Chitosan, a cationic biopolymer, possesses noteworthy 
physicochemical attributes such as non-toxicity, biodeg-
radability, biocompatibility, antibacterial properties, and 
the ability to form films [1, 2]. These characteristics make 
it highly relevant in industries such as food, medical, phar-
maceutical, agricultural, and optoelectronics. The flexible 
and permeable film formed by chitosan is a result of its 
stabilized hydrogen bond network. The blending of bio-
degradable polymers offers the opportunity to develop 
a new class of biomaterials with optimized properties 
tailored for specific applications [3–5]. Furthermore, the 

incorporation of various ions, nanoparticles, and poly-
meric materials into chitosan can be achieved using a 
simple method, thereby expanding its range of applica-
tions. Chitosan based bio-polymers generate a new gen-
eration of nanomaterials that have tendency to reduce the 
environmental impact in terms of biomedical, energy con-
sumption and greenhouse effect in specific applications. 
They are a potential alternative to traditional nanomateri-
als whose recycling is impossible or not economical [6–8].

Calcium Oxide (CaO) nanoparticles have emerged as 
a subject of immense interest and research. CaO, com-
monly known as quicklime, has been an essential com-
pound in various industries for its versatile applications 
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[9–11]. These nanoscale entities boast an impressive 
surface area-to-volume ratio, leading to enhanced reac-
tivity, catalytic efficiency, and novel functionalities. Their 
exceptional properties open up avenues in fields ranging 
from materials science and catalysis to medicine and envi-
ronmental remediation [10, 12, 13]. It is proved that the 
amalgamation of CaO with silica and phosphate results 
in exceptional bioactivity, degradability, and biocompat-
ibility. Consequently, this composite holds potential as an 
alternative material for the restoration of damaged teeth 
or bones, as well as for applications in drug delivery [9, 
14, 15].

Within the field of environmentally conscious systems, 
the incorporation of LiCa as nanoparticles within the Chi-
tosan-LiCa@Flumox framework stands out as an exception-
ally enticing objective. This work is driven by the desire to 
enhance the efficacy of nanocomposites through the inte-
gration of diverse functional groups within the polymeric 
matrix, thus facilitating rapid mass transfer [3–5, 16]. This 
holds significant value, particularly for versatile applica-
tions, making it a matter of considerable importance.

In this study, the copolymerization of chitosan with 
lithium calcium nanoparticles was employed to produce a 
positively charged surface and modify the chitosan matrix. 
An examination was conducted to assess how different 
ratios of Flumox (as a common drug and fast dissolution) 
influenced the morphology, crystallite degree, thermal 
properties, and optical characteristics of the resultant 
nanocomposites. Subsequently, the antioxidant and 
antimicrobial properties were evaluated to explore their 
bioactivity. The incorporation of CaLiO nanoparticles into 
the chitosan matrix, along with loading Flumox, resulted 
in the development of a nanocomposite with outstanding 
spectroscopic properties for Antioxidant and antimicrobial 
activities.

2 � Expriemental

2.1 � Chitosan‑CaLi synthesis and loading 
with Flumox

To fabricate the chitosan solution, medium molecular 
weight (MMW) chitosan from Sigma-Aldrich was used 
along with acetic acid. The preparation of chitosan 
involved dissolving 2.3 g of chitosan in 100 ml of a 1 wt.% 
acetic acid solution. For the synthesis of calcium lithium 
hydrate in this study, a sol–gel reaction was employed 
using calcium nitrate (Ca(NO3)2-4H2O) and lithium nitrate 
(LiNO3- Sigma-Aldrich). Specifically, 20 ml of Ca (NO3)2-
4H2O/H2O (Sigma-Aldrich) with a pH of 11.5 and 5 ml of 
LiNO3 were mixed, followed by stirring the solution for 
1 h at 40 ℃. Once complete dissolution of the chitosan 

and calcium lithium (CaLi) was achieved, the two solutions 
were combined. The resulting mixture was then cast onto 
Petri dishes and left to dry at 40 ℃. Finally, loading Flumox 
using separated solution by mixing various doses of Flu-
mox with starch-H2O under stirring for 10 min and mixed 
in the previously prepared chirosan-CaLi solution at room 
temperature.

2.2 � Characterizations

X-ray diffraction (XRD) patterns were collected using a 
Bruker D8 advance diffractometer with CuKα radiation 
(λ = 1.540 Å). The instrument operated at 40 kV and 40 mA. 
Scans were conducted with a detector step size of 0.02°, 
covering an angular range of 2θ from 10 to 70°.Transmis-
sion electron microscope (TEM) images were gotten from 
(JEOL-2100) microscope -Japan. UV–VIS measurements 
were recorded using UV/VIS Spectrometer (Lambda 
35-PerkinElmer USA). The Tescan Shimadzu FTIR-spectro-
photometer (Model 8000, Japan) was used to record FTIR 
in the range of 400–4000 cm−1. The thermal stability of 
samples was achieved using a heat heavy difference heat 
integrated analyzer (Perkin Elmer thermal gravimetric ana-
lyzer- TGA7, USA) in the nitrogen atmosphere with a heat-
ing rate of 20 ℃ min−1. The UV–visible spectroscopy evalu-
ations were performed using Jasco (V570, USA, UV–vis NIR 
spectrophotometer).

2.3 � Determination of antioxidant capacity

Antioxidants are substances that neutralize reactive oxy-
gen species (ROS) and their actions. Some antimicrobial 
agents can stimulate the production of ROS as part of their 
mechanism of action [17]. Therefore, the antioxidant sys-
tems of bacterial pathogens could be important to coun-
teract antibiotic ROS production.

The IC50 value is a parameter widely used to measure 
the antioxidant activity of test samples. It is calculated as 
the concentration of antioxidants needed to decrease the 
initial DPPH concentration by 50% [18, 19]. Thus, the lower 
IC50 value the higher antioxidant activity.

2.3.1 � DPPH free radical scavenging assay

Radical scavenging activity against stable 2, 2 diphenyl 
2 picryl hydrazyl hydrate (DPPH) was determined by the 
slightly modified method of Brand-Williams et al., 1995 
[20]. DPPH reacts with an antioxidant compound, which 
can donate hydrogen, and reduce DPPH. The change in 
colour (from deep violet to light yellow) was measured at 
517 nm on a UV visible light spectrophotometer. The solu-
tion of DPPH 0.1 mM in ethanol was prepared fresh daily 
before UV measurements. The samples were kept in the 
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dark for 15 min at room temperature and the decrease in 
absorbance was measured. The experiment was carried 
out in triplicate. Radical scavenging activity was calcu-
lated by the following formula. % Inhibition = [(AB–AA)/
AB] × 100 Where AB = absorption of blank sample (t = 0 min) 
AA = absorption of test extract solution (t = 15 min) [20, 21]. 
The IC50 was calculated from the scavenging activities (%) 
versus concentrations of the respective sample curve.

2.4 � Assessment of antimicrobial efficacy

In this section, the antimicrobial activity of the samples 
was evaluated. The antibacterial activities of chitosan-cal-
cium lithium nanocomposite loaded with (0.1–0.4 wt.%) 
Flumox, were evaluated using the agar plate method. Two 
bacterial test microorganisms were cultivated on nutrient 
agar medium (DSMZ1) with the following composition per 
liter: beef extract (3 g), peptone (10 g), and agar (20 g). The 
cultures of each microorganism were diluted using sterile 
distilled water to achieve a concentration of 107–108 CFU/
ml (CFU represents the number of cells per ml of the sus-
pension used for inoculation). Polymer-containing discs 
with a diameter of 10 mm were placed on the surface of 
the inoculated agar plates (10 cm in diameter with 25 ml 
of solidified media) and incubated at 37 ℃ for 24 h. For the 
fungi (Candida albicans), Czapek-Dox or potato dextrose 
agar was used as the medium, and the incubation time 
was extended to 48 h at 37 ℃. The obtained results repre-
sent the average from duplicate plates.

3 � Results and discussion

3.1 � XRD

The primary objective of this study revolved around cre-
ating nanocomposites based on chitosan, incorporating 
LiCa nanoparticles with varying proportions of Flumox. 
Hence, the initial phase encompassed the fabrication of 
uniform LiCa nanoparticles using the sol–gel technique on 
a nanoscale level, coupled with an in-situ polymerization 
process. The initial synthesis endeavors concentrated on 
amalgamating the sol–gel and polymerization methods, 
a methodology previously documented by our research 
group. It was observed that this approach yielded nano-
composites exhibiting a degree of crystallinity, leading 
to the incorporation of LiCa sols within the polymeric 
matrices.

Figure 1 depicts the X-ray Diffraction (XRD) patterns of 
chitosan-LiCa nanocomposites loaded with (0.1–0.4 wt.%) 
of Flumox. These profiles align with both the amorphous 
lithium calcium and chitosan. Analysis of the XRD patterns 
reveals the emergence of weak peaks, corresponding to 

the CaO phase and hexagonal calcium hydroxyl phases 
within the current nanocomposites in the presence of 
lithium ions [10, 22]. These observations are consistent 
with the patterns documented in the established standard 
card (JCPDS card number 37-1497) for CaO. Nevertheless, 
the chitosan-LiCa@Flumox patterns exhibit a broad peak 
at 6.7° degrees, indicative of a slight increase in breadth 
along with a reduction in intensity, corresponding to the 
altered characteristics of chitosan.

3.2 � TEM

The TEM image (Fig. 2a) illustrates the morphological char-
acteristics of the CaLi nanoparticles before their incorpo-
ration into the chitosan matrix. Upon the formation of 
the chitosan-CaLi composite and the loading of Flu, the 
micrograph of the resulting nanocomposite reveals intri-
cate morphological features (Fig. 2b, c). The TEM images 
of the chitosan-CaLi composite indicate the presence of 
agglomerated nanoparticles within the polymeric host. 
With the inclusion of Flu, the agglomeration is observed 
to increase, accompanied by a predominance of dense-
shaped morphology. The diameter of the CaLi nanoparti-
cles in the sample ranges from 3 to 22 nm.

3.3 � TGA analysis

Figure 3 presents the thermogram of Flumox chitosan-
starch/CaLiO nanocomposite with 0 and 0.3 concentra-
tion of Flumox. It is evident from the thermogram that 
the weight of samples decreases as the temperature 
increases. The thermal decomposition of Flumox free 
sample starts at about 192 ℃, while that of 0.3 Flumox 
loading starts at about 40 ℃. Hence, incorporation of Flu-
mox into chitosan-starch/CaLiO matrix shifts the onset of 
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Fig. 1   XRD patterns of chitosan-LiCaO@Flumox nanocomposites
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thermal decomposition to lower temperature. Moreover, 
the thermogram reported in Fig. 3 also show that ther-
mal decomposition of the nanocomposites takes place 
in one step. This step of thermal decomposition (lower 
temperature region) occurs due to the evaporation of 
water (solvent) retained in the nanocomposites [23, 24]. 
After this thermal degradation step, the residual percent-
age of weight of the nanocomposites left were around 96 
and 75% at 500 ℃ for 0 and 0.3 concentration of Flumox, 
respectively. The decrease in residual weight at the end 
of thermal degradation process is attributed to the pres-
ence of Flumox in the matrix and the decrease of CaLiO 

nanoparticles concentration. This shows that addition of 
Flumox decreases the thermal stability of the matrix. Simi-
lar results have been quoted by other authors also [25–28].

3.4 � Flumox loading using Uv‑absorbance

Figure 4 presents the UV–Vis absorption spectra of the 
chitosan-CaLiO nanocomposite loaded with Flumox at 
varying concentrations (0.1–0.4 Wt.%). Initially, the release 

Fig. 2   TEM micrographs of a 
CaLi NPs before mixed in chi-
tosan matrix, b Chitosan-CaLi, 
and c loaded with 0.4 Flumox 
nanocomposite

Fig. 3   TGA of chitosan-LiCaO@ Flumox nanocomposites
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Fig. 4   UV absorption spectra of Chitosan-CaLiO nanocomposite 
loaded with (0–0.4 wt.%) Flumox 
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study was conducted on samples with the lowest drug 
ratio of 0.1 for chitosan-CaLiO-0.1 F, in comparison to the 
unloaded sample. The absorption mechanism involves 
drug molecules interacting with the CaLi nanoparticles, 
leading to the formation of drug-CaLi complexes. These 
complexes result in higher absorbance levels compared 
to the chitosan-CaLi composite alone. The intricate nature 
of the nanocomposite also significantly aids in effectively 
trapping and retaining drugs, further enhancing its drug 
absorbance capacity. The chitosan-CaLi nanocomposite’s 
ability to absorb drugs at 200 nm offers promising applica-
tions in drug delivery systems and pharmaceutical formu-
lations. By capitalizing on this property, researchers and 
scientists can optimize Flumox encapsulation and release 
processes, potentially advancing targeted therapies and 
controlled Flumox delivery methods.

3.5 � Optical properties

Analysis of optical properties of nanocomposites is of 
huge importance due to their applications in diverse 
zones such as optical sensors, laser, imaging, solar cell, 
photocatalysis, etc. [29]. Different optical parameters 
such as optical energy gap, Urbach’s energy, refractive 
index etc. can be determined with the help of opti-
cal characterization [30]. Various factors such as size, 
shape, nanofillers content and surrounding environment 
strongly affect the optical properties of nanocompos-
ites. Optical constants of a solid provide the information 
about its interaction with light [31]. In addition; infor-
mation about energy band structure, impurity levels, 
localized defects, etc. of a solid can also be extracted 
from optical constants [32]. Thus, studies on the effect 

of increasing concentration of Flumox on optical param-
eters of starch and chitosan loaded with CaLiO are essen-
tial for determining their potential applications in differ-
ent fields.

Figure 5a show the UV–visible absorption spectra of 
Flumox chitosan-starch/CaLiO nanocomposite with vary-
ing concentration of Flumox. The figure shows that a small 
values of R for all samples with a semi constant behavior. 
In the other hand, T have a large value nearly equal to or 
exceeds 0.8. At about 290 nm, there is a sharp increase of T 
with wavelength increase for all samples till about 530 nm, 
where the steady state is reached.

In Fig. 5b, the absorbance changes with wavelength, 
revealing an absorption peak at 290 nm across all sam-
ples. This particular peak, distinguished by its sharp edge, 
provides evidence of the semicrystalline structure within 
the Cs-starch-CaLiO matrix [33]. Absorption peak intensi-
ties change with Flumox addition, confirming component 
complexation [33].

Optical energy gap of nanocomposites has been calcu-
lated using Tauc method [34, 35]. Both direct and indirect 
energy gap types are available (Fig. 6a, b), and notably, 
the indirect event exhibits a higher value than the direct 
transition. As evidenced by Fig. 5c, there is a noticeable 
decrease in both transition energies with the increase in 
Flumox content. This decrease in Eg values finds its root 
in the interaction between the organic molecules and 
inorganic (Ca and Li ions) components [33]. The interac-
tion gives rise to localized states, facilitating the creation 
of charge transfer complexes between the LUMO and the 
HOMO [33]. The change in Eg values can be attributed to 
two significant factors: crosslinking in amorphous regions 
of CS and an increase in Flumox. Consequently, there is 

Fig. 5   a Transmission and reflection, b absorption coefficient of the prepared samples
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a noticeable augmentation of localized states within the 
forbidden gap [33].

3.6 � Antioxidant study

Antioxidants are substances that neutralize reactive oxy-
gen species (ROS) and their actions. Some antimicrobial 
agents can stimulate the production of ROS as part of their 
mechanism of action [17]. Therefore, the antioxidant sys-
tems of bacterial pathogens could be important to coun-
teract antibiotic ROS production. DPPH assay depends on 
the measurement of the loss of DPPH free radicals after 
reaction with test samples. It is considered as the prior 
mechanism involved in the electron transfer. The IC50 value 
is a parameter widely used to measure the antioxidant 
activity of test samples. It is calculated as the concentra-
tion of antioxidants needed to decrease the initial DPPH 
concentration by 50% [18, 19]. Thus, the lower IC50 value 

the higher antioxidant activity. The IC50 values using DPPH 
scavenging activity were calculated for different doses of 
immobilized Flumox (Table 1). The results showed that by 
increasing the Flumox concentration, the Ic50 increases 
(antioxidant capacity decreases) and this may be due to 
the loading capacity of chitosan/gelatin support which 
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Fig. 6   Tauc relation for a direct case, b indirect case, and the change of Eg with Flumox content change

Table 1   Antioxidant capacity for chitosan/gelatin using DPPH 
method

Values are presented as mean ± SD from n = 3–4 independent 
experiments

Flumox (g) Ic50 (µg Flumox/ml)

0.0F 59 ± 0.7
0.1F 188 ± 2
0.2F 285.7 ± 13
0.3F 512 ± 20
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gives its maximum antioxidant capacity with the dose of 
0.1 g Flumox [19].

Table 2 showed that the 4Li has a powerful antioxidant 
capacity compared to the 0Li and 2Li mole ratio where 
by increasing Flumox mole ratio, the antioxidant capacity 
increases (Ic50 decreases). Indeed, active hydroxyl groups 
in chitosan backbone play an important role in scavenging 
of DPPH free radicals than the amino ones. Moreover, it is 
well known that chitosan has strong intra- and intermo-
lecular hydrogen bonds consequently, OH is difficult to 
dissociate [19].

3.7 � Antimicrobial activity

The antimicrobial activities of the treated fabrics were 
assessed using the disc agar plate method. To evaluate 
the antimicrobial activities of the treated fabrics, four dif-
ferent test microbes were selected: Staphylococcus aureus 
(representing Gram-positive bacteria), Escherichia coli 
(representing Gram-negative bacteria), Candida albicans 
(representing yeast), and Aspergillus niger (representing 
fungi). The bacterial and yeast test microbes were cultured 
on a nutrient agar medium (DSMZ1) consisting of peptone 
(5.0 g), meat extract (3.0 g), agar (20.0 g), distilled water 
(1000.0 ml), and adjusted to a pH of 7.0. On the other hand, 
the fungal test microbe was cultivated on Czapek-Dox 
medium (DSMZ130) containing sucrose (30.00 g), NaNO3 
(3.0 g), MgSO4 × 7 H2O (0.50 g), KCl (0.50 g), FeSO4 × 7 
H2O (0.01 g), K2HPO4 (1.0 g), agar (18.0 g), distilled water 
(1000.0 ml), and adjusted to a pH of 7.2.

The cultures of each test microbe were diluted using 
sterilized distilled water to achieve a concentration of 
approximately 107–108 cells/ml. Subsequently, 1 ml of 
each diluted culture was used to inoculate a 1L Erlen-
meyer flask containing 250 ml of solidified agar media. 
These media were then transferred to pre-sterilized Petri 
dishes (10 cm in diameter) containing 25 ml of solidified 
media. The treated fabric discs with a diameter of 10 mm 
were placed on the surface of the agar plates that were 
seeded with the respective test microbes. The plates were 
incubated for 24 h at the appropriate temperature for each 
test organism. The antimicrobial activities were recorded 
as the diameter of the clear zones (including the film 

itself ) that appeared around the fabric discs as predicted 
in Table 3. By synthesizing the chitosan-CaLi/Flumox nano-
composite, the controlled release of CaLiO nanoparticles 
and Flu is achieved, offering an effective solution to pre-
vent and inhibit the proliferation of harmful microbes. 
The CaLiO nanoparticles exhibit the capability to interact 
with microbes, forming strong bonds with their cellular 
enzymes, thereby effectively impeding enzyme activity 
and suppressing microbial growth (Fig. 7). This interac-
tion eventually results in the eradication of the microbes.

4 � Conclusion

The monomodal LiCa nanoparticles enriched with Flu-
mox and their integration into chitosan nanocomposites 
was synthesized employing sol–gel and polymerization 
methodologies. Our observations indicated an increase 
in crystallinity within these materials, accompanied by a 
decreased in the bandgap as well as a decrease in thermal 
stability as the Flumox content increased. In conclusion, 

Table 2   Antioxidant capacity 
for chitosan/starch/CaLio using 
DPPH method

Values are presented as 
mean ± SD from n = 3–4 inde-
pendent experiments

Sample Ic50 (mmol CaLiO/ml)

0F 63 ± 2
0.2F 12.5 ± 0.25
0.3F 4 ± 0.03

Table 3   Microbial sensitivity of samples loaded with Flumox-nano-
composite against pathogenic verified microorganisms

Sample name Clear zone (ϕmm)

Staphy-
lococcus 
aureus

Pseudomonas 
aeruginosa

Candida 
albicans

Aspergil-
lus niger

Ch-LiCa 13 14 14 11
Ch-LiCa-0.2 CL 11 11 11 11
Ch-LiCa-0.3 Cl 15 13 14 13
Ch-LiCa-0.4 CL 15 15 14 14

Ch-LiCa Ch-LiCa-0.2 CL Ch-LiCa-0.3 Cl Ch-LiCa-0.4 CL
0
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Fig. 7   Antimicrobial activates of chitosan-LiCaO@ Flumox nano-
composites
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chitosan-copper demonstrates notable drug absorbance 
at 200 nm due to its unique interaction with drug mol-
ecules and CaLiO NPs. This characteristic opens up possi-
bilities for innovative drug delivery approaches and holds 
promise for improving drug efficacy. An absorption peak 
at 290 nm across all samples was observed, and distin-
guished by its sharp edge, provides evidence of the sem-
icrystalline structure within the Cs-starch-CaLiO matrix. A 
noticeable decrease in both direct and indirect transition 
energies with the increase in Fumox content. This decrease 
in Eg values finds its root in the interaction between the 
chitosan/Flumox and inorganic (Ca and Li ions) compo-
nents which generate localized states within the forbid-
den gap.
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