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Abstract
This study aimed to estimate human age and gender from panoramic radiographs using various deep learning techniques 
while using explainability to have a novel hybrid unsupervised model explain the decision-making process. The clas-
sification task involved training neural networks and vision transformers on 706 panoramic radiographs using different 
loss functions and backbone architectures namely ArcFace, a triplet network named TriplePENViT, and the subsequently 
developed model called PENViT. Pseudo labeling techniques were applied to train the models using unlabeled data. 
FullGrad Explainable AI was used to gain insights into the decision-making process of the developed PENViT model. The 
ViT Large 32 model achieved a validation accuracy of 68.21% without ArcFace, demonstrating its effectiveness in the 
classification task. The PENViT model outperformed other backbones, achieving the same validation accuracy without 
ArcFace and an improved accuracy of 70.54% with ArcFace. The TriplePENViT model achieved a validation accuracy of 
67.44% using hard triplet mining techniques. Pseudo labeling techniques yielded poor performance, with a validation 
accuracy of 64.34%. Validation accuracy without ArcFace was established at 67.44% for Age and 84.49% for gender. The 
unsupervised model considered developing tooth buds, tooth proximity and mandibular shape for estimating age within 
deciduous and mixed dentitions. For ages 20–29, it factored permanent dentition, alveolar bone density, root apices, 
and third molars. Above 30, it notes occlusal deformity resulting from missing dentition and the temporomandibular 
joint complex as predictors for age estimation from panoramic radiographs.
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Graphical abstract

Article highlights

• Development of a novel hybrid model to estimate 
human age and sex from labeled and unlabeled ortho-
pantomograms.

• Evaluation of regression task, pseudo-labelling, and 
Triplet networks for age and sex estimation.

• Successful application of explainable AI to identify the 
anatomy responsible for shaping estimation accuracy.
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1 Introduction

Non-invasive age and gender estimation from radiographs 
has notable roles in dental diagnostics and forensic inves-
tigations [1]. Applications outside of the dental practice 
range from estimate the age of the corpse or to help in 
determining the identities of the deceased who succumb 
to calamities such as explosions in law enforcement and 
judicial trials evaluating the truthfulness of an individual’s 
age at specified times of interest or in the cases of undoc-
umented children [2, 3]. To provide scientifically backed 
evidence on age and biological sex, forensic dentistry 
determines the age of an individual through estimating 
the stage of development of a tooth and maxillofacial 
arches. The development of a tooth occurs through sev-
eral stages, starting from the formation of the tooth bud 

in the embryonic stage to the eruption and maturation of 
the tooth in the oral cavity. Panoramic radiographs, also 
known as orthopantomogram (OPG) or panoramic imag-
ing, is a specialized, easily accessible, and cost-effective 
dental imaging technique that captures a wide-angle view 
of the entire oral and maxillofacial region in a single image. 
It provides a comprehensive 2-dimensional overview of 
the dentition, maxillofacial and mandibular bone anatomy, 
temporomandibular joints (TMJs), sinuses, and other sur-
rounding structures and have been used previously to 
report on root-canal treatment progression [4].

While advanced 3-dimensional techniques such as com-
puted tomography (CT) [5, 6] and cone-beam computed 
tomography (CBCT) [7, 8] have gained recent popular-
ity, panoramic radiographs still remain the most com-
monly used technique in both dental diagnostics and 
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deep learning applications related to dentistry [9–12]. 
The innovation of high-resolution biosensors and subse-
quent imaging processes in recent times have produced 
large quantities of data that can be examined with the 
help of computer programs. OPGs are considered to con-
tain most two-dimensional landmark information used 
to reach a preliminary diagnosis and are usually the first 
step in determining whether three-dimensional computed 
tomography is required. Traditional automations of dental 
age estimation involve phases, such as image-preprocess-
ing, segmentation, feature extraction, and classification 
(categorical) or regression (numerical). In the case of clas-
sification, these processes aim to identify age categories 
for people, whereas the regression phase aims to identify 
their exact ages.

Deep Learning (DL) methods have been applied in 
recent years to automate activities utilizing OPG images. 
DL techniques, most notably convolutional neural net-
works (CNNs), have shown promise in various applications 
involving digital images of panoramic radiographs that are 
able to extract and segment features within the maxilla 
and mandible to isolate each tooth from other objects 
in the image such as jaws[13]; the detection and classi-
fication of individual teeth involve the identification and 
labeling of each tooth within a dental image [14–16]; the 
detection of previous treatment, e.g., endodontics [17]; the 
reconstruction of OPG images where a patient was badly 
positioned [18]; the diagnosis of osteoporosis [19] and jaw 
tumors [20].

While there has been extensive exploration of super-
vised CNN-based age estimation in previous literature, the 
integration of unsupervised learning and explainability 
is a relatively nascent area in terms of both design and 
approach [21]. The application of unsupervised learning to 
radiographic assessment to reduce operator-related vari-
ability is of particular interest. In this context, our research 
introduces a novel unsupervised deep learning approach, 
termed PENViT, which combines EfficientNet and Vision 
Transformer (ViT) models with Addictive Angular Margin 
Loss (ArcFace). This amalgamation of different deep learn-
ing models and loss functions aims to elevate the accuracy 
and resilience of dental age estimation. The primary objec-
tive of the present study was to explore existing methods 
and devise novel strategies for advancing automated age 
prediction using weak and minimal supervision. To this 
end, the study posed the following research questions:

a. Which model architecture can correctly estimate age 
and biological gender using regression-based neural 
network?

b. Does margin losses (ArcFace, TripletMarginLoss) 
increase performance of OPG-based age classification 
as compared to pure cross entropy loss?

c. Does Hard Triplet Mining task improve validation accu-
racy of Triplet network?

d. Can the novel PENViT model backbone perform on 
par in both general form and triplet-like network (Tri-
plePENViT) as compared with any other backbone?

e. Does a two-step semi-supervised pseudo labelling 
workflow improve validation accuracy of age estima-
tion?

f. Can AI interpretation produce medically sound regions 
of explainability on radiographs for predicting age?

2  Related literature

The anatomical form of the maxilla and mandible along 
with the alveolar bone region development has most cor-
relation with the individual’s chronological age [22]. When 
classifying jaw development, striking age-related features 
include the development of deciduous dentition, followed 
by each permanent tooth and finally the root completion 
of third molars [22]. The current study aimed to imple-
ment a series of methodologies from previous literature 
and generate a hybrid model that can be used to identify 
biological gender and estimate age.

2.1  Regression tasks

Age estimation from orthopantomograms or panoramic 
radiographs constitutes an application that leverages 
regression models [2, 3, 23]. The primary objective revolves 
around gauging an individual’s age, drawing from diverse 
variables encompassing mandible development, tooth 
germs, and areas of missing space within the dental arch 
[3, 23]. Previous inquiries have adopted Mean Absolute 
Error (MAE) metrics to delineate the efficacy of the regres-
sion model [10, 21]. In a manner akin to the present expo-
sition (with results expounded in a subsequent segment), 
Fan et al. [21] similarly identified a diminished MAE vis-
à-vis alternative CNN-only architectures, all pertaining to 
regression tasks. Demonstrating an automated method-
ology, Atas et al. modified the InceptionV3 framework to 
yield an innovative neural network model [10].

Table 1  Classification Task: Age group classification

Age Bracket (year) Category Name

0–5 Deciduous dentition
6–12 Mixed dentition
13–19 Permanent dentition adolescent
20–29 Young adults
30–59 Middle aged individuals
 > 60 Seniors/elderly
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A more accurate and relatively faster dental age esti-
mation stemmed from curtailing the array of attributes 
inherent in the devised model structure. He et al. intro-
duced profound relation learning for regression, aiming to 
unearth diverse correlations within pairs of input images 
[24]. In parallel, Fan et al. aspired to formulate a hybrid 
deep neural network, termed DASE-net, amalgamating 
Transformer and CNN components. This novel architec-
ture aimed at age prediction via dental x-rays, juxtapos-
ing its performance against CNNs and manual techniques 
executed by forensic dentistry experts [21]. A contempo-
raneous study also evaluated gender using dental x-rays, 
employing DenseNet Architecture alongside compara-
tive models [25]. The authors experimented with four 
distinct deep learning network structures: VGG, ResNet, 
EfficientNet, and DenseNet. Out of these, the proposed 
DenseNet121 model, endowed with fewer parameters, 
manifested superior outcomes compared to its more 
parameter-laden counterparts.

An independent exploration introduced the lightweight 
SFCN model, capable of accurate age prediction through 
a solitary fully connected layer, thus minimizing param-
eter count, in contradistinction to multi-layer counter-
parts [26]. After contrasting SFCN’s performance against 
that of ResNet18, ResNet50, ResNet101, and ResNet152, it 
was deduced that deeper models did not inherently out-
perform shallower counterparts in predicting brain age. 
Among the gamut of tested architectures, SFCN emerged 
as the pinnacle performer. Alternatively, prior literature 
also documented Bayesian convolutional neural networks 
as a possible approach to estimate age uncertainty [27].

2.2  Classification tasks

Age estimation can alternatively be tackled as a classifica-
tion task, wherein the objective is to categorize individu-
als into predetermined age groups or classes. The classes 
employed for classification in this research are indicated in 
Table 1, and they were modified based on prevalent pat-
terns in dentistry but in a simplified manner to ensure the 
limited dataset can generate meaningful and reliable data 
[28, 29].

An automated approach for determining individu-
als’ age groups was presented by a group of researchers, 
employing transfer learning techniques on two convo-
lutional deep neural networks: AlexNet and ResNet-101 
[2, 3, 11, 23]. The classification process involved utilizing 
decision tree (DT), k-nearest neighbor (K-NN), linear discri-
minant (LD), and support vector machine (SVM) methods. 
Another study by Vila-Blanco et al. introduced two fully 
automatic methods for estimating chronological age [12]. 
The first approach, named DANet, employed a sequential 
Convolutional Neural Network (CNN) for age estimation. 

The second approach, known as DASNet, extended this by 
incorporating a second CNN path to predict gender and 
leveraging gender-specific features to enhance age esti-
mation performance. Comparative results indicated the 
superior performance of DASNet over DANet.

In a different context, Almalki et al. delved into object 
detection using the YOLOv3 deep learning model, cre-
ating an automated tool to diagnose and classify den-
tal abnormalities from panoramic dental radiographs. 
Meanwhile, Farhadian et al. employed the pulp-to-tooth 
ratio for age estimation [30]. Recent literature also intro-
duced saliency map-enhanced age estimation techniques, 
capable of automatically estimating age based on lateral 
cephalometric images [31]. To identify the most suitable 
convolutional neural network model for automated age 
estimation, Milosevic et al. employed pre-trained param-
eters from general-purpose vision models [32]. Through 
ablation experiments, the authors identified the key ana-
tomical areas within the dental system that significantly 
contributed to the age estimation process.

2.3  Pseudo labeling

Pseudo-labeling is a semi-supervised learning (SSL) tech-
nique that involves using the estimations of a trained 
model on unlabeled data to generate pseudo-labels, 
which are then used to augment the labeled dataset and 
train the model further. Pseudo-labeling can be a useful 
approach when labeled data is limited but unlabeled data 
is abundant. Fengbei Liu et al. in 2022 proposed a new 
and effective semi-supervised learning (SSL) algorithm 
in medical image analysis (MIA), called anti-curriculum 
pseudo-labelling (ACPL), which introduced novel selection 
and balancing techniques of unlabelled samples, that in 
turn facilitated the model to work with both multi-label 
and multi-class problems while allowing for the estimation 
of pseudo labels using ensemble classifiers [33].

More recently, in 2023, the Bayesian Pseudo Labels were 
used by the Xu et al. to illustrate the entire generalization 
of pseudo labels under the Bayes principle [34]. Then, 
by learning a threshold to choose high-quality pseudo 
labels, they offer a variational technique to learning to 
approximate Bayesian pseudo labels. A connection was 
built between pseudo labeling and the Expectation Maxi-
mization algorithm which partially explains its empirical 
successes. Rhee and Cho, through their research, offered a 
new confidence-based weighting technique for obtaining 
pseudo-labels with varied contributions based on the con-
fidence in addition to an adaptive threshold adjustment 
strategy to supply enough and precise pseudo-labels 
throughout the training [35]. The ambiguity of pseudo-
labels for perplexing samples in SSL was then drasti-
cally reduced by the unique pseudo-labeling schemes 
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suggested later by Ham et al.[36] The investigators used 
the Easy-to-Forget (ETF) Sample Finder to execute our 
approach, Pruning for Pseudo-Label (P-PseudoLabel), 
comparing outputs of the model versus the trimmed 
model to find samples that are perplexing. Then, utilizing 
the perplexing samples, they execute negative learning to 
reduce the likelihood of giving inaccurate information and 
to enhance performance.

2.4  Siamese or triplet networks

An age estimation method was proposed by Zhang and 
Kurita from periods of age using Triplet Network [37]. The 
proposed model extrapolates the age values from that age 
period based on similarities across age periods. Triplet Net-
work was utilized to record the age connection between 
the facial photos in order to achieve this functionality. 
Next, linear regression is used to estimate each image’s 
age. Hajamohideen et al. more recently proposed a Sia-
mese Convolutional Neural Network (SCNN) architecture 
employing the triplet-loss function to represent MRI image 
inputs as k-dimensional embeddings [38]. To convert 
images into the embedding space, they employed CNNs 
that had been trained and those that had not. Afterwards, 
the 4-way classification of Alzheimer’s disease utilized 
similar embedding techniques. In Jeong et al.’s work, the 
investigators trained a convolutional neural network (CNN) 
model using the deep metric learning method based on 
a binary classifier Siamese network for class clustering 
operations [39].

2.5  Explainable AI

Selvaraju et al. presented a method for explaining decision 
to visual outputs made by a wide range of Convolutional 
Neural Network (CNN)-based models, which improved 
their transparency. This method, called Gradient-weighted 
Class Activation Mapping (Grad-CAM), identifies the most 

important areas in an image that are relevant to the esti-
mation of a target concept by analyzing the gradients of 
the concept that flow into the final convolutional layer. 
Chattopadhay et al.[40] built upon the work of Selvaraju 
et al. by introducing Grad-CAM++, a refined version of 
Grad-CAM that provides visual explanations of CNN model 
estimates object localization and attempts to explain the 
presence of multiple instances of a class in a single image. 
Later, Omeiza et al. improved upon this by combining 
SMOOTH GRAD and Grad-CAM++ to present Smooth 
Grad-CAM+ +; The result was a model that could explain 
visual sharpness, object localization, and was adept at 
explaining multiple occurrences of objects in a single 
image [41]. Recently, gradient-based visualization tech-
niques have been subject to criticism in academia, and 
there is ongoing debate about their effectiveness. Ramas-
wamy proposed a new methodology for generating visual 
explanations for deep Convolutional Neural Networks 
(CNN) using Ablation-based Class Activation Mapping 
(Ablation CAM). This approach applies ablation analysis 
to determine the importance of individual feature map 
units with respect to a particular class [42]. The authors 
later used ablation analysis to visualize the major compo-
nents of learned representations from convolutional lay-
ers, and their innovative Eigen-CAM technique was used to 
improve explanations of CNN estimates without the need 
for accurate model classification [42].

Wang et al. [43] propose developing Bayesian deep 
learning techniques that are both explicable and imple-
mentable to quantify uncertainties precisely and iden-
tify the causes and potential solutions for reducing their 
impact. While FullGrad has recently gained attention for 
its model interpretability capabilities [44], if the high-
lighted red areas in the FullGrad analysis are consistent 
with medical theories, then the current study’s model can 
be deemed interpretable according to explainable AI and 
medical theory concepts.

Table 2  Age and gender 
distribution in dataset a 
following revision

Initial dataset A Expanded dataset A

Age (years) Gender Total Gender Total

Male Female Male Female

0–5 8 8 16 14 11 25
6–12 11 14 25 21 20 41
13–19 8 14 22 14 23 37
20–29 47 46 93 81 74 155
30–59 142 79 221 215 138 353
 > 60 24 24 48 45 50 95
Total 240 185 425 390 316 706
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3  Methodology

This section outlines the methodology employed in this 
study, including the dataset description, preprocessing 
techniques, the workflow, the PENViT and TriplePENViT 
model architecture, and triplet networks hard triplet min-
ing, as well as the pseudo labelling task for semi-super-
vised training of neural networks.

3.1  Creation of the dataset

The current study utilized a two-part dataset comprising 
"Dataset A" and "Dataset B," both of which contain gray-
scale panoramic radiographs of the maxillofacial region.

Dataset A served as the primary labeled and deidenti-
fied dataset, with each image annotated with the patient’s 
age and gender at the time of data input as obtained 
from the history sheet. The dataset was expanded with 
additional radiographs during revision to provide greater 
support to the models when estimating age and gender 
across several variables. The age and gender distributions 
for Dataset A are reported in Table 2. The use of Dataset A 
was approved by the related organizations.

Dataset B was a publicly available dataset from Tufts 
University (http:// tdd. ece. tufts. edu/ Tufts_ Dental_ Datab 
ase/ Radio graphs. zip), which lacks annotated labels for 
age and gender, similar to those seen in multicenter deep 
learning implementations [45]. It comprised of a collection 

of 1000 unannotated radiographs [46]. The said Dataset B 
was utilized as the source for unlabeled data in the semi-
supervised task undertaken in the current study, and 
for the rest of the task, Dataset A was used. While Data-
set B lacked information on chronological age, it added 
geographic variation to the datasets used to investigate 
pseudo-labelling technique (5).

The word “age” in context of the current study has two 
meaning: chronological age (labels) and estimated dental 
age (estimated by the neural networks). In the context of 
dataset interpretation, the former is used, however, when 
discussing neural networks estimation the authors of the 
current study use the latter.

Dataset A initially consisted of total 525 radiographic 
images, from where 101 samples either had labelling 
issues or exhibited distorted features and were there-
fore discarded leaving 425 images. The images were sub-
sequently split into training and validation datasets. To 
explore more versatile approaches, Dataset A was later 
expanded during revision stages to 706. All images in 
Dataset A consisted of sizes of a minimum dimension of 
2000 pixels in width and 1000 pixels in height. To ensure 
compatibility with the pretrained model, which has fixed 
input image size, each file was resized depending on the 
model to either 384 × 384 or 224 × 224 pixels during both 
training and validation stages.

Stratified resampling was then applied based on 
age labels to divide the initial dataset of 424 files into a 
training-validation split of 296 files for training and 129 

Fig. 1  PENViT model architecture

http://tdd.ece.tufts.edu/Tufts_Dental_Database/Radiographs.zip
http://tdd.ece.tufts.edu/Tufts_Dental_Database/Radiographs.zip
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files for validation, maintaining a ratio of 70:30 [47]. Once 
the age classifier was ready, the dataset was expanded 
further to train the gender classifier.

At this stage, the age distribution of the training sam-
ples was not balanced, resulting in class imbalance. To 
address this, medical data augmentation techniques 
were applied only to the training set, while the valida-
tion set remained fixed throughout the study [48]. The 
augmentation techniques employed included Horizon-
tal Flip, Geometric transformations (Rotate, scale), and 
Intensity operations (gamma contrast and linear con-
trast) [48]. By augmenting the training data, the sample 
size increased to n = 924, and the class imbalance issue 
was completely mitigated, with each class having 154 
images in the training set.

3.2  Model architecture

In this subsection, the proposed PENViT and TriplePENViT 
model architecture is demonstrated with information 
about the proper flow of data through the neural network, 
input–output dimensions, network’s layers details, and the 
architecture figure.

3.2.1  PENViT model architecture

In the current research, the PENViT model architecture 
(Fig. 1) incorporates two pretrained models, EfficientNet 
and Vision Transformer were used in parallel. Each model 
takes 3 × 24 × 224 images as input and produces interme-
diary vectors E1 ∈ ℝ

1000 and E2 ∈ ℝ
1000 , respectively.

To obtain the combined embedding vector Ec ∈ ℝ
2000 , 

the following operation was performed:

Ec = concat(E1, E2)

The combined intermediary vector Ec was then fed into 
a fully connected block consisting of a 60% dropout layer, 
followed by a Dense layer with 512 units, ReLU activation, 
another 60% dropout layer, and finally a Dense layer with 
256 units. This fully connected block outputs the final 
embedding vector E ∈ ℝ

256 for PENViT.
The authors in the current study performed l2 normali-

zation of the embedding vector E . They then used the 
dot product of the weight matrix W ∈ ℝ

256×6 , where the 
weight matrix is in its l2 normalized form. The dot product 
is equivalent to cos(�yi )  in the context of ArcFace Loss [49]. 
To obtain the logit projection, the authors applied the fol-
lowing transformations:

Here, s represents the scale factor, and m is the additive 
margin [49]. By applying the ArcFace loss, the final cross-
entropy loss (also known as SoftMax loss) is computed as:

For performance evaluation, the ArcFace component is 
omitted, and the logits are calculated as follows:

In the current study, Pretrained frozen EfficientNet B0 
and Pretrained Frozen Vision Transformer Large Patch Size 
32 models were used for the proposed PENViT architec-
ture. Both models were pretrained on ImageNet and sub-
sequently fine-tuned on ImageNet1k.

�yi
= arccos

(

���
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�yi

))

logits = s × cos(�yi +m)
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�

)

e
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Fig. 2  Triplet network with 
PENViT backbone, TriplePENViT 
architecture
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3.2.2  TriplePENViT model architecture

In the current study, for the Triplet Network experiments 
(Fig.  2), a partial PENViT backbone was utilized that 
was reused up until the combined intermediary vector 
Ec ∈ ℝ

2000 . Ec then underwent a 60% dropout followed by 
a Dense layer with 256 units, resulting in the backbone’s 
embedding vector E ∈ ℝ

256.
In the Triplet Network, the backbone is denoted as M 

with parameterization θ. The same parameterization θ was 
used in three of the models within the triplet, denoted as 
M

�
 . For each triplet, consisting of an anchor, positive, and 

negative sample, three embeddings were produced: Ea, Ep, 
and En each having a dimension of ℝ256 . The Triplet Margin 
Loss, denoted as L2(Ea, Ep, En) , was employed to train the 
triplet network:

Here, the distance function used was the Euclidean dis-
tance, and m represents the margin value for the triplet 
loss.

For the evaluation of TriplePENViT, two methods were 
used. The first involved training a classification block, 
which consisted of a single dense layer, with the triplet 
network using only the anchor’s embedding. The second 
method involved calculating the distance between all pair 
embeddings and predicting the label of the current image 
as the label of the closest embedding. Both methods were 
reported in the results section.

Additionally, when training a classifier with the anchor’s 
embedding alongside training the triplet network, the 

L2(Ea, Ep, En) = ReLU(Distance(Ea, Ep) − Distance(Ea, En) + m)

Fig. 3  Triplet mining example 
of current study, choosing the 
farthest positive(green) sample 
and the closest negative(red) 
sample with respect to current 
anchor(blue) sample

Fig. 4  Semi-supervised pipeline workflow
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authors proposed a customized task-specific loss function 
denoted as L3:

The equation Lc represents the classifier’s classification 
loss, which is the cross-entropy loss, and L2 is the triplet 
margin loss. The scales, scale1 and scale2 , are multiplied 
with each loss to ensure that none overpowers the oth-
ers. However, during the initial warmup periods, scale1 
was forcefully assigned a value of zero (0). This was done 
to allow the triplet network to focus on learning to dis-
criminate among the embeddings in the latent space 
before attempting to train the classifier. This customized 
loss function allowed for a balanced optimization of the 
classifier and the triplet network, incorporating both the 
classification, and embedding objectives in a joint train-
ing process.

Hard Triplet mining was used to choose the three sam-
ples (positive, negative, and anchor) as the input of Tri-
plePENViT network. (Fig. 3).

3.3  Details of the training process

Initially, the regression experiments were conducted with 
various backbone architectures. For regression tasks, the 
mean squared error (MSE) loss function was employed 
during training, while for validation, we reported the mean 
absolute error (MAE) loss in line with the metrics used by 
existing literatures [9, 21].

For classification task, continuous age values from the 
labels of Dataset A were converted into six class for the 
neural networks to classify. Different loss functions were 
used depending on the specific task and model type. The 
loss functions employed were: Cross Entropy (also known 
as SoftMax Loss), ArcFace loss, and Triplet Margin Loss [49]. 
However, all Triplet networks, including our proposed Tri-
plePENViT, employs Triplet Margin Loss. All ArcFace experi-
ments were conducted with an additive margin value of 
34.3 degrees, and all Triplet Margin Loss experiments mar-
gin was 1.0 (unless mentioned otherwise).

The classification tasks were further challenged by con-
ducting pseudo-labelling semi-supervised experiments 
(Fig. 4) using Dataset B that had unlabeled radiographs, 
i.e., no chronological age information was made available. 
A PENViT model was trained with Dataset A and trained 
up until 68.99% validation accuracy, and later used in 
the workflow of (Fig. 4) to complete the experiments of 
Table 6.

In all experiments, an initial learning rate of 10−2 was 
utilized and employed the “Reduced Learning Rate on Pla-
teau” training scheduler, with a patience level of 5 and a 
gamma factor of 0.9, to adjust the learning rate based on 

L3 = scale1 × Lc(logits,G.T .) + scale2 × L2(Ea, Ep, En)

the validation loss. All experiments were conducted for a 
minimum of 400 epochs to evaluate the performance of 
various backbones. A weight decay value of 0.9 was uti-
lized for the purpose.

For classification task, after getting the best perform-
ing backbone from above training process, the best back-
bone (PENViT as denoted in results section’s Table 4) was 
subjected to a three-day experiment consisting of 3000 
epochs using 1 × Nvidia Tesla M60 on the Microsoft Azure 
ML Compute platform. However, it is worth noting that the 
model converged in less than 600 epochs. All other experi-
ments were conducted on 1 × Nvidia Tesla T4. A minimum 
of 70 + experiments were conducted during this study, 
with only the most significant ones being presented in 
the results section.

In the case of the triplet network with a classifier ( L3 
Loss), the authors experimented with initial warmup peri-
ods ranging from 20 to 100 epochs. During this warmup 
phase, the scale1 value of L3 was forcefully set to zero (0), 
allowing the triplet network to initially focus on learning to 
discriminate among the embeddings in the latent space, 
rather than attempting to train the classifier. Following the 
warmup period, the scale values of L3 were set to be equal, 
with scale1 and scale2 both set to 1.0.

Throughout all the experiments, the batch size varied 
between 296 and 500, depending on the available GPU 
memory during runtime. Additionally, data augmentation 
techniques were applied during training to enhance the 
robustness and generalization of the models.

3.4  Evaluation methods

For the current study, the validation set remained the 
same for all the task and experiments. Therefore, validation 
accuracy was used as the sole performance metrics in the 
current study’s classification task, whereas for regression 
reliability or performance metrics, MAE was used.

Table 3  Regression Task

Model Reliability, 
MAE (Year)

Fully connected layers 13.492 
CNN-2 9.256
CNN-3 10.38
CNN-4 4.5
ViT 4.5
Pretrained ViT 2.83
Autoencoder’s encoder + Classification 15.24
ViT + CNN Ensemble 13.557
Pretrained Resnet + Classification 34.69
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4  Results

This section illustrates the results of the regression task, 
classification task, comparison between cross entropy and 
ArcFace performance, hard triplet minding task results, 
PENViT backbones performance, pseudo labelling work-
flow’s performance, and FullGrad images for model inter-
pretability. MAE outcomes of the regression task have 
been highlighted in Table 3. The comparison between 
using SoftMax Loss and ArcFace loss was later reported in 
Table 4. The outputs have been described in Tables 3,4,5,6.

4.1  Regression: estimation of age using different 
model architecture

Table 3 presents the results of regression tasks using multi-
ple layer CNN backbone, ViT, autoencoder, fully connected 
layers, and RESNET-like backbone. Among these popular 

Table 4  Classification task: pure cross entropy versus ArcFace (with and without gender classifier)

Techniques Model Validation Accuracy

No Gender Classifier With Gender Clas-
sifier

Without ArcFace ArcFace Without ArcFace

Age (%) Age Age Gender

Convolutional Layer Architecture Performances CNN-4-layer 21.70 – – –
CNN-5-layer 51.93 – – –
CNN-6-layer 51.93 – – –
CNN-7-layer 51.93 – – –

Pretrained Vision Transformer Architecture Performances ViT B16 62.01 – – –
ViT B32 51.24 – – –
ViT L16 65.89 62.79% 61.24% 73.64%
ViT L32 68.21 65.89% 60.46% 73.64%

Popular Pretrained Transfer learning models in the feature 
extraction layers and their performances

ResNet50 62.79 65.11% 62.01% 77.51%
AlexNet 60.46 – – –
DenseNet 65.12 – – –
EfficientNet B0 65.89 65.11% 54.26% 64.34%
GoogleNet 62.02 – – –
VGG11 BN 61.24 – – –
ShuffleNet v2 × 05 63.24 – – –

Our Proposed Hybrid Model PENViT 68.21 70.54% 67.44% 84.49%

Table 5  Classification task: triplet networks and Siamese networks

Type Model Margin Validation 
accuracy (%)

Siamese network ViT L32 N/A 56.58
Triplet network ViT L32 1.0 48.06
Triplet network ViT L32 3.0 31.78
Triplet network ViT L32 5.0 41.09
Triplet Network + Classifier Very Small ViT 5.0 51.93
Triplet Network + Classifier ViT L32 1.0 65.11
Triplet Network + Classifier TriplePENViT 1.0 67.44
Triplet Network + Classifier TriplePENViT 3.0 67.44
Triplet Network + Classifier TriplePENViT 5.0 67.44
Triplet Network PENViT 1.0 61.24

Table 6  Classification task: 
training with Semi-supervised 
pseudo labelling techniques 
(all pseudo labelling done with 
PENViT trained up to 68.99% 
validation accuracy)

Best model selection Initial pseudo labelling with Model Validation 
accuracy (%)

Incremental best model PENViT 68.99% Acc PENViT 64.34
Incremental best model and 
2× ArcFace L.R

PENViT 68.99% Acc PENViT 61.24

Current best model PENViT 68.99% Acc PENViT 58.91
Incremental best model PENViT 68.99 Acc Very Small ViT 63.56
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backbones, pretrained ViT demonstrated superior perfor-
mance in regression tasks. Compared to pure ViTs, the pre-
trained ViT achieved a lower Mean Absolute Error (MAE) of 
2.83 years in the regression task.

4.2  Pure cross entropy versus ArcFace margin loss: 
rigorous experiments

Initially, cross entropy loss was utilized during the experi-
mentation phase. Both ViT L32 and the novel PENViT 
model emerged as top performers, achieving validation 
accuracies of 68.11%.

To further enhance performance, the top-five models 
were selected and investigated the application of ArcFace 
Loss. Notably, the PENViT model demonstrated superior 
performance, reaching a validation accuracy of 70.54%. 
It was also observed that combining ArcFace Loss with a 
ResNet backbone led to increased validation accuracy in 
certain cases. However, it is important to highlight that in 
three out of the five cases evaluated, the application of 
ArcFace Loss resulted in a decline in overall performance.

These findings highlight the effectiveness of PENViT in 
conjunction with ArcFace Loss, consistently outperforming 
other models. The synergy between the ResNet backbone 
and ArcFace Loss was found to be beneficial in specific 
scenarios. The gender classifier alongside the age classi-
fier resulted in partial degradation of validation accuracy 
from 68.21% to 67.44%. Nevertheless, also affirming that 
the PENViT architecture performed better for panoramic 
radiographs when combining age and gender classifiers.

4.3  Evaluating hard triplet mining task

In the Siamese or Triplet network family, the authors intro-
duced the TriplePENViT model architecture, which outper-
formed other models by incorporating hard triplet mining 
and a classification block that utilizes only the anchor’s 
embedding. The TriplePENViT model, with its specific loss 
function, achieved an accuracy of 67.44%.

Interestingly, increasing the margin value of the loss 
function  L3 did not lead to an improvement in the valida-
tion accuracy of the TriplePENViT model. This suggests that 
the chosen margin value was already optimal for the given 
task, and further adjustments did not yield significant per-
formance gains.

4.4  PENViT backbone’s effectiveness against other 
backbones

In Tables 4 and 5, it is evident that the PENViT model and 
its variation, TriplePENViT, consistently outperformed 
other models, whether they were triplet networks or 
other types of neural networks. The PENViT model 

achieved a validation accuracy of 70.54%, while others 
achieved a maximum of 68.21%, resulting in a 2.33% 
increase in accuracy.

Similarly, in another instance with TriplePENViT utiliz-
ing the triplet network and its classification block, it sur-
passed other models by achieving a validation accuracy 
of 67.44%, compared to a maximum of 65.11% achieved 
by others. This again resulted in a 2.33% increase in vali-
dation accuracy.

Therefore, in both cases, when using either the PENViT 
backbone or its triplet network variation, TriplePENViT, 
there was a consistent improvement of 2.33% in valida-
tion accuracy compared to other models (Table 6).

4.5  Evaluating pseudo‑labelling technique

The application of pseudo-labelling technique to train 
medical image data, which typically has a limited num-
ber of available samples, did not result in an increase in 
validation accuracy beyond the performance of the best 
model. Despite attempting pseudo labelling, the valida-
tion accuracy remained consistent and did not surpass 
the accuracy achieved by the best model.

4.6  PENViT’s model interpretability of classification

The model’s Explainable AI results (FullGrad) are pro-
vided in Fig. 5:

For Deciduous dentition (Fig. 5A) group and Mixed 
Dentition (Fig. 5B) groups, model took account of the 
developing tooth buds of permanent teeth and the rela-
tive proximity to the overlying deciduous dentition with 
some prioritization on the mandibular shape. For ages 20 
to 29 (Fig. 5C), the model accounted for the permanent 
dentition and the alveolar bone density surrounding the 
formed root apices and the root formation and erup-
tion status of the third molars. For ages above 30 years 
(Fig. 5D), the model additionally notes occlusal deform-
ity resulting from missing permanent dentition and the 
condylar regions highlighting temporomandibular joints 
to be an important predictor for automated age estima-
tion from 2D panoramic radiographs.

5  Discussion

To attain the objectives outlined, regression tasks 
were first adopted as the means to ascertain the deep 
learning models that yield the minimal Mean Absolute 
Error (MAE) when trained on a designated training set 
and validated on the same data sets. Notably, Vision 
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Transformers utilizing self-attention mechanisms outper-
formed their counterparts, signifying the superiority of 
Vision Transformer-based backbones, particularly within 
Orthopantomograms (OPGs), for subsequent computer 
vision tasks such as classification. Consequently, the 

subsequent stage involved a transition from regres-
sion to classification, wherein the continuous age 
labels were discretized into six distinct classes. This also 
served as another test for the efficacy of the Vision Trans-
former hypothesis, reaffirming the dominance of Vision 

Fig. 5  A FullGrad images for 
age group 0–5 (Deciduous 
Dentition). B: FullGrad images 
for age group 6–12 (Mixed 
Dentition). C: FullGrad images 
for age group 20–29 (Young 
Adults). D: FullGrad images for 
age group 30–59 (Middle Aged 
Individuals)

A: FullGrad images for age group 0-5 (Deciduous Den��on).

B: FullGrad images for age group 6-12 (Mixed Den��on).

C: FullGrad images for age group 20-29 (Young Adults).

D: FullGrad images for age group 30-59 (Middle Aged Individuals).
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Transformers over Convolutional Neural Network (CNN) 
based backbones in the present study.

With the said pattern in consideration, the authors 
proposed the PENViT architecture as a hybrid solution, 
synergizing both CNN-based and self-attention-based 
backbones, which resulted in a notable performance 
boost. In further endeavors to enhance performance, 
a comparative analysis of two loss functions for multi-
class classification was conducted, namely, SoftMax/
CrossEntropy and the ArcFace Margin Loss function. 
Impressively, ArcFace exhibited even greater perfor-
mance improvements. Although ArcFace is convention-
ally employed in Face Recognition models, its geomet-
ric interpretation elucidates its role in creating a margin 
in the latent vector space for class differentiation, as 
depicted in Fig. 6.

The backbone acquires the ability to differentiate 
samples within the latent vector space; however, this 
differentiation becomes more pronounced with the 
introduction of ArcFace. The margin imposed by ArcFace 
enforces greater separation among samples, thereby 
augmenting the discriminative prowess of the neural 
network and consequently elevating accuracy.

Future research could contemplate the integration of 
alternative data modalities alongside OPGs for weakly 
supervised age estimation. While the present study 
focused solely on OPGs for this purpose, Schmeling 
et al.’s [50] suggestion of including hand-wrist radio-
graphs in sequential aging analysis, in conjunction with 
OPGs[51], could yield further advancements in age esti-
mation performance.

The pursuit of age estimation holds significance in 
dentistry, forensic science, legal proceedings, court 
hearings, and related domains. Clinical application of 
unsupervised age estimation may be present in aid-
ing computer vision-based diagnostics of restorative 

treatment needs based on predictive age of exfolia-
tion [52, 53]. Within the aforementioned contexts, the 
utilization of OPGs for the task emerges as a cost-effec-
tive and straightforward approach compared to other 
methodologies [54]. While alternate techniques such 
as Cone Beam Computed Tomography (CBCT ) and 
Computed Tomography (CT) exist in specialized dental 
practices and have been documented in literature, it is 
important to note that authors such as Yuan et al. [55] 
applied pelvic radiographs and supervised CNNs to train 
1498 images, while Othmani et al. [56] applied super-
vised CNNs on 45,000 facial photographs to attain an 
MAE of 2.35. In comparison, the current study attained 
an MAE of 2.83 using unsupervised learning using 706 
radiographs.

5.1  Limitation of current study

The study lacked an evaluation of diagnostic accuracy, 
which could provide valuable clinical insights into the 
neural network model’s performance on unknown data, 
potentially affecting its clinical utility given the reported 
model’s performance of 70.54%. Secondly, the absence 
of a comparison between the model’s performance and 
that of a human diagnostician remains a research gap, 
although the potential for such a comparison through 
tools like FullGrad, GradCAM, or other EX-AI techniques 
is acknowledged for future research. Despite recogniz-
ing the challenge of immediate execution, this study’s 
limitation lies in not implementing a comparison with 
human diagnostic practices, as seen in similar studies 
[57]. Additionally, the proposed network architectures, 
PENViT and TripplePENViT, may lean heavily towards 
computer vision and deep learning techniques rather 
than a clinician’s perspective, indicating a potential mis-
match in orientation. The study also lacks an investiga-
tion into class imbalances and which class has higher 
representation, despite the clear focus on evaluating dif-
ferent backbone performance, proposing concatenation 
of the best-performing ones, and assessing the impact 
of margin loss and pseudo-labelling. While prioritizing 
these aspects over reporting diagnostic accuracy, the 
study acknowledges the importance of this limitation. 
Lastly, the dataset’s size and class imbalance (across 
age and gender) are acknowledged to potentially yield 
unintended outcomes, despite artificial dataset size 
increase and balancing efforts. The study recognizes that 
more optimal results might have been achievable with 
larger, better-balanced datasets as is crucial for clinical 
applications.

Fig. 6  Geometry of ArcFace margin loss
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6  Conclusion

From the current study the following answers can be 
inferred for the posed research questions:

1. ViT demonstrated superior performance over CNN 
architectures in regression tasks.

2. ArcFace showed mixed results, with instances of 
improved performance compared to pure cross 
entropy loss, but also cases where it deteriorated per-
formance. In contrast, Triplet Margin Loss in a triplet 
network consistently outperformed other experi-
ments, except for ViT L32 with Cross Entropy Loss, 
which performed slightly better.

3. The use of hard triplet margin alone resulted in poor 
performance but combining it with a classifier yielded 
comparable results to the best-performing approach.

4. The proposed PENViT backbone consistently outper-
formed other backbones, achieving higher validation 
accuracy.

5. Training the model with pseudo labelling did not yield 
satisfactory results compared to using annotated data 
only.

6. The FullGrad approach for explainability of the model 
highlighted that the most influential areas for predict-
ing age brackets were deciduous teeth, areas of ano-
dontia, extent of sinus cavities, periodontal regions, 
third molar regions, medullary regions of the mandi-
ble, and the temporomandibular joint complex that 
are consistent with medical explainability.
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