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Abstract
Herein, we present the utilization of Ni2+-doped, amine-functionalized, UiO-66-NH2 metal–organic framework (MOF) 
nanoparticles deposited onto multi-walled carbon nanotubes (MWCNTs) as a precursor to generate  electrocatalyti-
cally active catalyst towards methanol (MeOH) oxidation. The electrode material displayed an onset potential of 0.42 V 
(vs Hg/HgO) with maximum activity at 1 M MeOH concentration (143 mA/cm2 current density at 0.6 V vs Hg/HgO). The 
catalyst also demonstrated high stability, retaining 93.5% of its initial activity under continuous electrolysis for 1 h, and 
84.1% after 10 h.
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1  Introduction

Elevated greenhouse gas emissions, resulting from heavy 
dependence on fossil fuels, have adversely impacted the 
global climate. Therefore, a great interest has developed 
among scientists to implement greener technologies to 
shift the global energy situation towards a more sustain-
able model, utilizing energy sources with less carbon foot-
print [1].

Methanol is a feedstock chemical with relatively high 
energy density that can be used as a fuel in direct metha-
nol fuel cells (DMFCs), with far enhanced efficiency as 
compared to internal combustion engines [2]. The vast 
majority of such DMFCs utilize Pt as the catalyst on both 
the anode (methanol oxidation reaction) and the cathode 
(oxygen reduction reaction) electrodes. Due to the high 
cost and limited abundance of Pt, catalysts based on non-
precious group elements (NPG) are of high interest [3]. The 
use of NPG catalysts in DMFCs is hindered by the catalyst 

poisoning and the slow methanol electro-oxidation kinet-
ics at the anodes utilizing NPGs catalysts [2]. Therefore, 
developing an NPG-based electrocatalyst for methanol 
oxidation in DMFCs that demonstrates (i) low overpoten-
tial, (ii) rapid kinetics, and (iii) maintained activity for pro-
longed reaction time is of prime interest [3]

The methanol electro-oxidation reaction is catego-
rized based on the supporting electrolyte pH (acidic and 
alkaline). Alkaline medium prevails over acidic medium in 
offering faster oxidation kinetics [4, 5] due to facilitated 
alkoxide ion production at high pH, as pointed out by 
Kwon and co-workers in their study of the direct effect of 
base concentration on methanol electro-oxidation kinet-
ics [6]. Despite the fact that methanol electro-oxidation 
has a thermodynamic potential of 0.03 V (vs. SHE), this 
value is not realizable even with the best catalysts due 
to the number of electrons involved in this step [7]. Pre-
cious metals such as Pt [8–10], Au [11–13], and Ag [14] 
demonstrate high catalytic activity for electro-oxidation of 
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short-chained alcohols at potentials below 1.0 V, however, 
their elevated cost and their relatively low abundance pre-
clude their use in commercial DMFCs. Alternative anodic 
modifiers utilizing NPG metals, especially those based on 
Co2+, Ni2+, and Cu2+, are currently of great interest as redox 
mediators for the methanol electro-oxidation reactions in 
alkaline media [15]. For such NPG catalysts, it is argued 
that the catalytic activity is ascribed to the generation of 
oxidative M3+ species (M3+ = Co3+, Ni3+, or Cu3+) along the 
reaction pathway, as key intermediates to facilitate their 
catalytic activity towards methanol oxidation. For exam-
ple, A. Gopalakrishnan and his colleagues have prepared 
MoS2 nanostructure supported on Ni foam (MoS2/NF-5) 
via a hydrothermal method, which demonstrated activity 
towards methanol oxidation up to 73 mA/cm2 at 0.7 V vs 
RHE in 0.1 M KOH and 0.5 M methanol at a scan rate of 
30 mV/s [16].

Electrochemically active catalysts based on 
metal–organic frameworks (MOFs) have specifically gained 
significant interest in recent years as potential NPG porous 
catalysts with superior performance. MOFs are considered 
novel microporous hybrid inorganic–organic solids with 
promising activities in numerous demanding applications 
[17]. The utilization of MOFs in DMFCs as heterogeneous 
catalysts is attributed to their defined pore size [18] and 
ability to adsorb methanol species on their surface. Their 
high specific surface areas can as well accommodate the 
generated intermediate species through physical adsorp-
tion, at which the intermediates will subsequently react 
in two-step reactions to reach CO2 as the final product [7]. 
Several hypotheses have been presented in literature to 
explain the methanol oxidation catalytic activity at the 
MOF surfaces. Fleischmann and co-workers suggested 
MeOH oxidation proceeds through formation of M3+OOH 
species (M = Co, Ni, or Cu) from metal hydroxides [19]. The 
M3+OOH species serve as redox mediators for methanol 
electro-oxidation in alkaline media. Fleischmann proposed 
the adsorption of methanol substrate on M3+ species to 
provoke radical intermediates, which will further inter-
act with M3+ species and produce M2+ species along with 
other oxidation products. In a separate study by Wang and 
co-workers, Ni complexes demonstrated involvement of 
the Ni2+/Ni3+ redox pair throughout the methanol oxida-
tion process[20]. Nonetheless, pristine MOFs as anodic 
modifiers in DMFCs are rarely reported accounting for their 
modest electrical conductivity regulated by the poor over-
lap between valence orbitals and the electronic states on 
metal ions and ligands [21–23]. As a result, pristine MOFs 
demonstrated reduced current densities when utilized in 
DMFCs.

Despite the high surface area of MOFs, it suffers from 
low electrical conductivity, which is essential for electro-
catalytic applications, therefore one strategy is to utilize 

a conductive support in order to enhance the catalyst 
conductivity [24–26]. Alternatively, MOFs were rather 
utilized as precursors or hard templates for the synthe-
sis of homogenously dispersed metal/metal oxides on 
porous carbon under pyrolysis at different temperatures to 
enhance their electrical conductivity. For example, Rezaee 
and co-workers reported NiCo/NiO-CoO/nanoporous car-
bon as a redox mediator for methanol oxidation through 
direct pyrolysis of bimetallic NiCo-MOF [27]. Such compos-
ite exhibited a maximum current density of 185 mA/cm2 at 
0.65 V vs. Ag/AgCl. Similarly, Qian et al. pyrolyzed Ni2+/Co2+ 
MOF using an organic linker L-aspartic acid in air at 300 °C 
to achieve NF/Co3O4/NiCo2O4 with nano-spindle arrays 
morphology [28]. The calcination process of Ni2+/Co2+ 
ensured fast diffusion rates of electrolyte ions to the acces-
sible active sites, thereby enhancing its electrocatalytic 
activity towards methanol oxidation. Moreover, Sheikhi 
and co-workers fabricated a zirconium oxide-based porous 
carbonaceous platform as a support for Ni nanoparticles 
through MOF calcination at 800 °C [29]. Despite the excep-
tional electrocatalytic performance, nevertheless, such 
synthetic strategy is energy-consuming, which could 
limit its large-scale application. In this regard, for success-
ful commercially applicable DMFCs, further exploitation is 
required to approach an economic synthesis procedures 
of MOFs catalysts at a large scale.

To approach the inherent issue of MOFs’ low electrical 
conductivity, conductive carbon supports such as, gra-
phene or its derivatives, carbon nanotubes and activated 
carbon are incorporated to construct MOF composites 
with adequate electrical conductivity for electrocatalytic 
applications [30]. For example, a composite of Co-benzen-
edicarboxylate MOF with 5 wt% graphene oxide (Co-BDC 
MOF@5wt% GO) exhibited a current density of 291 mA/
cm2 at 1.77 V vs. RHE in 1 M KOH and 3 M MeOH [31]. Simi-
larly, a current density of 130 mA/cm2 at 1.59 V vs. RHE 
was attained using Co-benzenetricarboxylate MOF with 1 
wt% reduced graphene oxide (Co-BTC MOF@1wt% rGO) in 
1 M NaOH and 2 M MeOH [32]. Despite the enhanced con-
ductivity of rGO, increasing its amount in the composite 
in fact reduced the attained current density due to sheets 
restacking and blocking of MOF active sites, and hindering 
methanol oxidation at surface that is now occupied by the 
hydroxyl groups that is found in the alkaline media [30]. 
Another examples of Ni-benzenetricarboxylate MOF and 
reduced graphene oxide composite (Ni-BTC MOF@4wt% 
rGO) demonstrated a current density of 200.22 mA/cm2 
at 1.61 V vs. RHE in 1 M NaOH and 2 M MeOH [26]. The 
observed improvement in electrocatalytic performance of 
MOF-graphene oxide composites towards methanol oxi-
dation is attributed to the synergy between conductivity 
of graphene oxide sheets and the high surface area and 
catalytic activity of MOF.
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Herein, we utilized Ni-UiO-66-NH2@MWCNTs through 
simple incipient wetness impregnation method. The 
MOF@MWCNTs provides a platform for efficient deposi-
tion of Ni(OH)2@MWCNTs, with notable activity towards 
methanol oxidation in an alkaline medium at low onset 
potential through MOF degradation and dispersion of 
nickel hydroxide nanoparticles on 1D MWCNTs support, 
Scheme 1.

2 � Experimental and methods

All reagents of commercial grade were used without 
any further purification. Electrochemical measurments 
were done in three electrode system using reference 
electrode (RE-61AP) Hg/HgO filled with 1  M NaOH 
(from ALS Instruments) and data was recorde using EC-
Lab software, graphite rod as counter electrode and 
glassy carbon electrode as working electrode. FTIR was 
measured using ThermoScientificiS10 spectrophotom-
eter. ZrCl4 anhydrous > 98%, 2-aminoterephthalic acid 
99%, HCl 37% were purchased from Acros Organics. 
N,N’dimethylformamide (DMF) analytical reagent grade 
99.99%, Methanol 99% HPLC grade and acetonitrile 
(ACN) HPLC grade were purchased from Fisher Scien-
tific-UK Chemicals. Ni(NO3)2.6H2O 98% was purchased 
from Alfa Aesar from USA, KOH 90% from PioChem 

Egypt, Carboxylated multi-walled carbon nanotubes 
(MWCNT-COOH) > 95 wt%/30–50  nm was purchased 
from Cheap Tubes (SKU:050306) were used as received 
without further purification.

2.1 � Synthesis of Ni‑UiO‑66‑NH2@MWCNTs

In this work, Ni-UiO-66-NH2@MWCNTs, as an electro-
chemical catalyst for methanol oxidation, was prepared 
according to our previously reported work [33]. Briefly,in 
two clean separate vials, 42.5 mg (0.18 mmol) of ZrCl4 was 
suspensed in 5 mL DMF and 1 mL HCl (37%) (Solution A), 
while 45.5 mg (0.428 mmol) of 2-aminoterphethalic acid 
and 50 mg of MWCNTs-COOH were suspensed in 10 ml 
DMF (Solution B). Both solutions were left to sonicate for 
20 min. Solution A was added to solution B while stirring 
at 400 rpm with a magnetic bar. The vial was capped and 
left under stirring at 80 °C overnight. The as-prepared 
MOF@MWCNTs was filterd, washed and left to exchange 
in ACN at 85 °C for 2 h, then the solid was filtered and dried 
overnight at 80 °C. For Ni-metallation, 50 mg of the UiO-
66-NH2@MWCNTs was suspensed in 5 ml acetonitrile, fol-
lowed by addition of 15.2 mg Ni(NO3)2.6H2O to the solu-
tion and sonication for 20 min. The vial was transferred to 
thermalblock and dried while stirring at 85 °C. The temper-
ature was then raised to 120 °C to ensure complete evapo-
ration of acetontitrile. The synthetic process is represented 
and summarized in Scheme 2.

2.2 � Electrochemical measurements

About 8 mg of Ni-UiO-66-NH2@MWCNTs was dispersed in 
1 ml of isopropanol followed by the addition of 7 µl of 
Nafion (10 wt% in isopropanol). The ink was sonicated 
then 20 µl were drop-casted on a glassy carbon electrode 
and left to dry at room temperature. The cyclic voltametry 
(CV), impedance (EIS) and chronoamperometry measure-
ments were performed in 1 M KOH solution as supporting 
electrolyte at room temperature from 0 to 0.6 V vs Hg/HgO 
at scan rates ranging from 5 to 100 mV/s. EIS measure-
ments were performed by using a voltage amplitude of 
10 mV and frequencies from 0.1 Hz to 105 Hz.

3 � Results and discussion

To confirm the successful deposition of UiO-66-NH2 MOF 
nanoparticles (NPs) atop the MWCNTs, Fourier-transform 
infrared (FTIR) spectroscopy was utilized (Fig. 1a), where 
the MOF characteristic peaks were evident in the FTIR 
spectrum of the UiO-66-NH2@MWCNTs and Ni-UiO-
66-NH2@MWCNTs composite. The peaks at 1575 cm−1 
and 1432 cm−1 correspond to the stretching vibration 

Scheme  1   In-situ  deposition of MOF@MWCNTs as a precursor to 
Ni(OH)2 active catalyst for methanol oxidation
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frequencies of C=O and C=C of the 2-aminoterephthalic 
acid ligand, respectively, which are absent in the MWC-
NTs-COOH spectrum thereby confirming the successful 
deposition of MOF NPs atop the MWCNTs-COOH [34]. 
For further investigation, X-ray diffraction (XRD) was also 
performed to ensure the successful preparation of UiO-
66-NH2@MWCNTs. As shown in Fig. 1b, the XRD pattern 

of UiO-66-NH2@MWCNTs and Ni-UiO-66-NH2@MWCNTs 
revealed the characteristic peaks of the pristine MOF. An 
additional peak at 2θ = 25.7 was evident (marked by * in 
Fig. 1b), which is characteristic of (002) planes of gra-
phitic carbon of MWCNTs [35].

Thermogravimetric analysis (TGA), Fig. 2a, was per-
formed to investigate the thermal stability of the 

Scheme 2   A pictorial represen-
tation of the synthetic process

Fig. 1   (a) FTIR spectra of UiO-
66-NH2, UiO-66-NH2@MWCNTs, 
Ni-UiO-66-NH2@MWCNTs, and 
MWCNTs-COOH and (b) XRD 
diffraction patterns of UiO-
66-NH2, UiO-66-NH2@MWCNTs, 
Ni-UiO-66-NH2@MWCNTs, and 
simulated UiO-66. The asterisk 
(*) demonstrates the additional 
peak representing the (002) 
planes of MWCNTs
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composite. Compared to pristine MOF, the thermal sta-
bility of the composite was enhanced, which indicates 
the strong interaction between MWCNTs-COOH and MOF 
NPs [36]. To confirm the microporosity of the UiO-66-NH2 
MOF NPs, N2 sorption isotherm was measured (Fig. 2b), 
which exhibited Type-I characteristics indicating the 
presence of micropores. The Brunauer–Emmett–Teller 
(BET) surface area was calculated to be 1276 m2/g, which 
is consistent to previous literature.

Figure  3 shows the scanning electron microscopy 
(SEM) images of (a) MWCNTs-COOH (b) UiO-66-NH2@
MWCNTs and (c) Ni-UiO-66-NH2@MWCNTs, which con-
firm the successful deposition of MOF NPs on the surface 
of MWCNTs-COOH with uniform coverage.

Energy-dispersive X-ray spectroscopy (EDX) meas-
urements (Fig.  4) were also conducted on the Ni-
loaded composite, which revealed the homogeneous 

distribution of Ni within the composite, as evidenced 
by the Ni map aligning closely with the elemental maps 
of C, O, and Zr. Moreover, the analysis indicated that the 
composite contains 2.7 wt% of Ni.

Metalation of UiO-66-NH2@MWCNTs with Ni(II) ions 
was conducted through incipient wetness impregnation, 
where simply soaking the composite in an acetonitrile 
solution of Ni(NO3)2 for 4 h was sufficient to induce meta-
lation by Ni(II) ions. Cyclic voltammetry (CV) of Ni-UiO-
66-NH2@MWCNTs in alkaline medium (1 M KOH) demon-
strated well-defined anodic and cathodic peaks of Ni2+/
Ni3+ redox pair at 0.494 V and 0.352 V vs Hg/HgO respec-
tively, Fig. 5, confirming the inclusion of Ni2+ ions within 
the composite. The current density of this redox couple 
increased with consecutive CV scans, Fig. 3 inset, indicat-
ing the continuous adsorption of OH– ions to activate 

Fig. 2   (a) TGA of UiO-66-NH2 and UiO-66-NH2@MWCNTs, and (b) N2 sorption isotherms for UiO-66-NH2

Fig. 3   SEM images at the same magnification of (a) MWCNTs-COOH, (b) UiO-66-NH2@MWCNTs and (c) Ni-UiO-66-NH2@MWCNTs
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Ni-UiO-66-NH2@MWCNTs and form the electrocatalytically 
active species NiOOH according to Eq. (1) [29].

Ni(OH)2 + OH –  NiOOH + H2O + e – (1).
Upon measuring CVs at different scan rates from 

5–100 mV/s, the current density increased with increasing 

the scan rate indicating a diffusion-controlled mechanism.
for Ni(OH)2/NiOOH on the electrode surface, Fig. 6a. Fig-
ure 6b shows the linear dependency of the anodic current 
density on square root of the scan rate, which confirms the 
aforementioned explanation.

In order to assess the electrocatalytic acitivty of Ni-UiO-
66-NH2@MWCNTs towards methanol (MeOH) oxidation, 
CVs were measured at different alkaline methanolic con-
centrations, Fig. 7a. The observed current density increases 
upon increasing the MeOH concentration up to a maxi-
mum of 143 mA/cm2 at 0.6 V (vs Hg/HgO) at 1 M MeOH 
concentration, beyond which the current density starts 
to decline (Fig. 7a). This can be ascribed to the increasing 
availability of.

MeOH to be adsorbed on the abundant active sites. 
However, beyond 1 M MeOH concentration, there exists 
no more additional unoccupied active sites as well as the 
reaction intermediates and unreacted methanol tend to 
accumulate, thereby decreasing the current density [37]. In 
order to ensure that the presence of Ni ions is responsible 
for methanol oxidation catalytic activity, CV was carried 
out for UiO-66-NH2@MWCNTs under similar conditions. 
As shown in Fig. 7b, the current density is negligible and 
there are no discernible redox peaks contrary to Ni-UiO-
66-NH2@MWCNTs.

Fig. 4   EDX maps for Ni-UiO-
66-NH2@MWCNTs showing the 
homogenous distribution of 
the elements (labeled images) 
throughout the sample

Fig. 5   Activation of Ni-UiO-66-NH2@MWCNTs in 1  M KOH at scan 
rate 100 mV/s
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Overall, the presented catalyst demonstrated superior 
activity towards methanol oxidation in comparison with 
other previously reported catalysts as shown in Fig.  8 
despite the noted differences in the reported reaction 
conditions utilized in the previous publications, which 
are summarized in Table 1. Furthermore, the stability of 
Ni-UiO-66-NH2@MWCNTs was investigated by chrono-
amperometry (CA) in 1 M MeOH/KOH solution at a fixed.
potential of 0.6 V vs Hg/HgO for 10 h (Fig. 9a). The high 

initial current density is most likely due to fast oxida-
tion of adsorbed MeOH on the active sites [38]. The fol-
lowing drop in current density is therefore due to partial 
depletion of adsorbed MeOH as well as accumulation of 
adsorbed intermediates like COOH, CHO and CO on the 
catalyst surface, which may lead to catalyst saturation [39]. 
Nevertheless, Ni-UiO-66-NH2@MWCNTs retained 84.1% of 
the current density after 10 h (Fig. 9b). The slight decrease 
in current density can be explained by the reduction of 

Fig. 6   (a) CVs of Ni-UiO-66-NH2@MWCNTs in 1 M KOH at different scan rates and (b) linear relationship between anodic current density at 
0.49 V and square root of scan rate

Fig. 7   (a) CVs of Ni-UiO-66-NH2@MWCNTs in 1  M KOH and different methanol concentrations at 50  mV/s scan rate and (b) CVs of UiO-
66-NH2@MWCNTs and Ni-UiO-66-NH2@MWCNTs in 1 M KOH and 1 M MeOH at 50 mV/s scan rate
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methanol concentration in solution with time after its oxi-
dation on the electrode surface.

In an attempt to gain deeper insight into the proposed 
mechanism, electrochemical impedence spectroscopy 
(EIS) was performed for Ni-UiO-66-NH2@MWCNTs in 1 M 
KOH before and after addition of 1 M MeOH (Fig. 10). The 
experimental points were well-fitted to proper equivalent 
circuits that contain Rsol, CPEdl, Rct, CPEads, Rads, and W as 
solution resistance, constant phase element for double 
layer capacitance, charge transfer resistance, constant 
phase element for adsorption of reaction intermediates 
on the electrode surface, adsorption of reaction interme-
diates on the electrode surface resistance, and Warburg 

impedance, respectively as given in Table 2. As shown 
in Fig. 10, the Nyquist plots showed significantly differ-
ent appearances before and after the addition of MeOH 
to the alkaline electrolyte, which confirmed the metha-
nol oxidation mechanism on the anode follows that pro-
posed by Harrington and Conway [49, 50]. The large semi-
cicle at high frequency in the EIS for the Ni-UiO-66-NH2@
MWCNTs in 1 M KOH could be attributed to double layer 
capacitance (CPEdl = 4289 μT) and high charge transfer 
resistance (Rct = 176 Ω) on the electrode surface where 
no reaction is taking place. After addition of 1 M MeOH, 
the EIS revealed two smaller semicircles, where the first 
semicircle can be attributed to higher double layer capaci-
tance (CPEdl = 1244 μT), as well as lower charge transfer 
resistance (Rct = 14.94 Ω). The additional second semicircle 
can be correlated to the adsorption of methanol oxidation 
reaction intermediates onto the electrode surface with 
lower resistance (Rads = 6.517 Ω and CPEads = 79.62 μT), thus 
confirming the methanol oxidation process on the catalyst 
surface [51]. Moreover, a fast mass transfer is evident by 
the presence of Warburg element, which indicates the fast 
oxidation process [29]. 

4 � Conclusion

In summary, a simple one-pot synthesis method to pre-
pare UiO-66-NH2@MWCNTs followed by Ni2+ ion meta-
lation through facile incipient wetness impregnation is 
presented, to generate a highly active electrocatalyst for 
alkaline methanol oxidation reaction. Electrochemical 
activation of the prepared composite resulted in NiOOH 
atop MWCNTs, which revealed exceptional electrocatalytic 
activity towards methanol oxidation in alkaline solution 
with appreciable stability. The Ni-UiO-66-NH2@MWCNTs 

Fig. 8   Current density recorder utilizing the Ni-UiO-66-NH2@MWC-
NTs, in 1  M Methanol/KOH at 50  mV/s scan rate, as compared to 
previous literature comparing the values of highest recorded cur-
rent density

Table 1   Electrochemical catalytic activity of reported MOF composites and MOF-derived catalysts towards methanol oxidation reaction

a  vs SCE, b vs RHE, and c vs Hg/HgO

Catalyst Electrolyte MeOH 
conc. (M)

J
(mA/cm2)

Onset Potential 
(V vs Ag/AgCl)

Scan rate 
(mV/s1)

Potential window (V) Ref

Ni0.6Co0.4 1 M NaOH 0.5 116 0.42 50 0–1 [40]
Ni100 Bi1 Nano-oxides 1 M NaOH 1 35 0.32 100 0–1 [41]
ZnO@C 1 M KOH 4 17 0.36 50 − 0.2 to 1 [42]
Ni3Sn2@CNFs 1 M KOH 1 68 0.32 50 00.8 [43]
PEDOT:PSS/MnO2/rGO 0.5 M NaOH 0.5 56 0.32 50 − 0.35 to 0.35 [44]
Ni-NiO@C 1 M KOH 0.5 74 0.32a 50 0–0.7 [45]
MoS2@CoNi-ZIF 1 M KOH 0.5 68 1.24b 50 0.8–1.6 [46]
Ni-Cu/TiN 1 M KOH 1 100 0.40 50 0–1 [47]
CoNi 0.1 M NaOH 0.1 3 0.42 20 0.1–0.7 [48]
Ni-UiO66-NH2@MWCNTs 1 M KOH 1 143 0.42c 50 0–0.6 This Work
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catalyst retained 93.5% and 84.1% of the current density 
after 1 h and 10 h of continuous oxidation, respectively, 
and demonstrated superior catalytic activity and stabil-
ity compared to other reported catalysts based on MOF 
composites/-derived catalysts. The reported approach 
opens the door for novel electrode materials for direct 
methanol fuel cell applications.
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