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Abstract
Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, 
inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mecha-
nism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify 
the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, 
quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major 
active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Fur-
thermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling 
pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), 
EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and 
MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin 
could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. 
nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. 
Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alterna-
tive medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs.
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ESR1  Estrogen receptor 1
AR  Androgen receptor
TNBC  Triple-negative breast cancer
ECM  Extracellular matrix
TCGA   The Cancer Genome Atlas

1 Introduction

Breast cancer is one of the leading causes of cancer death 
in women. The latest epidemiological report shows that 
female breast cancer has surpassed lung cancer as the 
most commonly diagnosed cancer with 2.3 million new 
cases (11.7% of total cases) worldwide in 2020, closely 
followed by lung cancer (11.4%) and colorectal cancer 
(10.0%) [1]. The incidence rate of breast cancer has been 
decreased slightly in Canada over the past 30 years [2] 
but increased at 0.5% per year in the United States in 
the past years [3]. In addition, it has been noticed that 
the affected population is getting younger [4], which is 
highly concerning in the society. However, the mortality 
rate of breast cancer has been decreased steadily in both 
Canada and the United States since 1990s [3, 5], which is 
mainly attributed to advances in breast cancer diagnosis 
and treatment, such as mammography, targeted therapy 
and immunotherapy.

Although the 5-year survival rate for breast cancer is 
around 90%, prognosis for advanced stage and recurrent 
breast cancer remains poor [6, 7]. For example, the 5-year 
survival rate is around 100% for stage I patients but 22% 
for stage IV patients in Canada [6]. Chemotherapy of breast 
cancer usually faces drug resistance and severe adverse 
drug reactions, which, in turn, significantly affects the 
quality of life in breast cancer patients [8, 9]. Furthermore, 
the high cost of oncology drugs may limit their clinical 
application in certain countries [10]. Thus, many cancer 
patients, not just limited to advanced stage patients, 
seek complementary and alternative medicine (CAM) 
treatments in an attempt to improve therapeutic efficacy 
and/or reduce adverse drug reactions. A study of cancer 
patients in Northern Ontario, Canada showed that 51.8% 
of the patients used CAM products after diagnosis [11]. 
For patients’ safety, it is critical to enhance researches 
to understand the mechanism of action (MOA) and side 
effects of the CAM products.

Medicinal plants are a valuable resource for develop-
ing anticancer therapeutics and widely used in CAM. 
For example, paclitaxel, a chemotherapy drug used to 
treat breast cancer and ovarian cancer, was discovered 
from the Pacific Yew tree. Solanum nigrum L., commonly 
known as black nightshade, is a folklore herb used in 
traditional Chinese medicine (TCM). It is usually used 
to treat ailments such as fever, pain and inflammation 

[12–14]. However, its anticancer function has attracted 
people’s attention in recent years [15–18]. The water 
extract of S. nigrum and various active ingredients such 
as polyphenols have shown potent in vitro anticancer 
activities [19–22]. Specifically for breast cancer, it has 
been reported that S. nigrum can induce apoptosis and 
autophagy [15] and suppress mitochondrial function 
and epithelial-mesenchymal transition [19] in breast 
cancer cells. In addition, our previous studies showed 
that S. nigrum water extract inhibited cell migration and 
suppressed aerobic glycolysis towards human breast 
cancer MCF7 cells [23].

The main active components of S. nigrum and their 
corresponding targets in human cells have not yet been 
thoroughly identified, though. The underlying MOA for the 
entire plant rather than just an active constituent should 
be clarified because S. nigrum is typically administered as 
a whole plant in TCM preparations. In the present study, 
active components of S. nigrum as well as their potential 
mechanism behind its anticancer action were investigated 
by using network pharmacology and molecular docking 
approaches.The findings of this investigation may be able 
to offer a fresh method for thoroughly comprehending its 
antineoplastic properties..

2  Materials and methods

2.1  Screening of active ingredients in S. nigrum 
and corresponding targets in human cells

Information of bioactive compounds in S. nigrum were 
retrieved from the traditional Chinese medicine systems 
pharmacology database and analysis platform (TCMSP) 
(https:// tcmspw. com/ tcmsp. php) using “Solanum nigrum 
Linn” as a keyword. Oral bioavailability (OB ≥ 30%) and 
drug-likeness (DL ≥ 0.18) were set as the thresholds in 
identifying candidate active ingredients [24, 25]. For 
each candidate, 3D structure and structural graphic were 
obtained from the PubChem database (https:// pubch em. 
ncbi. nlm. nih. gov/) and saved in sdf and mol2 format. Sub-
sequently, the sdf file was uploaded to Swiss Target Predic-
tion database (http:// swiss targe tpred iction. ch/ index. php) 
to identify its potential interacting protein targets. Target 
protein names filtered with “Homo sapiens” and “Probabil-
ity > 0” were downloaded.

2.2  Prediction of breast cancer‑related targets for S. 
nigrum Active Ingredients

All breast cancer-related target genes were retrieved from 
GeneCards database (https:// www. genec ards. org/) using 

https://tcmspw.com/tcmsp.php
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://swisstargetprediction.ch/index.php
https://www.genecards.org/
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"breast cancer" as a keyword. These targets were subse-
quently standardized in UniProt (http:// www. unipr ot. org/) 
with organism selected as “Homo sapiens” to obtain a list 
of human breast cancer related targets. Finally, common 
targets between human breast cancer-related targets 
and the predicted targets for S. nigrum active ingredi-
ents (Sect. 2.1) were extracted and presented in a Venn 
diagram.

2.3  Construction of protein–protein interaction 
(PPI) network

The aforementioned common targets (Sect. 2.2) were sub-
jected to protein-protein interaction networks and func-
tional enrichment analysis using STRINGdb (https:// string- 
db. org/). The protein interaction data was then imported 
into Cytoscape 3.7.2 [26] to construct PPI, analyze key 
regulatory proteins in the PPI, and identify core proteins 
with maximal degrees in topological analysis.

2.4  GO and KEGG analysis of key protein targets

Key targets identified above in Sect. 2.2 were uploaded 
to DAVID (database for annotation, visualization and 
integrated discovery, https:// david. ncifc rf. gov/) for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis (http:// 
www. genome. jp/ kegg/) with the species defined as 
"Homo Sapiens” and the threshold of significant differ-
ence set at p < 0.05. GO function enrichment analysis 
includes biological process (BP), cellular component (CC) 
and molecular function (MF). The results were then visu-
alized and plotted using an online bioinformatics tool for 
data analysis and visualization (http:// www. bioin forma tics. 
com. cn).

2.5  Construction of component‑target‑pathway 
network

To figure out MOA of S. nigrum against breast cancer, we 
constructed the component-target-pathway network 
using the aforementioned information of active ingredi-
ents (component), key protein targets (target) and major 
biological pathways (pathway). The network was subse-
quently visualized using Cytoscape 3.7.2. In the network, 
the nodes represent components, targets and associated 
pathways (shown in pink, blue and green, respectively); 
while the edges represent component-target and target-
pathway interactions.

2.6  Molecular docking of major active ingredients 
to key protein targets

Molecular docking was used to evaluate the capability and 
affinity of S. nigrum active ingredients to the selected key 
protein targets. 3D-structures of the protein targets were 
retrieved from the RCSB Protein Data Bank (PDB, http:// 
www1. rcsb. org/) and 3D-structures of the active ingre-
dients were prepared using Chimera 1.15 [27]. Molecular 
docking was performed using AutoDock Vina [28], with 
binding energy of −5.0 kcal/mol as the selection criteria 
[29].

3  Results

3.1  Identification of S. nigrum active ingredients 
and their respective targets in human cells

Seven major active ingredients (OB ≥ 30% and DL ≥ 0.18) 
were retrieved for S. nigrum from the TCMSP database. 
They are cholesterol, solanocapsine, diosgenin, mediores-
inol, beta-carotene, quercetin and 3-epi-beta-sitosterol 
(Table 1). Then, 190 potential targets were identified for 
the 7 bioactive compounds from the Swiss Target Predic-
tion database.

3.2  Identification of bioactive compounds targets 
in S. nigrum for breast cancer

We extracted 14,360 breast cancer-related gene targets 
from GeneCards and selected 1837 genes for further 
crossover analysis after two cycles of median operation 
(score ≥ 9.67). As shown in Fig. 1, 80 gene targets were 
revealed to be shared between the bioactive compound 
targets and breast cancer targets. They are related to 6 
active ingredients of S. nigrum except beta-carotene. Thus, 
beta-carotene was removed from the active ingredient list 
in the following analyses.

Table 1  Major active ingredients identified in S. nigrum 

No Active ingredient PubChem CID OB (%) DL

S1 Cholesterol 5997 37.87 0.68
S2 Solanocapsine 73,419 52.94 0.67
S3 Diosgenin 99,474 80.88 0.81
S4 Medioresinol 181,681 57.2 0.62
S5 Beta-carotene 5,280,489 37.18 0.58
S6 Quercetin 5,280,343 46.43 0.28
S7 3-Epi-beta-sitosterol 12,303,645 36.91 0.75

http://www.uniprot.org/
https://string-db.org/
https://string-db.org/
https://david.ncifcrf.gov/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.bioinformatics.com.cn
http://www.bioinformatics.com.cn
http://www1.rcsb.org/
http://www1.rcsb.org/
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3.3  PPI Network Construction

PPI network was constructed for the 80 identified targets 
using the STRING database with the minimum interac-
tion score set at 0.4 (Fig. 2). After screening, 79 targets 
were identified to interact with other proteins and 634 
edges were observed in the network. This indicates that 
multiple interactions are present for the targets. The aver-
age degree of each node was 15.8. Sucrase-isomaltase 
(encoded by gene SI) was removed from the PPI network 

as it did not meet the selection criteria. Furthermore, we 
noticed that six proteins with highest degrees in the PPI 
network could be major hubs responsible for the antican-
cer function of S. nigrum. The six hub proteins are AKT1 
(AKT serine/threonine kinase 1), ESR1 (estrogen receptor 
1), EGFR (epidermal growth factor receptor), SRC (proto-
oncogene tyrosine-protein  kinase  Src), AR (androgen 
receptor) and MMP9 (matrix metalloproteinase 9).

3.4  GO and KEGG enrichment analysis

DAVID database was employed for GO enrichment analy-
sis to reveal the biological functions associated with the 
80 common targets (p < 0.05). In total, we obtained 211 
enrichment items for BP, 27 enrichment items for CC and 
71 enrichment items for MF. In Fig. 3, we presented the 
top 10 enriched terms in each GO category in the order of 
p-value from low to high. These top 10 enriched terms are 
protein autophosphorylation, negative regulation of apop-
totic process, peptidyl-tyrosine phosphorylation, response 
to drug, positive regulation of cell proliferation, positive 
regulation of gene expression, positive regulation of tran-
scription from RNA polymerase II receptor, transmembrane 
receptor protein tyrosine kinase signaling pathway, oxi-
dation–reduction process and phosphatidylinositol-medi-
ated signaling in BP; cytosol, nucleus, nucleoplasm, plasma 
membrane, protein complex, extracellular space, extra-
cellular exosome, mitochondrion, phosphatidylinositol 
3-kinase complex and cytoplasm in CC; and ATP binding, 
transmembrane receptor protein tyrosine kinase activity, 
RNA polymerase II transcription factor activity, enzyme 
binding, protein tyrosine kinase activity, protein kinase 
activity, kinase activity, steroid binding, steroid hormone 
receptor activity and protein binding in MF.

Signaling pathway enrichment for the 80 common tar-
gets was performed using the KEGG pathway database 
in order to reveal the key signaling pathways in breast 
cancer that are regulated by the active ingredients of 
S. nigrum. We identified 83 primarily enriched signaling 
pathways. The top 20 most significantly enriched path-
ways (p < 0.05) are pathways in cancer, prolactin sign-
aling pathway, proteoglycans in cancer, FoxO signaling 
pathway, focal adhesion, central carbon metabolism 
in cancer, progesterone-mediated oocyte maturation, 
prostate cancer, PI3K-AKT signaling pathway, melanoma, 
insulin resistance, ErbB signaling pathway, glioma, ovar-
ian steroidogenesis, estrogen signaling pathway, Rap1 
signaling pathway, Ras signaling pathway, VEGF signal-
ing pathway, pancreatic cancer and hepatitis C (Fig. 4).

Fig. 1  Venn diagram showing the S. nigrum bioactive compound 
targets and breast cancer targets

Fig. 2  PPI network for the 80 common targets between S. nigrum 
bioactive compound targets and breast cancer targets
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3.5  Construction of component‑target‑pathway 
network

The component-target-pathway network (Fig.  5) was 
constructed using Cytoscape 3.7.2 by incorporating the 
6 bioactive ingredients of S. nigrum, the 80 common 
targets shared between the bioactive compound tar-
gets and breast cancer targets, and the top 20 signal-
ing pathways revealed by KEGG analysis. The network 
degree value was calculated for the 6 bioactive ingredi-
ents (Table 2) with 4 compounds having the value higher 
than 10. The 4 compounds are quercetin, cholesterol, 
3-epi-beta-sitosterol and diosgenin. The network degree 
was relatively low for medioresinol and solanocapsine. 
This network analysis suggests that quercetin may play 
a more important role in contributing to the anticancer 
function of S. nigrum than the other active ingredients. 
It is also noteworthy that each active ingredient acts 
on multiple targets and is involved in various signaling 
pathways, implying that synergistic, additive and even 
antagonistic effects might be present among the active 
ingredients. Further studies are warranted to confirm 
these effects.

Fig. 3  Top 10 enriched items 
(p-value from low to high) for 
the 80 common targets (identi-
fied in Sect. 3.2) in the three 
GO categories of biological 
process (BP, shown in green), 
cellular component (CC, shown 
in orange) and molecular func-
tion (MF, shown in blue)

Fig. 4  Top 20 most significantly enriched signaling pathways 
regulated by the active ingredients of S. nigrum in breast cancer 
(revealed by KEGG pathway analysis). Dot color and size represent 
p-value range and gene number mapped to the indicated path-
ways, respectively
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3.6  Docking the active ingredients of S. nigrum 
to the six hub proteins revealed from PPI

From the above PPI analysis, we identified 6 key protein 
targets (AKT1, ESR1, EGFR, SRC, AR and MMP9), which 
could be the major biological hubs responsible for the 

anti-breast-cancer function of S. nigrum. To explore 
whether the active ingredients could bind directly to 
these hub proteins, we carried out the docking stud-
ies between the 6 bioactive compounds and the 6 hub 
targets using binding energy of -5.0 kcal/mol as a selec-
tion cutoff. A binding energy value of less than 0 sug-
gests indicates that the ligand molecules can spontane-
ously bind to the receptor protein.The lower the binding 
energy value,the stronger the affinity between the two. A 
value of less than − 5.0 kal/mol suggests that the ligand 
molecules have a desirable binding affinity.The results of 
the molecular docking revealed that 8 ingredient-target 
pairs were lower than −5 kcal/mol, indicating that 3 active 
ingredients, namely quercetin, cholesterol and 3-epi-beta-
sitosterol, had good binding affinity to each of the six 
hub protein targets, namely AKT1,ESR1,EGFR,SRC,AR and 
MMP9 (Table 3). The docking patterns of the core ingredi-
ents and hub proteins were shown in Fig. 6. This docking 

Fig. 5  The component-target-pathway network constructed for S. 
nigrum. The component (active ingredients of S. nigrum), target (80 
common targets identified in Sect. 3.2) and pathway (top 20 signal-

ing pathways identified from KEGG) were shown in pink, blue and 
green, respectively

Table 2  Network degree values of the 6 active ingredients of S. 
nigrum 

Component No Chemical compound Degree

S6 Quercetin 49
S1 Cholesterol 17
S7 3-Epi-beta-sitosterol 17
S3 Diosgenin 14
S4 Medioresinol 7
S2 Solanocapsine 3

Table 3  Binding energy of S. 
nigrum active ingredients to 
the key protein targets

Hub protein 
target

Active ingredient Binding energy 
(kcal/mol)

Referred binding energy (kcal/mol)

AKT1 Quercetin −6.7 −9.7 to −5.36[30–34]
ESR1 Cholesterol −6.7 −6.5[35]
ESR1 3-Epi-beta-sitosterol −6.6 −10.09 to −6[35–41]
EGFR Quercetin −7.5 −8.8 to −5.25[31, 42–46]
SRC Quercetin −9.7 −10.543 to −7.9[31, 45, 47–49]
AR Cholesterol −6.8 −7.6[35]
AR 3-Epi-beta-sitosterol −7.1 −9.56 to −6.8[35, 39, 50]
MMP9 Quercetin −9.4 −9.7 to −5.15[35, 44, 48, 51, 52]
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study shows that quercetin could potentially bind to four 
hub targets, including AKT1, EGFR, SRC, and MMP9, which 
may trigger synergistic effects among different signaling 
pathways, suggests the use of quercetin in the treatment 
of breast cancer and provides data support for further 
experimental design.

4  Discussion

S. nigrum is a medicinal herb widely used to treat fever, 
pain and inflammation in TCM [12–14]. With the discov-
ery of its anticancer activities [15–18], S. nigrum has been 
included in integrative therapy of TCM to treat different 
types of cancer. Our previous studies have shown that 
the water extract of S. nigrum inhibited proliferation and 
migration of breast cancer MCF7 cells and suppressed 
the cells’ aerobic glycolysis [23]. However, the anticancer 
mechanism of S. nigrum is still far from understanding.

In the present study, we undertook an approach 
including network pharmacology and molecular dock-
ing to probe MOA of S. nigrum against human breast 
cancer. Six major bioactive compounds, cholesterol, 

solanocapsine, diosgenin, medioresinol, quercetin and 
3-epi-beta-sitosterol, were identified. Out of these bioac-
tive compounds, quercetin, which is probably one of the 
most-studied nutraceuticals, has been shown to possess 
strong antioxidant and anti-inflammatory activities and 
induce apoptosis of breast cancer cells [53, 54]. It can also 
inhibit cell adhesion and migration of breast cancer cells 
via downregulating HuR protein [54]. β-sitosterol, which is 
the most abundant type of phytosterol in various dietary 
plants such as vegetables and nuts, can inhibit the growth 
of breast cancer cells [55, 56]. Diosgenin, a steroidal sapo-
nin in plants, is also capable of inhibiting the growth and 
migration of human breast cancer cells [57, 58]. However, 
the functions of cholesterol, solanocapsine and mediores-
inol towards breast cancer cells are unknown.

Our subsequent analyses showed that the 6 active 
ingredients of S. nigrum interact with 80 breast-cancer-
related targets and regulate a wide range of biological 
pathways. From the PPI network, 6 key protein targets 
(AKT1, ESR1, EGFR, SRC, AR and MMP9) were identified as 
major biological hubs. They play important roles in normal 
breast functions, and upregulation of their expressions 
promote breast cancer proliferation and metastasis. There-
fore, we examined the expressions of the genes encoding 
these 6 hub proteins in breast cancer patients using online 
software GEPIA (http:// gepia. cancer- pku. cn/). As shown 
in Fig. 7, genes ESR1, AR and MMP9 are upregulated and 
gene EGFR is downregulated, respectively, in breast cancer 
patients (p < 0.05 and labeled with *). However, none of 
them is a prognostic marker for breast cancer.

For the four differentially expressed genes in breast can-
cer patients, gene ESR1 encodes ESR1, which is a major 
hormone receptor on the surface of breast cancer cells. 
Its upregulation stimulates breast cancer proliferation, 
growth, and metastasis [59, 60]. ESR1 introns SNP + 2464 
C/T (rs3020314) and SNP -4576 A/C (rs1514348) are cor-
related with breast cancer susceptibility and the expres-
sion status of progesterone receptor [61]. EGFR enhances 
proliferation and invasion of tumor cells and promotes 
breast cancer progression via JAK/STAT3 signaling [62]. 
EGFR is a major target for ΔNp63 regulation that influ-
ences cancer cell adhesion in basal-like triple-negative 
breast cancer (TNBC) [63]. Although EGFR is downregu-
lated in breast cancer patients (without subcategoriza-
tion), it is overexpressed in up to 76% in TNBC patients 
and EGFR-based targeted therapy has shown promising 
effects in TNBC patients [64, 65]. AR is expressed in > 70% 
breast cancer and across three major breast cancer sub-
types [66, 67]. However, it seems that the function of AR 
is subtype-specific [67]. AR signaling can also crosstalk 
with other signaling pathways to regulate breast can-
cer pathology and progression [67]. It can either elicit or 
diminish oncogenic effects in breast cancer depending 

Fig. 6  Conformations of the 8 strong bindings identified from 
molecular docking between the 6 active ingredients of S. nigrum 
and the 6 hub protein targets, a AKT1 and quercetin, b ESR1 and 
cholesterol, c ESR1 and 3-epi-beta-sitosterol, d EGFR and quercetin, 
e SRC and quercetin, f AR and cholesterol, g AR and 3-epi-beta-
sitosterol, and h MMP9 and quercetin

http://gepia.cancer-pku.cn/
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on estrogen bioavailability [68]. Thus, both AR agonists 
and antagonists could be potentially applied as thera-
peutic agents for breast cancer. A phase II clinical trial has 
shown that enzalutamide, an AR antagonist approved for 
treating prostate cancer, improved treatment outcome in 
AR-positive TNBC patients [69]. MMP9 is a matrix metal-
loproteinase responsible for breaking down the extracel-
lular matrix (ECM). Its expression is low in normal breast 
tissues. However, MMP9 is overexpressed in breast cancer 
cells and promotes breast cancer cell migration and inva-
sion via cleaving E-cadherin and degrading ECM [70, 71]. 
However, it has been shown that overexpression of MMP9 
can trigger the generation and release of endostatin and 
tumstatin, both of which are capable of suppressing breast 

cancer progression and metastasis [72, 73]. The expression 
of MMP9 has been reported to be associated with the pres-
ence of AR in epithelial ovarian cancer cells [74]. However, 
this association is not observed in breast cancer (Fig. 8).

For the two genes that are not differentially expressed 
in breast cancer patients, gene AKT1 is a key player of 
the PI3K-AKT-mTOR signaling pathway in breast cancer 
although its expression is not statistically significantly 
increased in breast cancer patients. Activation of the PI3K-
AKT-mTOR signaling pathway promotes cell proliferation, 
growth and survival and induces drug resistance in breast 
cancer [74, 75]. This pathway has emerged to be one of 
the major targets in developing therapeutics to treat solid 
tumors including breast cancer [76]. SRC (encoding SRC or 
c-SRC) is a proto-oncogene that is frequently activated in 
solid tumors including breast cancer [77]. SRC can activate 
multiple signaling pathways to promote cancer cell prolif-
eration, growth, survival, migration and invasion [78–80]. 
Both epidermal growth factor (EGF) and SRC can bind to 
EGFR and enhance each respective cancer-promoting 
functions [80–82]. Furthermore, SRC was observed to 
crosstalk with AR during prostate cancer progression [83].

From the above analyses, it is clear that S. nigrum can 
regulate multiple signaling pathways via the six critical hub 
proteins and quercetin, cholesterol and 3-epi-beta-sitos-
terol are likely to be the major active ingredients respon-
sible for those regulatory actions. Molecular docking sug-
gests that the three active ingredients could directly bind 
to the hub proteins to exert the anticancer activity of S. 
nigrum. Therefore, we may conclude that administration 
of S. nigrum is beneficial for breast cancer patients and the 
anticancer function of S. nigrum is via a network including 
multiple bioactive compounds and multiple protein tar-
gets. Synergistic effects could be achieved from regulating 
multiple pathways. However, caution should be taken in 
co-administration of chemotherapy drugs and medicinal 

Fig. 7  Boxplots showing the expressions of genes AKT1, ESR1, 
EGFR, SRC, AR and MMP9 in breast cancer patients (shown in red) 
versus normal controls (shown in grey) in the patient dataset BRCA 

deposited in The Cancer Genome Atlas (TCGA). This figure was gen-
erated using online software GEPIA (http:// gepia. cancer- pku. cn/)

Fig. 8  Pearson correlation between the expressions of MMP9 and 
AR in the patient dataset BRCA deposited in TCGA. This figure was 
generated using online software GEPIA (http:// gepia. cancer- pku. 
cn/)

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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herbs such as S. nigrum since the drug-herb interactions 
are basically unknown. These drug-herb interactions may 
reduce the therapeutic efficacy of chemotherapy drugs 
and could even be detrimental to cancer patients. We 
highly recommend avoiding co-administration of chemo-
therapy drugs and medicinal herbs unless the co-admin-
istration is clinically proved to be safe, or the drug-herb 
interaction is clearly defined.

5  Conclusion

In this study, we used network pharmacology and molec-
ular docking approaches to illustrate that S. nigrum may 
exert its anticancer function via interactions between the 
6 active ingredients and 80 protein targets. Out of these 
interactions, the interactions between quercetin, choles-
terol and 3-epi-beta-sitosterol and 6 hub proteins (AKT1, 
ESR1, EGFR, SRC1, AR and MMP9) are more important. Syn-
ergistic effects are likely to be achieved from the multiple 
signaling pathways. Briefly, our current research indicates 
that the anticancer activity of S. nigrum is probably due 
to synergistic effects achieved from multiple bioactive 
compound-target interactions.

In addition, we would like to point out several limi-
tations of the current study. First, because of the vast 
amounts of data from the literature, discrepancies may 
exist in various databases. Secondly, during the decoct-
ing process, active compounds with low concentrations 
may be dismissed and/or unidentified gradients may be 
generated. Finally, as genes are dynamically regulated by 
a variety of factors, gene expression information extracted 
from the databases may not be fully representative for the 
diseases.Despite several limitations, the current study sets 
the groundwork for further experimental and clinical con-
firmation of S. nigrum’s molecular mechanism for fighting 
breast cancer.

Our present approach of determining the MOAs for 
S. nigrum including multi-component, multi-target, and 
multi-pathway may be also applicable for identifying the 
MOAs for other medicinal herbs.These medicinal herbs 
unquestionably merit further pharmacological and clinical 
research to validate theoretical predictions and standard-
ize their applications in cancer treatment.
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