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Abstract
Extremely low visibility affects aviation services. Aviation services need accurate fog and low-visibility predictions for 
airport operations. Fog and low-visibility forecasting are difficult even with modern numerical weather prediction models 
and guiding systems. Limitations in comprehending the micro-scale processes that lead to fog formation, intensification, 
onset, and dissipation complicate fog prediction. This article predicts low visibility for Jay Prakash Narayan International 
Airport (JPNI), Patna, India, using a historical synoptic dataset. The proposed machine learning (ML) approaches opti-
mize three meta-algorithm approaches: boosting (which reduces variances), bagging (which reduces bias), and stack-
ing (which improves predictive forces). The ML approaches optimize the best prediction algorithms (at level 0) for fog 
(surface visibility ≤ 1000 m) and dense fog (surface visibility ≤ 200 m), and the suggested ensemble models at level 1 (an 
ensemble of level 0 ML approaches) deliver the highest performance and stability in prediction output. All time series 
perform well with the specified model (6-h to 1-h lead time for any combination of observed historical datasets). Airport 
management, planning, and decision-making rely on high reliability. Because it works well and is reliable, the proposed 
approaches can be used at other airports in India’s Indo-Gangetic Plain.

Article Highlights

• If low visibility can be predicted with a high level of 
accuracy, airports could run more efficiently.

• Proposed ensemble ML approach optimize bagging, 
boosting, and stacking algorithms to reliably predict 
low visibility.

• It fills the gap in predicting low visibility in the Indo-
Gangetic Plain (IGP), where fog is a perennial issue in 
winter.
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1 Introduction

The World Meteorological Organization (WMO) defines 
fog as a suspension of extremely minute, typically micro-
scopic water or ice droplets that reduces horizontal vis-
ibility on the earth’s surface to less than one kilometre 
[1, 2]. But as per our national practices, fog is reported 
wherever the visibility is 1000 m or less and the rela-
tive humidity is 90% or more [3]. Transportation [4, 5] 
and aviation services at airports [6–10] are significantly 
impacted by low visibility conditions brought on by the 
onset of fog. Fog limits visibility to about 1000 m, mak-
ing it challenging for pilots to locate the airport [11]. 
There has been a continuous evolution in Instrument 
Landing System (ILS) technology, but fog and poor vis-
ibility still pose a significant challenge to the airport’s 
ability to function normally. When the fog rolls in, air-
ports may have to close or reduce their operations, 
which can have serious financial repercussions [12–14]. 
Flight delays, cancellations, and diversions are common 
when dense fog (surface visibility ≤ 200 m) occurs, add-
ing to the misery of passengers and increasing the cost 
to airlines. In December 2017, 21 flights (the most in a 
month’s time) were diverted because of poor visibility at 
the JPNI Airport in Patna.

In northern and northeastern India, especially in the 
Indo-Gangetic Plain (IGP), December, January, and Feb-
ruary are foggy months [15, 16]. Recent fog research in 
India found a worrying spike in fog and land pollution, as 
well as fog in December, January, and February [17, 18]. 
The Numerical Weather Prediction (NWP) model, which 
is used by scientists throughout the world to predict the 
weather, is also used to predict visibility [19–21]. Many 
studies have tested high-resolution NWP models to pre-
dict fog [22]. Predicting fog is challenging due to the 
small scale and limited knowledge of the atmospheric 
process, which is so complicated that the NWP model 
does not capture many aspects of fog formation [21, 
23]. Because low-visibility incidents are local, numerical 
weather prediction is a difficult procedure. Fog predic-
tion is susceptible to small-scale alterations in meteor-
ological factors (wind or atmospheric stability), which 
many existing models don’t represent.

In this study, we focus on machine learning (ML) 
approaches for low visibility prediction due to the NWP 
model’s limitations. We address statistical and machine 
learning approaches for low-visibility prediction and 

provide promising results. In the 1980s, academics pro-
posed using a linear regression technique to make fog 
predictions, although limited success [24]. ML-based 
algorithms have been effectively applied to several fog 
prediction problems in the recent decade to address the 
constraints of conventional (e.g., linear) techniques. A 
multi-layer perceptron (MLP) approach [25] was tested 
at Canberra International Airport in Australia, utilizing 
meteorologically measured parameters. The Austral-
ian Bureau of Meteorology’s data was utilized to train 
and test a neural network model. A fuzzy logic-based 
fog prediction system was proposed and analyzed at 
Perth airport [26]. The fog prediction model averaged 
two different fog forecasting systems using majority 
voting [27] and suggested a decision tree induction ML 
technique for fog event prediction in Dubai, improving 
on numerical model approaches. The performance of 
MLPs with backpropagation [28] training is examined in 
a Brazilian fog event prediction challenge. [29] applies 
a Bayesian network to Melbourne airport fog predic-
tion. In this scenario, an 8-h prediction time horizon is 
employed to train the network with 34 years of data. This 
fog prediction system at Melbourne Airport has better 
results than the previous one. Different ML regression 
algorithms have been explored at Valladolid Airport 
in Spain [30]. Machine learning (ML) and ANN-based 
approaches have successfully predicted low visibility and 
fog-related extreme events. Examples include support 
vector regression or Extreme Learning Machine (ELM) 
[31, 32], the Bayesian Decision Method [29, 33, 34], neu-
ral networks [25, 35–39], regression algorithms [40], ordi-
nal regression techniques [7]. Studies also examine the 
meteorological causes of fog [18, 41, 42]. Some studies 
use the Decision Tree algorithm from the NWP model’s 
output weather data to predict fog [43]. Others use a 
technique based on synoptic weather observation data 
[44]. These studies focus on solitary events. Data-driven 
AI has the potential to revolutionize weather forecast-
ing or location-specific fog prediction. ML prediction 
approaches are objective and independent of forecast-
ers’ subjectivity. Receiving weather predictions faster 
also facilitates aeroplane operation, which requires pre-
cision and efficiency. India’s location-specific weather 
forecasting hasn’t been studied extensively. Custom-
ized services require reliable location-specific visibility 
predictions. This forecast may reduce weather-impacted 
costs. Predicting whether the formation or dissipation of 
fog will create low or reduced visibility is, thus, a critical 
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issue that has unintended repercussions in many fields 
of weather, transportation, and aviation.

To that end, this study aims to.

• Characterize fog events locally specific to the JPNI Air-
port located in the Indo Gangetic Plain (IGP) region.

• We present a discussion on the effectiveness of vari-
ous ML approaches in predicting fog (surface visibil-
ity ≤ 1000 m) and dense fog (surface visibility ≤ 200 m) 
and propose a method for making precise predictions 
of fog and dense fog.

Therefore, fog and dense fog predictions with the 
utmost accuracy are the objectives of this research paper, 
along with the local characterization of fog events. The 
rest of the paper is organized as follows: the next section 
describes the fog events database specific to the JPNI 
Airport, Patna, India, along with the studied areas. The 
most important methodology of the research paper is 
discussed in Sect. 3. Section 4 presents the comprehen-
sive experimental results and comparisons of different 
ML approaches considered in fog prediction. Discussion 
of the proposed ML approaches is placed in Sect. 5. Sec-
tion 6 closes the paper with conclusions and remarks on 
the research carried out.

2  Measurement site and data

We consider real-hourly synoptic weather observa-
tions for Jay Prakash Narayan International Airport 
(JPNI), Patna (25.5947° N, 85.0908° E) (shown in Fig. 1), 
and its surrounding areas, which are prone to frequent 

low-visibility events caused by local features as well 
as fog patterns associated with western disturbances 
(WD). Patna Airport has an elevation of only 52 m on the 
Ganga basin’s alluvial plains. Its location on the Ganges’s 
southern bank makes it a notable landmark (because of 
prevailing winds). From November through February, 
the Western Disturbance (WD) often causes radiation 
fog and advection fog to appear in this region [18, 45]. 
Extreme fog in this region frequently causes airport clo-
sures or significant delays, having far-reaching economic 
and social consequences. Thus, we focused on one of the 
Indo-Gangetic Plain (IGP) region’s airports that experi-
ence fog very often (as indicated in Fig. 1).

In order to anticipate the low visibility (fog or dense 
fog) in the following hour, we use the data we have at 
the moment  (xn) and the previous hours  (xn−1 to  xn−7)to 
make a prediction about the target value in the hour  (yn+1) 
for the lead time of one hour and subsequently  (yn+2) for 
a two-hour lead time, and so on. We trained machine 
learning models (algorithms) to predict fog (surface vis-
ibility ≤ 1000 m) and dense fog (surface visibility ≤ 200 m) 
using synoptic hourly meteorological parameters that rep-
resent the availability of moisture and its distribution at 
the surface and in the lower boundary layer, including dry 
bulb temperature, dew point temperature, wind speed, 
wind direction, relative humidity, and cloud amount. The 
selected input variables and the current value of the pre-
dictive variables (fog or dense fog) do not have a direct 
or linear relationship, indicating that non-linear predic-
tion models are more appropriate for this dataset in order 
to produce reliable predictions. However, it is crucial to 
remember that the linear correlation between variables is 
merely a suggestive parameter and should be considered 

Fig. 1  The geographical location of Jay Prakash Narayan International Airport Patna (a) India (b) Capital Cities of Patna and its Airport
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with caution due to the non-linear interactions between 
meteorological variables that cause the fog events.

In this study, meteorological data from December, 
January, and February of 2014–2015 to 2020–2021 
(21 months) were used to train the models, and mete-
orological data from 2021 to 2022 (3 months) was used 
to test the best-performing machine learning (ML) 
approaches (level 0 and level 1). In the train and test 
datasets, the fog/no fog ratio is 140/493 and 43/47, 
respectively. Similarly, the dense fog/no dense fog ratio 
in the train and test datasets is 51/582 and 11/79.

3  Methodology

The fundamental principles underlying all methods can 
be reduced to the concept of a dataset (x,y)N i = 1, where 
x = (× 1,…xd) refers to the input of the descriptive vari-
ables, and y is the equivalent response variable label. The 
purpose of these estimating procedures is to reconstruct 
the unknown functional dependence x →

f y by estimate 
f̂ (x) . As a result, the loss function Ψ(y,f ) value is minimized.

Reducing the function of the expected loss over the 
change in the response variable as a result of the Ey(Ψ[y, f 
(x)]), where x is the observed descriptive data, the equiva-
lent expression is shown in equation no.3.

Response y can be selected from a skewed distribution. 
There are a variety of loss functions that can affect this. The 
role of the binomial loss can be easily taken into account 
in classification problems if the variance of the response is 
dual (y = 0, 1). In Fig. 2, we present a block schematic of the 
entire process by which our proposed machine-learning 
prediction model operates the mechanism of the detailed 
methodology described in the algorithm 1 shown below. We 
implemented the explained algorithms in Python through 
h2o and Anaconda.

(1)f̂ (x) = y

(2)f̂ (x) = arg
min

f (x)
Ψ(y, f(x))

(3)f̂ (x) = arg
min

f (x)
Ex
[

EyΨ
[

y, f(x)]]x]

Fig. 2  Process block diagram of the proposed machine learning prediction model
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More specifically, the following are the research 
paper’s novelty and significant contributions:

• We offer a thorough benchmark for the problems in the 
prediction of low-visibility events caused by fog (with 

Algorithm-1: Proposed  stacked ensemble approaches for the prediction of 
fog(surface visibility ≤ 1000m) and dense fog(surface visbility≤200m) for the 
lead time of 06 hours to 01 hours . 
Input: x(n) to xd(n):  Previous 08 synoptic hour’s datasets of the 06 weather 
parameter   
Output: y(n): Occurrence of fog (surface visbility≤1000m) or dense fog (sur-
face Visbility≤200m)  
Procedure:  
1) Preprocess the datasets 
2) Feature Selection using principal component analysis(PCA) Co-vari-

ance matrix method 
3) Tuning of ML approves at level 0 

 
  (a.)  

I. GBM: Distribution: “bernoulli”, ntrees=45, 
max_depth=6, min_rows=15, learn_rate=0.2,fold_as-
signment=”Modulo”,keep_cross_validation_predic-
tions=True. 

II. DRF: 
ntrees=38,max_depth=20,min_rows=10,keep_croo_val-
idation=True,fold_assignment = ”Modulo” , 
keep_cross_validation_predictions=True. 

III. GLM : family=binomial, lambda=0,compute_p_val-
ues=True 

IV. XRT  : histogram_type =(uniformadaptive),fold_assign-
ment=”modulo”,keep_cross_validation=True. 

V. ANN(Feed Forward Neural Network): Distribution: Ber-
nouli, hidden=50, epochs = 3512 , train_samples_per_it-
eration=-2 , activation= “RectifierWithDrop-
out”,score_training_samples=10000 

VI. XGBoost: n_estimators=55, lambda=1, gamma=0, 
max_depth=3. 

            
           (b)  Ensembling of ML approaches at level 1 (of level 0)  
                  Stacked Ensemble: Type : binomial ensemble , base_models =   
                   ([GBM , DRF , GLM , XRT , ANN(Feed Forward Neural Net   
work) , XGBoost]) 
4) Evaluate performance using y(n) and f(n):   
5) Performance comparison of proposed method with various state-of-the-

art methods in terms of performance indexes. 
6) Output: {yd(n), Performance indexes} 
 
End of procedure 
 

intensity), taking into account a wide range of compari-
sons of relevant ML approaches.

• This is one of the first attempts to use statistics to 
describe the characterization of fog (intensity scale) at 
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JPNI Airport in Patna, India, which is located in one of 
the foggiest Indo-Gangetic regions (IGP).

• Assessment and optimum tuning of a wide range of rel-
evant ML techniques (i.e., optimally six) at level 0, and 
subsequently stacked ensembling of these wide ranges 
of machine learning models at level 1, provide robust ML 
approaches with optimum performance and high accu-
racy in different time scales (a lead time of 6 h to 1 h).

• This research paper comprehensively compares the 
usability of a wide range of machine learning classi-
fication algorithms like GBM, DRF, GLM, XRT, XGBoost, 
Feed Forward Neural Network (at level 0), and Stacked 
Ensemble (at level 1). And finally, it proposes that the 
ML technique has the best trade-off among three meta-
algorithm approaches: bagging (which decreases vari-
ance), boosting (which decreases bias), and stacking 
(which improves predictive forces). While finding the 
best prediction algorithms among them, using ensem-
ble algorithms (level 1) is another fun way to combine 
the information that level 0 techniques provide.

• Based on the results of this study, we found that the 
proposed ML techniques had a high statistical skill score 
and performance metric and that the output was stable.

3.1  Supervised ML methods

Many proposed ensemble ML methods have the goal of 
training a large number of relevant base ML models and 
then combining their predictions to boost the accuracy 
of the resulting model or to make the model more robust 
or generalizable. Ensemble approaches, which have a 
learning paradigm that may be summed up as "better 
together," consistently outperform the predictions of 
other, more sophisticated machine learning methods, 

such as incredibly complex ANNs. Participants in a learning 
experience are the ensemble’s building blocks. Although 
there are a wide variety of ensemble algorithms to choose 
from, most of them may be grouped into the categories of 
bagging, boosting, and stacking methods.

3.1.1  Random forest

When it comes to solving classification problems, Random 
Forest (RF) [46, 47] is one of the most well-known bagging-
like algorithms. In this method, the decision trees are used 
as the learners, and then subsets are created using the 
bootstrap aggregating methodology, similar to the bag-
ging method but with the added feature of dynamic tree 
topology. From a theoretical standpoint, this runs against 
the bagging paradigm because the trees in the ensemble 
(the forest) may differ in length, topology, or input factors, 
dramatically increasing the variability of the learners.

3.1.2  Bagging

Bootstrap aggregation, or bagging, is a more straight-
forward ensemble technique for training many learners 
and delivering a consistent output. Learners are bagged 

Fig. 3  Presentation of bagging 
technique for classification 
problems

Table 1  Model contingency table for computation of forecast qual-
ity

Fog (Surface visibil-
ity ≤ 1000 m)/or No

Predicted No (0) Predicted Yes (1)

Actual No (0) TN (True Negative) FP (False Positives)
Actual Yes (1) FN (False Negative) TP (True Positives)
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together because their topology, number of input–out-
put variables, and parameters are all the same. The most 
common learners used to create the bagging ensem-
ble method are decision trees with the same number of 
branches, the same training parameters, and the same 
input–output variables. Figure  3 depicts the decision 
procedure by majority vote (in classification) [48] used to 
generate the result of an ensemble model.

3.1.3  Boosting

Boosting algorithms are a special kind of ensemble algo-
rithm with their own method of teaching new information. 
They are effective classifiers [49]. The ensemble consists of 

a set of learners, each of whom has its own set of learning 
parameters or input–output variables.

3.1.4  Stacking

To create an ensemble, a stacked ensemble "stacks" the 
predictions of numerous basic classifiers using a meta-
learner. Stacking, also known as "super learning" [50] or 
"stacked regression” [47], refers to a family of algorithms 
that require training a "meta learner" at a higher level to 
determine the best possible combination of the learners 
at the lower levels. In order to boost a single predictor’s 
robustness and generalizability, this ensemble approach 
combines the predictions of multiple base estimators. This 

Table 2  List of verification scores used in the study

Verification scores Formulation Details

AUC The receiver operating characteristic (ROC) curve is 
explicitly dependent on the explicit integration of 
areas under the ROC curve

Measures how well this curve performs when used to 
develop a classification rule

AUCPR An average of the individual errors in a multi-class data-
set is known as the mean per class error

This relationship between recall and sensitivity (accuracy) 
is regarded to be a better predictor of unbalanced 
datasets

Gini Index/Coefficient
Ginni Index =

C
∑

i=1

p(i)∗(1 − P(i))
It determines the likelihood that a specific randomly cho-

sen characteristic was erroneously classified. The Gini 
Index ranges from 0 to 1, with 0 signifying classification 
purity and 1 signifying a random distribution of items 
among different classes. A Gini Index of 0.5 indicates 
that some classes of components are distributed equally

Fig. 4  Statistical analysis of 
the number of foggy days for 
November to March for the 
JPNI Airport Patna
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study proposes a stacked ensemble model consisting of 
XGBoost, GLM, GBM, and XRT. With this method, the final 
prediction of the ensemble model is made by training a 
meta-model at a higher level (level 1) on the unintentional 
predictions of base models at a lower level (level 0).

3.2  ANN‑based models

In this section, we also briefly describe the ANN-based 
approaches that were investigated in this study.

3.2.1  ANN based learning

To classify and predict complex data sets, we use informa-
tion-processing algorithms called neural networks. Start-
ing with a series of features (input variables) with prede-
termined labels, feedforward neural networks are trained 
to make predictions (classification). The internal layers per-
form their function by taking a directional (training-based) 
and non-linear approach to combining input and weights. 
Although there are a number of established algorithms for 
training a system, the back-propagation techniques used 
here are among the most effective. It uses a backpropaga-
tion technique to maximize the weight of each perceptron 
unit across an input layer, a hidden layer, and an output 
layer. Backpropagation is used to train a multi-layer feed-
forward neural network to reduce the stochastic gradient. 
Improvements in prediction accuracy can be achieved by 
the use of more sophisticated techniques, including adap-
tive learning rate, rate annealing, momentum training, 
drop-out, standard L1 or L2 regularization, checkpointing, 

and grid search [51]. It can also automatically learn data 
features [52].

3.3  Statistical skill score

The statistical analysis of the skill scores was carried out 
using a contingency table (shown in Table 1) with the logic 
"if fog (Surface visibility ≤ 1000 m)occurs then 1 otherwise 0 
(Surface visibility greater than 1000 m) ". The same applies 
to instances of dense fog (Surface visibility ≤ 200 m). This 
evaluation takes into account the statistical aspects of the 
skill scores: Accuracy, Selectivity and F1 Score.

3.4  Performance classification metrics

The outcomes of machine-learning experiments on a test-
ing data set are presented in order to assess the feasibility of 
using such algorithms to estimate low visibility. N samples 
from the testing data set compared with the predicted value 
with the actual values and proposed algorithms compared 
using verification results listed in Table 2.

(4)Accuracy
(TP + TN)

(TP + FP + FN + TP)

(5)Specificity or Selectivity =
(TN)

(TN + FP)

(6)F1 =
2

1

recall
∗

1

precision

Fig. 5  Statistical analysis of 
the number of foggy days for 
November to March for the 
JPNI Airport Patna (Foggy days 
represented as at least once in 
a day visibility ≤ 1000 m)
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4  Results

4.1  Statistical characterization of fog at JPNI 
Airport Patna

In this subsection, we offer the statistical description of 
the low visibility/fog at the JPNI Airport, Patna. Out of 
1210 days during the study period 2014–2022 (November 
to March), 604 days have surface visibility below 1000 m, 
indicating fog, and 166 days have surface visibility below 
200 m, indicating dense fog. This information was used to 

propose comprehensive and generalized best-trade state-
of-the-art ML techniques. Fig. 4 displays the average num-
ber of low visibility and fog hours at JPNI Airport Patna from 
2014 to 2022, while Fig. 5 displays the average number of 
days with low visibility and fog (with the intensity scale). 

In this analysis, low visibility owing to fog formation is 
most often in January, December, February and November, 
and least common in March. Fog and low visibility last for 
the longest time in January and for the shortest time in 
March. When compared to December to February, Janu-
ary has more dense fog days and dense fog hours (Sur-
face visibility ≤ 200 m). In addition, February has a similar 

Fig. 6  Comparison of ML 
approaches performance for 
the prediction of fog (surface 
visibility ≤ 1000 m)for the lead 
time of 02 h (The blue color 
indicates the AUC and Ginni 
Index in the shown fig    
shows the AUC (Prediction of 
fog),  shows AUC (pre-

diction of dense fog),Similarly 

 show shows ginni 
index for the prediction of fog, 

  ginni index for the pre-

diction of dense fog. Similarly 
green represents the MPCE 
and AUCPR for the prediction 
of fog as well as dense fog

Table 3  Mean no. of 
hours of Fog (Surface 
Visibility ≤ 1000 m) and Dense 
Fog (Surface Visibility ≤ 200 m) 
events (In hours) for the JPNI 
Airport, Patna

Months/Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

November Fog 5.33 2.96 0 0.7 0.6 2.4 0.06 1.06 –
Dense fog 0 0 0 0 0 0.03 0 0 –

December Fog 12.58 7.45 7.1 6.8 2.42 4.64 5.58 1 –
Dense fog 2.71 0.74 0.5 0.285 0.03 0.77 1.06 0 –

January Fog – 5.87 7.67 10.25 12.83 3.61 6.25 7.16 5.58
Dense fog – 1.19 0.83 2.06 3.29 0.25 1.45 2.67 0.903

February Fog – 2.89 1.58 1.28 1.32 0.61 0.34 1.89 1.107
Dense fog – 0.035 0.31 0.28 0.178 0 0.103 0.178 0.285

March Fog – 0.16 0 0.03 0 0.09 0.16 0 0.16
Dense fog – 0 0 0 0 0 0 0 0
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number of foggy days (Surface Visibility ≤ 1000 m) but 
fewer days with the other intensity scale values. Standard 
deviation (given in Figs. 4, 5) indicates that advection fog 
(fog in the rear sector of WD) occurs in January and some-
times in December, whereas radiation fog (more standard 
deviation) occurs in November and February (less standard 
deviation). Standard deviation for fog at JPNI airport Patna 

are largest between November and February, while the 
opposite is true in December and January. Figure 5 clearly 
demonstrates how the frequency of foggy days varies by 
month, with November and December having the largest 
fluctuation and December and January having the lowest. 
Table 3 displays the average number of low visibility/fog 

Fig. 7  The performance metric 
of the proposed machine 
learning algorithms for the 
prediction of fog (surface vis-
ibility ≤ 1000 m) and dense fog 
((surface visibility ≤ 200 m) for 
the lead time of 6 to 1 h

Fig. 8  The Statistical skill score 
of the proposed machine 
learning algorithms for the 
prediction of Fog (Surface Vis-
ibility ≤ 1000 m) and dense fog 
((Surface Visibility ≤ 200 m) for 
the lead time of 6 to 1 h
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hours (surface visibility ≤ 1000 m) and dense fog (surface 
visibility ≤ 200 m) for the study period.

4.2  Prediction of fog (surface visibility ≤ 1000 m) 
by using proposed ML (machine learning) 
approaches

We investigate the classification outcomes of the predic-
tion of fog (surface visibility ≤ 1000 m) and give a compre-
hensive evaluation of how well different ML approaches 
performed on these datasets. Which method proved 
most effective for these datasets with a lead time of six 
to one hour? Here, seven machine-learning approaches 
are used to predict fog (surface visibility ≤ 1000 m). A trial-
and-error process is used to fine-tune the six base models 
(GBM, XGBoost, GLM, XRT, DRF, and Feed Forward Neural 
Network) at level 0 for optimal performance. The sug-
gested stacked ensemble of level-0 models outperforms 
the aforementioned six ML approaches at the level-1 
evaluation stage (GBM, XGBoost, GLM, XRT, DRF, and Feed 
Forward Neural Network). Figure 6 presents the compari-
son of all seven ML approaches for the prediction of fog 
(surface visibility ≤ 1000 m) and dense fog (surface visibil-
ity ≤ 200 m) for the 02-h lead time. Where, SE outperforms 
the other base model approaches, including feed-forward 
neural networks. Similarly, it compares performance met-
rics for the lead times from 6 to 1 h and finds that the pro-
posed SE approaches get better as the lead time decreases 
(presented in Fig. 7). Figure 8 presents the statistical skill 
score of the proposed stacked ensemble approaches for a 
lead time of 6 to 1 h for the fog (surface visibility ≤ 1000 m) 
and dense fog (surface visibility ≤ 200 m). Empirical evi-
dence shows that the AUC gets better as the time stamp 
gets smaller, with the best values being between 0.8721 
and 0.9231 for the prediction fog.

Also, the statistical skill score like hit rate is more than 
87%, selectivity > 80%, and a high F1 Score, which signi-
fies the usability of the proposed models in fog prediction 
specific to the Patna airport.

4.3  Prediction of dense Fog (surface 
visibility ≤ 200 m) by using ML (machine 
learning) approaches

Figure 6 provides a thorough examination of various ML 
(Machine Learning) strategies for predicting dense fog 
(surface visibility ≤ 200 m) on the test dataset for the lead 
time of 02 h. It suggested stacked ensemble approaches 
at level 1 outperform the six base models at level 0 just 
as the algorithms outlined before in Sect. 4.2. The results 
have also improved significantly as compared to Sect. 4.2. 
The stacked ensemble approaches at level 1 have also sur-
passed level 0 (GBM, XGBoost, GLM, XRT, DRF, and Feed 

Forward Neural Network) ML approaches in terms of met-
ric performance (shown in Fig. 7) and statistical skill score 
(shown in Fig. 8) when predicting dense fog (surface visibil-
ity ≤ 200 m). Compared to the performance in dense fog (i.e. 
surface visibility ≤ 200 m), all of the metrics and statistical 
skill scores show considerable improvements for the lead 
time of prediction from 6 to 1 h over the test dataset. In the 
range of a six-hour to a one-hour lead time, the accuracy 
varies between 91.2 and 96.7%. This results is important for 
the efficient management of one of the IGP (Indo Gangetic 
Plain) region’s busiest airports and the timely scheduling 
of aircraft. This means that the most cost-effective opera-
tions could take place on an exceptionally busy day for the 
airlines (i.e., foggy days). Empirical evidence shows that 
the AUC gets better as the time stamp gets smaller, with 
the best values being between 0.9162 and 0.9856 for the 
prediction dense fog. Also, the statistical skill score like hit 
rate is more than 91.8%, selectivity > 80%, and a high F1 
Score (0.9161 (for 6 h lead time) to 0.9856 (for 6 h lead time), 
which signifies the usability of the proposed models in fog 
prediction specific to the Patna airport.

5  Discussion

Investigating the potential of ML (Machine Learning) 
approaches for regional or local low visibility (fog/dense 
fog) prediction in the context of Now cast (with a lead 
time of 06 h to 01 h) is the focus of this research. To put it 
another way, the suggested Ensemble ML approaches at 
level 1 perform significantly better than the correspond-
ing base models at level 0. Predictions of fog (surface vis-
ibility ≤ 1000 m) receive an F1 score between 0.90 and 
0.92 ( for a lead time of 06 h to 01 h). Also, F1 scores range 
from 0.95 (06 h lead time) to 0.98 (lead time of 01 h) for 
the prediction of dense fog (surface visibility ≤ 1000 m). 
This result confirms the findings of [21, 53, 54] which 
found that tree-based algorithms perform exceptionally 
well [43, 44]. Moreover, when compared to other forecast 
difficulties linked with meteorological factors like wind 
speed, temperature, and even precipitation, the predic-
tion of low-visibility/fog is often more challenging. This 
is attributable to the extreme local characteristics of fog 
events. Despite this challenge, any advancement towards 
accurate techniques to improve the explicit variance of 
low visibility event prediction is crucial for the characteri-
zation and accurate prediction of these events and the 
respective application of such predictive models in fog 
modeling. Based on the results, this experimentation with 
competing ML algorithms led to important conclusions.

• It is clearly shown that as the time stamp decreases the 
AUC also increases and its best values vary from 0.8721 
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to 0.9231 for the prediction of fog (visibility ≤ 1000 m) 
and varies between 0.9162 to 0.9856 for the prediction 
of dense fog (visibility ≤ 200 m) for the lead time of 06 h 
to 01 h.

• Accordingly, our proposed approaches can be viewed 
as instruments that harness the power of several rel-
evant ML approaches to develop accurate prediction 
of local-scale characteristics like fog/low visibility (with 
intensity scale).

6  Conclusion

Even with the advancement of numerical weather pre-
diction models and the guidance of fog and low visibility 
prediction models, fog/low visibility prediction remains 
challenging. Accurately predicting fog requires a deep 
understanding of the complicated and chaotic atmospheric 
processes occurring at the boundary layer over a very short 
time and domain scale. The complexity involved in fog pre-
diction is also linked to the inherent limitations in under-
standing micro-scale factors that contribute to the initia-
tion, intensification, uplift, and dispersion of fog in the area 
of interest. As a result, accurate fog prediction is necessary 
for the smooth operation of aviation services. This article 
presents an alternative to traditional low visibility and fog 
forecasting techniques based on historical data, allowing 
for the accurate and precise prediction of fog/low visibility 
(with an intensity scale) at specific locations. This study aims 
to fill the gaps in the regional outlook and explore a variety 
of options. Therefore, the current research compares various 
ML algorithms for supervised classification, such as GBM, 
DRF, GLM, XRT, XGBoost, and ANN based learning at level 0, 
that model data in various ways, and a stacked ensembling 
of level 0 algorithms at level 1 for the best prediction of 
fog (surface visibility ≤ 1000 m) and dense fog (surface vis-
ibility ≤ 200 m). The proposed algorithm (model) optimally 
balances the benefits of three ML meta-algorithms. In order 
to increase the effectiveness of the model’s metrics and the 
statistical skill score, bagging, boosting, and stacking are 
employed. Increasing predictability through stacking and 
decreasing bias through boosting. It’s important to iden-
tify the most effective prediction algorithms when doing 
so. A nowcasting system tailored to JPNI Airport Patna has 
been developed using the stacked ensembling concept 
we’ve been discussing. This method’s main benefit is that 
it generates output that may be used by the final consum-
ers—air traffic controllers, airline managers, and so on—to 
determine exactly what it is they need.
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Table 4  List of alphabetically ordered acronyms that appear in this 
paper

Acronyms Full name

JPNI Airport Jay Prakash Narayan International Airport
IGP Indo Gangetic Plain
WMO World Meteorological Organization
WD Western Disturbance
ILS Instrument landing System
AI Artificial Intelligence
ML Machine Learning
GBM Gradient Boosting Machine
DRF Discrete Random Forest
ANN Artificial Neural Network
GLM Generalized Linear Models
XRT Extremely Randomized Tree
XGBoost Extreme Gradient Boosting
AUC Area Under ROC Curve
SE Stacked Ensemble

https://dsp.imdpune.gov.in/
https://dsp.imdpune.gov.in/
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