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Abstract
Two different methods of artificial diffusion stabilization of the numerical simulations of steady Oldroyd-B fluids flows 
are presented. They are based on the idea of vanishing in time added stabilization terms which are only present during 
the initial stage of time-marching process towards the steady state solution. These extra terms naturally vanish and do 
not affect the final result. The numerical simulations are built on a simple steady 2D case of Oldroyd-B fluid flow in a 
symmetrical corrugated channel. Numerical solver uses finite element discretization in space and characteristic Galerkin 
method for pseudo-time discretization. Numerical results are presented in the form of isolines and graphs of selected 
flow variables, to assess the possible efficiency of the different stabilization techniques used.

Article Highlights

•	 New numerical algorithm for stabilization of Oldroyd-B 
fluids flows is proposed and tested.

•	 The vanishing artificial diffusion extends the range of 
stability of the given numerical method.

•	 The proposed numerical stabilization method is easy 
to implement into existing codes.
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1  Introduction

The Oldroyd-B model is one of the classical rheological 
models describing certain class of viscoelastic fluids found 
in many practical applications including engineering, 
environmental or biomedical sciences. Although other 
models are often used, this one remains a kind of a proto-
type, sharing the same structure and some behavior with 
many more advanced and sophisticated models. One of 

the well known disadvantages of Oldroyd-B type (and 
similar) models is that numerical simulations of the fluids 
flows governed by these models become unstable in cer-
tain flow regimes, namely in the case of high Weissenberg 
numbers [3, 30]. This problem is known as the High Weis-
senberg Number Problem (HWNP) [23].

This numerical issue is treated in a different way by 
different authors, leading to number of specific stabili-
zation and discretization techniques trying to overcome 
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the limitations arising from HWNP, see for example [12, 
19, 23, 32, 42, 43] or the review paper [1] containing many 
additional references. One of the most efficient methods 
to overcome the HWNP is based on the logarithmic trans-
formation for the conformation tensor [13], which allows 
to numerically capture the exponential growth of tensor 
components in certain regions. This method was widely 
used and refined by many authors [10, 11, 14, 24, 40]. This 
approach however requires a specialized code to be devel-
oped to implement the complete algorithm.

This is why certain simple stabilization algorithms are 
still of interest, due to their easy implementation into 
existing general CFD codes. One of the simplest and most 
widely used stabilization methods (not just for viscoelastic 
fluids flows) is based on the introduction of the so-called 
numerical viscosity (or diffusion) [16, 21, 22, 45]. In this 
approach an extra (artificial) numerical diffusion is added 
to the model at the discretization stage, leading to more 
stable simulations, i.e. more robust numerical solvers. 
However, this term is of purely numerical origin and has 
no physical significance [7].

The extra numerical diffusion can either be added as a 
separate term (to be discretized) within the model equa-
tions [20, 25] or it is naturally present while using low order 
discretization methods (e.g. as upwinding) [18, 26, 27]. This 
approach was successfully used during past decades in 
many numerical fluids flows simulations, for example the 
solution of hyperbolic problems including the Euler equa-
tions in gas dynamics [21, 28, 29, 44].

Due to simplicity and widespread use of the numerical 
diffusion technique, it is natural to try to use it also for 
treating the numerical instability of the Oldroyd-B fluids 
flows. In viscoelastic model however, the main problem 
is in the coupled system of transport-like equations for 
components of the viscoelastic stress tensor. The added 
numerical diffusion should thus be a tensorial quantity. 
The added diffusive term is typically directly proportional 
to the Laplacian of the extra stress tensor, i.e. � ⋅ Δ� (using 
the notation introduced below). This approach is rather 
elementary, but it has some advantages. Most importantly, 
there exist some physical (or thermodynamical) arguments 
that a diffusive term of this type should be present in the 
model [2], which leads to a so called diffusive Oldroyd-B 
model [8]. So, in such case the added stress diffusion is 
physical feature and the diffusion coefficient � is physical 
quantity coming from experimental measurements. So in 
fact this added tensorial diffusion leads to another rheo-
logical model and as a side effect, the increased stability 
of the model numerical solution is gained. This also indi-
cates the drawback of using the added stress diffusion as 
a stabilization technique for the standard (non-diffusive) 
Oldroyd-B fluid flow simulations. The solution obtained 
using the extra diffusion term leads to different solution, 

corresponding to the diffusive Oldroyd-B model, rather 
than to the original (non-diffusive) Oldroyd-B model for 
which a solution was sought. In other words, the increased 
stability of the numerical solver (using 𝛼 > 0 ) comes at the 
expense of lower accuracy of the solution of the original 
Oldroyd-B model problem. The higher values of � , the 
further from the solution of the non-diffusive Oldroyd-
B model are the numerical solutions obtained from of 
(other) diffusive Oldroyd-B model.

This means that in case the added diffusion term is used 
just to stabilize the standard (non-diffusive) Oldroyd-B 
model, the added diffusion is purely artificial and thus the 
coefficient 𝛼 > 0 should be kept as small as possible for the 
solution to remain as close as possible to the solution of 
the original non-diffusive problem. Technically speaking, 
when trying to solve Oldroyd-B flows at higher Weissen-
berg numbers, the numerical diffusion coefficient � has to 
be increased, which will (soon or later) lead to a solution 
which is unacceptably far from the solution of the non-
diffusive Oldroyd-B model.

Our previous experience with the simulation of Old-
royd-B like fluids flows indicate that the numerical insta-
bility develops during the initial stage of iterative process 
(towards steady state), which leads to the need of stronger 
stabilization during this initial phase of numerical simu-
lation. It was also found that any level of added stress 
diffusion visibly affects not just the numerical stability 
of the solver, but also the final numerical solution itself. 
The solution of the model with added diffusion is typi-
cally smoother, with lower gradients and cut-off peaks of 
flow quantities (not just stress tensor) [8] or Sect. 5.1 in 
this paper. These initial observations led us to the idea of 
using modified stress diffusion term, that will mainly be 
active during initial steps of the iteration process, while it 
will be decaying later, potentially completely diminishing 
in the steady state.

We have proposed and tested several variants of the 
vanishing artificial stress diffusion. First variant was an 
added term proportional to Laplacian of time derivative 
of the stress tensor, i.e. term of the form � ⋅ Δ� t . The logic 
behind this choice follows the original goal to have a sta-
bilization term that will mainly be active at the beginning 
of the iterative process, when the pseudo-time derivatives 
of the solution are higher, while it automatically vanishes 
when the steady solution is reached. This concept proved 
to be quite successful, as we have shown in our previous 
work [34]. As one of the drawbacks of this kind of added 
stabilization term might be seen the fact that this extra 
term has a non-standard and non-physical form contain-
ing third order mixed partial derivative of the computed 
(tensorial) quantity. This might complicate some theoreti-
cal considerations justification of this model as well as its 
numerical implementation.
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Therefore we were looking for some alternative stabiliza-
tion terms that will have similar behavior, but can better be 
supported by mathematical theory [5, 9] and will be easier 
to implement into existing numerical solvers. Two different 
alternatives are presented and discussed in this paper. Both 
of them use the added Laplacian of the extra stress tensor 
multiplied by a diffusion coefficient � , which is no more a 
constant, but is constructed as a suitable function of time or 
time-derivative of the solution, i.e. the added terms have the 
form �(t)⋅Δ� or �(�t)⋅Δ� . The results obtained using these 
two basic variants of the stabilization term are presented 
and discussed in detail. The focus is on their comparative 
assessment based on the qualitative behavior of the solu-
tion obtained by a Finite Element Method (FEM).

This method is one of the most commonly used in 
numerically solving problems described by partial differen-
tial equations [37, 46]. The numerical solution is constructed 
from a system of equations reformulated in the variational 
form. At discrete level it leads to decomposition of the 
physical domain of interest into a finite number of simple 
subdomains - the finite elements. On each element a set of 
nodes and low degree polynomials is defined, allowing to 
construct finite-dimensional function spaces for numerical 
approximation of the discretized problem. During the past 
decades the FEM became also a standard tool in investi-
gation and numerical modeling of viscoelastis fluids flows 
problems [15, 31, 38, 39, 41].

This paper is continuation and extension of our previ-
ous works [4, 33, 34], therefore in order to minimize possi-
ble repetition of previously published information, we skip 
the detailed description of the weak formulation of the 
problem, numerical discretization and solver details which 
can be found in and [33–35]. Here we only review some 
essential details of the model and focus on the description 
of certain types of modified artificial stress diffusion terms.

The aim of this paper is to find out whether for given 
rheological model, numerical method and computational 
grid, the added artificial tensorial diffusion can help to shift 
(increase) the critical Weissenberg number. This is why in 
this paper we don’t explore other effects related to the use 
of alternative rheological models, numerical methods or 
grids. Here the focus is purely on the effects of vanishing 
the added artificial tensorial diffusion.

The structure of the paper will be as follows: After the 
Introduction, the mathematical model for Oldroyd-B fluids 
flow simulations is summarized in the Sect. 2, where also 
the references for numerical solver and its implementa-
tion are given. The different types of artificial stress dif-
fusion are presented in Sect. 3, pointing out some main 
features and expected behavior. The whole Sect. 4 is dedi-
cated to description of the solved test case and mainly 
to presentation of the obtained results and their assess-
ment. The Sect. 5 concludes the paper by summarizing our 

experience coming from numerical results and outlining 
some possible future work in this area.

2 � Mathematical model and numerical 
method

Mathematical description of flow of incompressible Old-
royd-B type fluid in two- or three- dimensional space can 
be written in the following non-dimensional form [3, 38, 
39] or [41].

where Re =
UL

�
 and We =

�U

L
 are the Reynolds and Weis-

senberg numbers, respectively. The viscoelastic extra 
stress (symmetric) tensor is denoted by � . It contributes to 
t h e  s t r e s s  t e n s o r  � = 2(1 − �)� + �  ,  w h e r e 
� =

1

2

(
∇u + ∇uT

)
 is the rate of strain tensor (symmetric 

part of velocity gradient). The external body force is 
denoted by f .

The governing system is considered (and solved) 
in its unsteady form as the time-marching procedure 
is employed to search for steady solution as a limit of 
the unsteady iterations for pseudo-time t ⟶ ∞ . This 
approach allows us to use the vanishing-in-time stabiliza-
tion terms.

The model is solved numerically using the so-called 
reference viscosity scheme. The extra stress tensor is split 
according to � = 2(1 − �)� + �  into the viscoelastic 
stress � and the viscous part � s = 2(1 − �)� . The param-
eter � ∈ [0, 1] is, in this case, the dimensionless polymer 
viscosity contribution. This splitting allows to decouple 
the kinematic and the non-Newtonian viscoelastic stress 
where the divergence of � is included in the momentum 
equations as a pseudo-body force while the constitutive 
equation includes a contribution from the Newtonian part.

More details on numerical methods and their imple-
mentation can be found in our previous works [33, 
34], Chapter [35] in [6] or in the documentation of the 
solver package used [17].

3 � Stabilization terms

As mentioned in the Introduction, several diffusion sta-
bilization strategies were proposed and tested [8, 15]. 
One of them is based on the introduction of the so-called 

(1)
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numerical viscosity (or diffusivity) [45] which is of purely 
numerical origin and has no physical meaning [7]. Follow-
ing the ideas from [16, 21, 22], an extra (artificial) numerical 
diffusion term in the form � ⋅ Δ� is added at the discretiza-
tion stage to the transport-type equation for viscoelastic 
stress tensor [20, 25], resulting to a more stable numeri-
cal model. This additional tensorial diffusion leads to a 
model similar to the diffusive Oldroyd-B model [8] whose 
rheological behavior is different. It means that the solution 
obtained by the stabilized model using the extra diffusion 
term provides in fact a solution corresponding rather to 
the diffusive Oldroyd-B model, instead of the original (non-
diffusive) model, for which the solution was sought. This 
is why in the stabilization of the standard (non-diffusive) 
Oldroyd-B model, the added diffusive term is purely arti-
ficial and therefore the coefficient 𝛼 > 0 should always be 
kept as small as possible, in order to guarantee that the 
obtained (stabilized) solution remains close to the solution 
of the original non-diffusive problem. It should be noted 
that the need of stabilization only emerges when solving 
the Oldroyd-B fluid flows at larger Weissenberg numbers, 
meaning that the numerical diffusion coefficient � must 
be increased in that regime. However this increase will 
for high Weissenberg numbers lead (sooner or later) to a 
solution that is unacceptably far from the solution of the 
non-diffusive Oldroyd-B model.

In one of our previous works [33] we have proposed 
and successfully tested an added numerical diffusion term 
proportional to Laplacian of time-derivative of the stress 
tensor in the form � ⋅ Δ� t , where the coefficient � was a 
suitably chosen constant. At discrete level the term was 
implemented as � ⋅ Δ

(
�
n
h
− �

n−1
h

)
 , meaning that Lapla-

cian of the difference between two successive iterations 
of the discrete solution (at time levels n and (n − 1) ) was 
used. It is easy to see that this added term vanishes in the 
limit steady case when 

(
�
n
h
− �

n−1
h

)
→ 0 , i.e. �n

h
→ � . So the 

added term is only present during the time marching pro-
cedure, but disappears once the solution converges to the 
steady state.

The numerical tests showed that this added diffusive 
term stabilizes the simulations for wide range of choices 
of the parameter � . Evidently the obtained steady solu-
tion corresponds to the solution of the original problem 
without diffusion. This is in contrast with the use of the 
standard diffusion term � ⋅ Δ� , where the added diffu-
sive term doesn’t depends on time (or time-derivative) 
and therefore doesn’t in general vanishes at the steady 
state and thus the obtained solution rather corresponds 
to another, diffusive model [8]. This situation was demon-
strated and discussed in our recently published paper [36]. 
Such additional stabilization term can possibly be inter-
preted as a kind of a residual smoothing technique, where 

the expression 
(
�
n
h
− �

n−1
h

)
 represents a steady residual of 

the problem solved.
The above mentioned stabilization term worked well, 

but keeping in mind some of the open theoretical ques-
tions related to well posedness of the modified model, we 
kept looking for some alternative stabilization terms that 
will be closer to the standard numerical diffusion � ⋅ Δ� . 
For such simple diffusive model some theoretical results 
are available discussing the existence, uniqueness or regu-
larity of the solution [9].

This is why we have focused our investigation on simple 
generalization of this standard diffusive model, by making 
the diffusion coefficient �(⋅) variable, depending either just 
on time or on some time-derivative of the solution.

The constitutive equation including such generalized 
diffusion can be written in the form

for which the weak formulation given by

where S =
{
S ∈ [L2(Ω)]2×2 ∶ S

T = S
}

.
The approximate finite element problem for the tensor 

can be reformulated as:
For each t ∈ [0, Tf ], �0,h ∈ Sh =

[
Mh

]2×2
 , find �h ∈ Sh 

such that each component �h,ij verifies

for all Sh ∈ Sh , where 𝜏n−1
⋆,h

= 𝜏n−1
h

(x⋆) , being x⋆ the posi-
tion at time tn−1 of the fluid parcel situated at x at time tn 
(Characteristic Galerkin Method [33, 46]). The same kind 
of discretization was also used for momentum equations. 
The complete variational formulation of the model and its 
finite element discretization was described in [35].

The vanishing diffusion model doesn’t changes signifi-
cantly with respect to the original non-diffusive model, and 
also the numerical implementation remains almost identi-
cal, except the coefficient �(⋅) now being a suitably chosen 
function. In this paper two different types of vanishing arti-
ficial diffusion coefficients are described and tested: 

1.	 Time dependent function �(t) – Diffusion coefficient � is 
monotonically decaying with (pseudo) time t and vanish-
ing for the limit case of t ⟶ ∞ , where the steady state 

(2)
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solution should be reached. Different shapes of such 
monotonically decaying functions were considered and 
tested, searching for optimal initial values of the diffusion 
coefficient and suitable decay rate. The function �(t) used 
in the presented simulation has the form 

 where �0 = �(0) is the initial value for the diffusion 
parameter � , while the adjustable parameter � affects 
the rate of decay of the function (by scaling the time 
variable).

2.	 Time-derivative dependent function �(�t) – Diffusion 
coefficient � is made proportional to (dependent 
on) the time-derivative of some solved quantity � . 
The dependence is such that the diffusion coefficient 
� ⟶ 0 for the steady state solution where �t ⟶ 0 . 
Proposed and tested were different functional 
dependencies of � on the time derivative �t as well as 
different choices of the indicator variable � for evalua-
tion of the time derivative (e.g. pressure p, tensor com-
ponents �ij or tensor norm ‖�‖ ). The general form of the 
functional dependency of �(�t) is the following: 

 where again �0 = �(0) is the initial value for the diffu-
sion parameter � , and the adjustable parameters � and 
m affect the rate of decay of the function.

The exact form of the functional dependencies (4) and (5) 
was chosen ad-hoc, only keeping in mind suitable (adjust-
able) decay rate and limit behavior for t → ∞ and �t → 0 
respectively. Other alternative functions we have used led 
to similar results and had no significant impact on the pre-
sented findings and conclusions.

4 � Numerical setup

The described mathematical model including the added 
stabilization terms was solved using the FreeFem++ [17] 
toolboxes. For all simulations the Reynolds number was 
fixed to Re = 1000 , the dimensionless elastic viscosity 
parameter � = 0.1 . The Weissenberg number We varies 
from zero (for Newtonian fluid) up to certain critical value, 

(4)�(t) = �0 ⋅
1

1 + � ⋅ t
,

(5)�(�t) = �0 ⋅
�

� + (1 − �) ⋅
�‖�t‖

�m ,

for which the solution becomes unstable and solver fails. 
To obtain results for higher Weissenberg numbers, the 
continuation method is applied, meaning that the Weis-
senberg number is increased incrementally, by taking the 
converged solution obtained for lower We as an initial 
condition for the simulation at higher We.

4.1 � Computational domain

Numerical simulations focus on a 2D corrugated channel 
test case we have previously used for evaluation of other 
stabilization strategies [4, 33, 34]. The corrugated channel 
(pipe) consists of (sufficiently long) straight inlet and outlet 
parts with dimension (width/height) D. In the middle of 
the channel length are smoothly attached several identical 
sinusoidally shaped segments. Dimensions of these seg-
ments are defined by their minimum and maximum diam-
eters Dmin resp. Dmax and the segment length Lseg (Fig. 1).

For this domain a quasi regular unstructured grid (tri-
angulation) was generated by the Delaunay-Voronoi algo-
rithm [7], using at the boundary 10 points per unit length 
(i.e. per D) resulting into a mesh of diameter around 0.0844 
consisting of 3070 triangular elements, leading to 6481 
nodes for P2 elements and 1706 nodes for P1 elements.

The results presented in this paper were obtained on 
single, identical grid used in all simulations. This was done 
intentionally, trying to find out if for given computational 
case and code, the range of attainable Weissenberg num-
bers can be extended by simply adding an artificial diffu-
sion term.

4.2 � Boundary conditions

The boundary conditions for the considered case are quite 
standard. The fully developed profile for velocity and extra 
stress tensor is used at the inlet, imposed as Dirichlet con-
dition using analytical solution of Poisseuille flow of the 
Oldroyd-B fluid obtained for given Re and We . No-slip 
conditions are used for velocity on the channel walls. No 
boundary conditions are explicitly imposed on the extra 
stress tensor components. In case of the added stress ten-
sor (artificial) diffusion, the finite element solution natu-
rally satisfies the homogeneous Neumann conditions for 
the stress tensor. The steady solution was sought using the 
time-marching procedure, i.e. by considering the steady 

Fig. 1   Geometry definition for 
the corrugated pipe case
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(fixed in time) boundary conditions, and searching for the 
limit steady solution for t → ∞ . No diffusion specific modi-
fications of the boundary conditions were made.

4.3 � Artificial diffusion setup

For both the time dependent and time-derivative depend-
ent functions �(⋅) the same initial value �(0) = �0 = 10−4 . 
This allows for mutual comparison of the two stabilization 
approaches as well as the comparison with a reference 
solution obtained using the constant diffusion coefficient 
� = �0.

For the time dependent artificial diffusion coefficient �(t) 
in the form (4), different values of the decay parameter � 
was tested in the range from � = 0 (for constant � ) up to 
� = 1.0 when the function �(t) decays fastest (Fig. 2).

In case of the time-derivative dependent diffusion coef-
ficient �(�t) the decay parameter � was set to 0.01, while 
the power m = 5 . As indicator variable � (from which the 
time derivative is evaluated), we have chosen and tested 
the pressure p, extra stress tensor components �ij and the 
norm of the extra stress tensor ‖�‖.

5 � Numerical results

The flow in the above described two-dimensional channel 
was solved to assess some of the essential performance 
and robustness characteristics associated with the pro-
posed stabilization methods. The results of simulations are 
split into two separate sections, first for the time depend-
ent and second for the time-derivative dependent stabili-
zation diffusion coefficients. Separate discussion of results 
is presented within these two sections, while the general 

assessment comments are left for the Conclusions section 
at the end of the paper.

The results are presented in the form of graphs of 
selected quantities (stress components, stress tension) 
along the wall. These quantities are of practical impor-
tance, but also the solution gradients are typically highest 
close to the wall and thus the solution instabilities as well 
as the solution smoothing is most apparent there. In addi-
tion to these graphs we provide some plots of the norms 
of the Laplacian of the stress tensor (documenting the 
solution smoothness) and the levels of maximum stress 
for different cases and stabilization parameters. To assess 
the influence of the added (non-physical/artificial) diffu-
sion term �Δ� , its norm is also evaluated and presented 
for individual cases.

5.1 � Time dependent diffusion coefficient

Many results for this case were already presented in our 
previous work [34], so only a selection of few results is 
shown here to support the discussion presented in this 
paper.

Figure 3 shows how the evolution (in iterative time) 
of the extra stress tensor field is affected by the different 
choices in the decay rate of the diffusion coefficient �(t) . 
The norm of the Laplacian ‖Δ�‖ of the extra stress tensor is 
considered as a measure of the smoothness of the tensor 
field. The comparison of results for low Weissenberg num-
ber We = 0.1 (on the left) and close to critical We = 0.4 (on 
the right) shows significant increase (by an order of mag-
nitude) of the values of ‖Δ�‖ , which demonstrates how 
much different (and difficult) are the simulations for low 
versus high Weissenberg numbers. The high Weissenberg 
number case is substantially “less smooth” and thus more 
difficult to approximate numerically.

For the low Weissenberg number We = 0.1 the solution 
can be obtained without any added stabilization, which 
corresponds to setting � = 0 . Such solution (of the origi-
nal, non-diffusive problem) can be used for comparison 
with solutions obtained using different artificial diffusion 
settings. The values obtained from the non-diffusive case 
are those we want to obtain with artificial stabilization.

The vanishing diffusion concept is based on idea that 
the non-physical added numerical diffusion term �(⋅)Δ� 
vanishes for t → ∞ . This assumption is verified in the Fig. 4 
showing the norm of the whole artificial diffusion term 
‖�(t)Δ�n‖ during the iterative process. It clearly shows that 
the diffusion coefficient function �(t) decay rate parameter 
� should be set high enough to guarantee that not only 
�(t) will decay, but also the whole artificial diffusion term 
will decay in time and vanish for t → ∞ (will be negligible 
at the moment the iterations are stopped).Fig. 2   Behavior of the function �(t) (diffusion coefficient) with 

respect to time
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Figure 5 is showing the final values of the ‖Δ�n‖ and 
‖�(t)Δ�n‖ for a range of Weissenberg numbers We . Again 
the ‖Δ�n‖ represents the solution (non-)smoothness and 
‖�(t)Δ�n‖ shows whether the non-physical diffusion term 
vanished. The horizontal extent of individual graphs in 
Fig. 5 shows what is the maximum attainable (critical) 
Weissenberg number for the given artificial diffusion set-
ting. Evidently the solutions with non-vanished artificial 
diffusion exist for higher Weissenberg numbers (than 
without the stress diffusion), however they are much 
smoother (with lower ‖Δ�n‖ ) than the reference non-
diffusive solution of the original problem.

More detailed information about the local smooth-
ing properties of the tensorial stress diffusion can be 
found in the Fig. 6 showing the plots of individual stress 
tensor components along the channel wall. It is clearly 
visible that while the smooth part of the graphs is well 
resolved for all settings the curve peaks (local minima 
and maxima) are heavily affected by the applied numeri-
cal diffusion. The high constant or not yet vanished time-
dependent diffusion coefficients � lead to oversmoothed 
solution, where the extremal values clearly differ from 
those found in the reference non-diffusive solution 
(obtained for �(t) = 0).

Fig. 3   Comparison of the ‖Δ�n‖ for different values of parameter � of diffusion coefficient �(t) = 10−4

1+�t
 for the Weissenberg number We = 0.1 

(left) and We = 0.4(right)

Fig. 4   Comparison of the ‖�(t)Δ�n‖ for different values of � in the diffusion coefficient �(t) = 10−4

1+�t
 for the Weissenberg number We = 0.1 

(left) and We = 0.4(right)
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The values of maxima and minima of tensor compo-
nents on the channel wall are shown in the Figs. 7 and 8 
respectively. The maximum and minimum values of the 
original problem solution (without artificial diffusion) 
are only preserved for the fastest decaying diffusion 
coefficient �(t) . For all the other settings the solution is 
significantly altered.

From the physical (technical) point of view an impor-
tant quantity to look for is the stress tension on the wall 
−(� ⋅ n) ⋅ t|w . This quantity is plotted in the Fig. 9 with 
respect to axial coordinate, for different settings of the 
decay parameter � in the diffusion coefficient �(t) . Again 
it is clear that the peaks in the stress tension are unre-
solved for slowly decaying (and thus not yet vanished) 
stress diffusion coefficients �(t) . Such underestimation 
of the forces acting on the channel wall may have sig-
nificant impact in technical applications.

The underestimation of the extremal values of the 
stress tension on the wall was confirmed for the whole 
range of Weissenberg numbers, as it can be seen from 
the Fig. 10

Another quantity of technical interest for the consid-
ered cases is the pressure drop between the inlet and 
outlet of the channel. It corresponds to force (or power) 
needed to push the fluid through the channel. This infor-
mation is crucial in technical as well as in biomedical 
applications of the model. The pressure drop versus Weis-
senberg number plots are shown in the Fig. 11 for vari-
ous setting of the diffusion coefficients �(t) . Evidently the 
artificial diffusion affects the predicted pressure drop val-
ues and only the fastest decay of �(t) provides the desired 
solution comparable with the original problem without 
the artificial diffusion.

The quantitative differences between the non-diffu-
sive model solution and the solution using the artificial 
diffusive term can be assessed by computing the norm 
of differences between the two solutions (which can be 
considered as an error with respect to Oldroyd-B model). 
From the quantities obtained in simulations we present in 
the Fig. 12 the differences of the shear component �12 of 
the stress tensor.

Evidently just for the fastest decay ( � = 1.0 ) the results 
of the original non-diffusive model are comparable with 
the results obtained using the artificial diffusion term. This 
is confirmed in the Table 1, where the numerical values 
corresponding to Fig. 12 are shown.

The same conclusion can also be drawn when compar-
ing the pressure drop for the original non-diffusive Old-
royd-B model with the results obtained using the artificial 
diffusion term. Figure 13  shows that the difference is big-
ger when the decay rate parameter � is decreased. Moreo-
ver such solution differences are getting more pronounced 
for higher Weissenberg numbers, where the additional 
artificial diffusion is supposed to be used.

The numerical values of the pressure drop differences 
(errors) shown in the Fig. 13 are summarized in the Table 2.

5.2 � Time‑derivative dependent diffusion coefficient

The time-derivative dependent artificial diffusion coeffi-
cient is for the first time tested here, so the core of the 
results presented in this paper is dedicated to this spe-
cific case. The preliminary simulations we have performed 
using the artificial diffusion with the variable coefficient 
�(�t) of the form (5) have shown that the performance of 
this kind of stabilization is strongly affected by two factors.

Fig. 5   Comparison of the ‖Δ�n‖ (left) and ‖�(�t)Δ�
n‖ (right) for different values of parameter � of diffusion coefficient � of �(t) = 10−4

1+�t
 

depending on Weissenberg numbers We
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First, it is crucial to decide which quantity � is used as 
an indicator to evaluate the time derivative for calculat-
ing the diffusion coefficient � . From the variants we have 
tested, the results for � = p (pressure), and the norm of 
the extra stress tensor � = ‖�‖ are presented and com-
pared here.

Second, it became apparent that the use of instan-
taneous values of time-derivatives just from the pre-
vious iteration can lead to destabilization of the code. 
A much better choice seems to be to consider some 
recent history of �(�t) , in the form of a floating average, 
to establish the actual value of � for the next iteration. 

Fig. 6   Behavior of the extra stress component � along the channel wall for different values of parameter � of diffusion coefficient �(t) = 10−4

1+�t
 

for the Weissenberg numbers We = 0.1 (left) and We = 0.4 (right)
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Therefore the tests were performed for the � being a 
result of averaging over the previous L iterations, start-
ing from L = 10 and increasing the length of the averag-
ing history always by factor 2, leading to series of tests 
for L = 10, 20, 40, 80, 160, 320, 640, 1280 . The resulting 
averaged diffusion coefficient is thus defined by

where k stands for the general time level index, n is the 
actual time level, L is the number of time levels over which 

(6)

�(�t) =
1

L

n�
k=n−L

�(�k
t
) =

�0

L

n�
k=n−L

�

� + (1 − �) ⋅
�‖�k

t ‖
�m ,

Fig. 7   Maximum values of the extra stress tensor components along the channel wall for different setting of parameter � in the diffusion 
coefficient �(t) = 10−4

1+�t
 , depending on the Weissenberg number We

Fig. 8   Minimum values of the extra stress tensor along the channel wall for different setting of the parameter � in the diffusion coefficient 
�(t) =

10−4

1+�t
 , depending on the Weissenberg number We

Fig. 9   Stress tension on the wall −(� ⋅ n) ⋅ t|
w

 along the channel wall for different values of parameter � in the diffusion coefficient 
�(t) =

10−4

1+�t
 , for the Weissenberg numbers We = 0.1 (left) and We = 0.4 (right)
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the diffusion coefficient is averaged. As before the �0 , � and 
m are parameters defining the shape of the function �.

The results presented hereafter are just selection from 
the series of tests performed, showing the major differ-
ences between the stabilization methods and effects of 
their parameters adjustments.

Figure 14 shows the pseudo-time history of comparison 
of the norm of the Laplacian of extra stress tensor ‖Δ�‖ 
obtained using the stabilization based on the choice 
� = ‖�‖ (left column) and � = p (right column). Two obser-
vations can be made from this figure. First the solution 
obtained using �(‖� t‖) is less affected by the choice of 
the averaging history length L. Second, while the pres-
sure based �(‖pt‖) is used, the Laplacian of the extra stress 
tensor is smaller (in the norm), which indicates smoother 
solution.

Fig. 10   Plots of the maximum (left) and minimum (right) values of stress tension −(� ⋅ n) ⋅ t|
w

 along the channel wall for different values of 
parameter � in the diffusion coefficient �(t) = 10−4

1+�t
 , depending on the Weissenberg number We

Fig. 11   Comparison of the pressure drop for different values of 
parameter � of diffusion coefficient �(t) = 10−4

1+�t
 depending on Weis-

senberg numbers We

Fig. 12   Norm of the difference of shear stress component �12 
between the diffusive and non-diffusive model solution, depend-
ing on the Weissenberg number We , for different values of the 
decay parameter � in the artificial diffusion coefficient �(t) = 10−4

1+�t

Table 1   The shear stress differences ‖‖�12,D − �12,N
‖‖2 between the 

diffusive and non-diffusive model, depending on We for various 
parameters � in the artificial diffusion coefficient �(t)

� 0 0.001 0.01 1
We

0 1.19911e−2 9.05777e−3 2.87167e−3 3.76831e−5
0.1 2.51329e−2 2.01669e−2 7.55954e−3 1.10722e−4
0.2 3.62076e−2 2.94534e−2 1.12719e−2 1.65458e−4
0.3 4.45971e−2 3.64106e−2 1.40195e−2 2.06585e−4
0.4 5.45424e−2 4.48498e−2 1.76859e−2 2.65535e−4
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The observations made in the Fig.  14 are just con-
firmed in the Fig. 15 showing the maximum of norm of the 
Laplacian of the extra stress tensor in dependence on the 
Weissenberg number We . The stabilization using �(‖� t‖) 
(shown on left) performs well independently of the choice 
of the averaging history length L, all the curves are almost 
identical. On the other hand, while using the pressure 
based �(‖pt‖) (shown on right), the results heavily depend 
on the choice of L, leading to much lower maximum val-
ues of ‖Δ�‖ , which can indicate over-smoothed solution 
with extrema being significantly smeared. It is worth not-
ing that some results were obtained for higher We using 
�(‖pt‖) , while the stabilization using �(‖� t‖) already failed, 
but there is a doubt whether such over-smoothed results 
are still physically relevant to the solved case.

The trend is clear form Fig. 16 showing the pseudo-time 
dependence of the norm of the added artificial diffusion 
term, i.e. the ‖�(�t)Δ�

n‖ . It is evident that while the norm 
of the artificially added term really vanishes for the choice 
�(‖� t‖) (on the left), while for the pressure dependent 

�(‖pt‖) (on the right) the term is still visibly present and 
active even for very small Weissenberg numbers. This can 
probably by attributed to the fact that some temporal 
oscillations of pressure persist in the computational field, 
leading to non vanishing pt , which is even more pro-
nounced when the averaging pseudo-time interval length 
L becomes larger.

Confirmation for this partial conclusion comes form the 
Fig. 17, showing the final value of the ‖�(�t)Δ�

n‖ at the 
moment the simulation was stopped after finite number 
of iterations, for a range of Weissenberg numbers We . Dif-
ferent lines in the figure correspond to different averaging 
history length L, while results for �(‖� t‖) and �(‖pt‖) are 
on the left and right side respectively.

In Fig. 17, the behavior of the artificially added term 
is satisfactory for �(‖� t‖) , the term remains small, even 
if some minor random looking oscillations appear in the 
graphs. However for the case with �(‖pt‖) the artificial 
term continues to be significantly large, which only gets 
worse for higher Weissenberg numbers and longer aver-
aging history. To confirm whether the artificial diffusion 
coefficient �(�t) really vanishes in time, Fig. 18 shows the 
pseudo-time history of the �(‖� t‖) (on the left), and for the 
pressure dependent �(‖pt‖) (on the right). It clearly docu-
ments that the stress dependent diffusion coefficient small 
during the iterative process, vanishes for smaller Weis-
senberg numbers and its behavior is smoother for longer 
averaging history. On the other hand the pressure based 
�(‖pt‖) exhibits quite oscillatory behavior and moreover 
it remains significantly large when the history averaging 
is applied to it.

So far we were just looking at some qualitative indica-
tors of the solution, but the difference in effect of both 
versions of the time-derivative dependent stabilization 
term are also apparent on the final solution itself. Figure 19 
shows the graphs of the numerically obtained stress com-
ponent �11 along the channel wall. For convenience the 
channel wall geometry is shown at the bottom of each 
figure as well. The stress develops very sharp peaks along 
the wall, with higher values in higher Weissenberg num-
ber regimes. Again the results are compared for the two 
versions of the time-derivative dependent artificial stress 
diffusion ( �(‖� t‖) on the left, �(‖pt‖) on the right), where 
both are used with the history averaging length L = 20 , 
80 and 320. For the stress dependent diffusion coefficient 
�(‖� t‖) , the peaks are well resolved for all three values of 
L (even if some minor differences can be observed). But for 
the pressure based �(‖pt‖) leads to significant differences 
in the solution when the value of L is increased, leading 
to reduction of the extremal stress values on the wall and 
visibly (over)smoothed solution. This observation is in line 
with out previous conclusion concerning the non vanish-
ing values of �(‖pt‖) and ‖�(�t)Δ�‖ shown in Figs. 18 and 

Fig. 13   Pressure drop difference between the diffusive and non-dif-
fusive model solution, depending on the Weissenberg number We , 
for different values of the decay parameter � in the artificial diffu-
sion coefficient �(t) = 10−4

1+�t

Table 2   The value of pressure drop differences ||ΔPD − ΔP
N
|| 

between the non-diffusive and diffusive model, depending on We 
for various parameters � in the artificial diffusion coefficient �(t)

� 0 0.001 0.01 1
We

0 0.676 0.477 0.133 0.001
0.1 0.58 0.389 0.097 0.001
0.2 0.966 0.713 0.241 0.004
0.3 1.775 1.399 0.545 0.009
0.4 2.907 2.353 0.954 0.015
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Fig. 14   Comparison of ‖Δ�n‖ for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) for different lengths of the averaging history L and 
range of Weissenberg numbers We
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16 respectively. The same conclusion can be drawn from 
results for other lengths L and other two tensor compo-
nents �12 and �22 (not shown here).

In technical application typically rather than individ-
ual stress tensor components the stress tension (or wall 
shear stress) plays an important role. The correspond-
ing graphs of the stress tension on the wall are shown in 
Fig. 20. Again the stronger smoothing of the stabilization 
term with �(‖pt‖) is apparent compared to the cases with 
�(‖� t‖) . The performance of the pressure based stabiliza-
tion becomes worse with longer history averaging L, but 
already for the shortest L the peaks in the solution are vis-
ibly smaller than in the results obtained with �(‖� t‖).

This comparative advantage of the stress based artificial 
diffusion coefficient is confirmed when plotting the maxi-
mum values of the elastic stress tension along the wall for 
the two variants of the stabilization in Fig. 21.

6 � Conclusions and remarks

Numerical simulations were performed for two basic 
types of vanishing artificial stress diffusion under differ-
ent parameter settings. In both types of diffusion, the 
standard Laplacian of stress tensor Δ� was added to the 
model, multiplied by suitable diffusion coefficient � . In 
the first type the coefficient was considered as a function 
�(t) explicitly depending on (pseudo-) time as in (4). The 
second type of vanishing artificial diffusion used the dif-
fusion coefficient �(�t) defined as explicit function of the 
(pseudo-) time-derivative of certain indicator quantity as 
in (5). The conclusions arising from the obtained numeri-
cal results can thus be formulated separately for the two 
types of stabilization.

The time-dependent diffusion with �(t) is the simplest 
method of implementation of vanishing artificial diffu-
sion. The diffusion coefficient �(t) → 0 as t → ∞ lead-
ing asymptotically to a “diffusion-free” model solution. 
In practical computations however the simulation is 
stopped at finite time t (after finite number n of itera-
tions in (pseudo-) time), which means the decay rate 
of the function �t must be adjusted to guarantee small 
enough artificial diffusion at the moment the simula-
tion is stopped and considered converged. This is not a 
problem for simulations with pre-specified fixed number 
of iterations, but it might be an issue, when the simula-
tion stopping criterion is set for example based on the 
steady residual (proportional to pseudo time derivative 
of the solution) and we don’t know a-priori how fast the 
decay of �(t) should be. In general the simulations with 
the stabilization using the variable diffusion coefficient 
�(t) decaying monotonically in time have shown it’s effi-
ciency when the initial value of � and its decay rate were 
chosen properly, depending on the Weissenberg number 
and expected number of iterations to steady state. In 
such case the use of artificial tensorial diffusion was an 
efficient way of the stabilization, which was moreover 
safe to use, because this added artificial stabilization 
term vanished before the simulations stopped. This is 
definitely better behavior than the use of artificial dif-
fusion stabilization with constant diffusion coefficient, 
where the final solution is always affected by the added 
term and different diffusion coefficients lead to differ-
ent solutions. The main disadvantage of the first type of 
time dependent vanishing diffusion coefficient �(t) is the 
pre-determined and fixed decay rate for � , just depend-
ing on time, without considering the actual solution or 
its steady residual. This is why we have proposed and 

Fig. 15   Comparison of the maximum of ‖Δ�‖ for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) depending on Weissenberg number 
We for different lengths of the averaging history L 



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:135  | https://doi.org/10.1007/s42452-023-05348-1	 Research Article

Fig. 16   Comparison of ‖�(�t)Δ�
n‖ for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) for different lengths of the averaging history L 

and range of Weissenberg numbers We
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intensively studied some other stabilizations depending 
on time derivative of the solution.

The time-derivative dependent diffusion with �(�t) is 
the second, more complex type of stabilization we have 
used in the presented simulations. In this case the varia-
ble diffusion coefficient � is made proportional to (norm 
of ) time derivative of some indicator quantity � so that 
�(�t) → 0 for �t → 0 (as t → ∞ ). In this case the amount 
of added artificial diffusion is self-adjusted depending 
on the value of (pseudo-)time derivative of the solu-
tion and automatically vanishes when approaching the 
steady solution. This proved to be a nice and simple way 
of adjusting the artificial diffusion to the actual solution 
during the iterative process, without need to pre-define 
some solution independent decay rate for � . This auto-
matic self-adjustment of of the diffusion coefficient � 
helps namely in the case of higher Weissenberg numbers 
when the onset of temporal solution oscillations was 
often observed. This temporal oscillatory behavior lead-
ing to numerical instability can efficiently be suppressed 
by temporarily increasing the numerical diffusion. On 
the other hand, the automatic adjustment of the diffu-
sion coefficient based on time-derivative rather than just 
on time brought some new problems. First, it wasn’t clear 
what quantity � should be used to indicate the need of 
adjustment of � and be plugged in the formula for �(�t) . 
After a number of preliminary simulations performed, 
we have decided to present results using two choices of 
the indicator variable � . First is a flow field characteristic 
variable p corresponding to incompressible pressure and 
the second choice is the extra stress tensor norm ‖�‖ . In 
both cases the chosen indicator variables are somehow 

related to forces (temporal force changes) acting on the 
fluid. The number of simulations presented in this paper 
for the case � = p and � = ‖�‖ clearly shows that the 
stress tensor based indicator leading to �(�t) = �(‖� t‖) 
exhibits more robust behavior, providing consistent 
results over wide range of Weissenberg numbers. This 
kind of time-derivative governed artificial diffusion 
setup has proved to be quite efficient and safe way of 
stabilizing the numerical simulations without spoiling 
the results by excessive (and non-physical) diffusion. One 
of the drawbacks of this time-derivative driven artificial 
diffusion stabilization was that when the diffusion coef-
ficient � was reset at every iteration based on the actual 
(even very oscillatory) solution, it often led to slow con-
vergence or simulation failure. To eliminate this behavior 
the floating average of the diffusion coefficient (6) was 
considered rather than its actual instantaneous value 
originally defined by (5). This averaging of �(�t) over a 
history of the length L resolved the problem provided 
that suitable history length L was chosen.

The vanishing diffusion coefficient generalization 
of the standard artificial stress diffusion technique has 
proved to be a valuable tool in stabilizing the Oldroyd 
type model simulations up to moderately high Weissen-
berg numbers, without nonphysically affecting the final 
solution. Especially promising is the variant with time-
derivative dependent self-adjusting stabilization. The 
future work in this area should focus on other perspec-
tive stabilization variants of this type, with special focus 
on possible use of such vanishing diffusion stabilization 
in unsteady simulations.

Fig. 17   Comparison of the ‖�(�t)Δ�
n‖ for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) depending on Weissenberg numbers We for 

different lengths of the averaging history L 
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Fig. 18   Pseudo-time evolution of �(�t) for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) for different lengths of the averaging history 
L and range of Weissenberg numbers We
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Fig. 19   Behavior of the extra stress component �11 along the channel wall for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) for differ-
ent lengths of the averaging history L and range of Weissenberg numbers We
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Fig. 20   Behavior of the stress tension on the wall along the channel wall for diffusion coefficient �(‖� t‖) (left) and �(‖pt‖) (right) for differ-
ent lengths of the averaging history L and range of Weissenberg numbers We
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