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Abstract
The present investigation has focus on the variations in a transversely isotropic thick circular plate subjected to ring 
loading. The modified Green Nagdhi (GN) heat conduction equation with and without energy dissipation by introducing 
memory-dependent derivatives (MDD) with two temperatures has been used to model the problem. General solutions 
to the field equations have been found using the Hankel and Laplace transform. The analytical expressions of stress, 
conductive temperature, and components of displacement are obtained in the transformed domain. Physical solutions 
have been obtained using numerical inversion techniques. The effects of Kernel functions of memory-dependent deriva-
tives have been depicted graphically. The present investigation also reveals some specific cases.
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Article highlights

•	 A novel mathematical model of transversely isotropic 
thick circular plate with modified GN-III heat conduc-
tion equation with MDD is presented.

•	 The medium is exposed to ring load at its boundary 
surface.

•	 Dynamic response of Kernel functions of memory-
dependent derivatives is investigated.

•	 The effects of memory-dependent derivatives with two 
temperatures on all physical fields are studied and illus-
trated graphically.

Keywords  Memory dependent derivatives · Transversely isotropic · Kernel functions · Hankel transform · Thick circular 
plate · Ring load · Laplace transform
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C1	� Longitudinal wave velocity
�	� Medium density
Kij	� Thermal conductivity

1  Introduction

Classical elasticity theory focuses on stress and strain dis-
tributions developed in elastic bodies when forces are 
applied or temperatures change. As temperature changes, 
results in thermal effects on the material, such as thermal 
strain, deformation, and thermal stress. The coupled the-
ory of thermoelasticity arises from the coupling between 
the thermal and strain fields. A temperature gradient in 
an elastic medium coupled with strain distribution was 
first studied by Duhamel [1]. Based on this theory, numer-
ous researchers have solved several interesting problems. 
Sharma et al. [2] studied a homogeneous transversely 
isotropic thermoelastic (HTIT) material with two tem-
peratures w.r.t. Green-Naghdi-II theory to illustrate the 
2-D deformation using Laplace and Fourier transforms. 
With the help of Laplace and Hankel transforms, Kumar 
et al. [3] investigated the thermomechanical behavior of a 
homogeneous isotropic thick plate with an axisymmetric 
heat supply. The thermoelastic diffusion interactions in 
a thick circular copper material plate were presented by 
Tripathi et al. [4]. The thermoelastic effect on an infinitely 
extended thick plate with an axisymmetric temperature 
distribution was studied by Kant and Mukhopadhyay [5]. 
Using generalized thermoelasticity based on memory-
dependent axisymmetric temperature distributions, Kant 
and Mukhopadhyay [6] analyzed the thermoelastic effects 
of an infinitely extended thick plate with axisymmetric 
temperature distribution. Youssef [7] discussed the ther-
moelastic behavior without energy dissipation with linear 
theory of thermoelasticity. Considering two-temperature 
thermoelasticity theory in the frequency domain, Lata [8] 
investigated the thermomechanical interactions in the 
fractional theory of thermoelasticity on a homogeneous, 
isotropic thick circular plate. With both plasmaelastic (PE) 
and thermoelastic (TE) wave impacts, theoretical models 
of optically induced elastic bending for a semiconductor 
circular plate (clamped and simply supported) were devel-
oped by Galović et al. [9].

A modified version of the Mindlin theory of motion 
is offered by Senjanović et al. [10] for rotations and total 
deflection. To analyse the vibration of circular plates, the 
governing equations are converted from an orthogo-
nal to a polar coordinate system. The flexural vibration 
fourth-order differential equations are further divided 
into two second-order Bessel-type equations. To analyse 
how porosity, phase delays, one relaxation period, and the 
couple stress parameter respond, the thick circular plate 

problem in the modified coupled stress theory (MCST) 
with voids model is investigated by Kumar et al. [11]. The 
eigenvalue approach in a homogeneous, isotropic, non-
local micro-stretch thermoelastic circular plate has been 
studied by Kumar et al. [12]. On the obtained numbers, 
the effects of non-locality, both with and without energy 
dissipation, are examined numerically and graphically. 
Kaur and Singh [13] focused on developing a mathemati-
cal model to analyze fluctuations in fractional order strain 
(FoS) in transversely isotropic, homogeneous circular 
plates with ring loads, hyperbolic two temperatures (H2T), 
and energy dissipation. The generic solution to the field 
equations has been discovered using the Laplace and 
Hankel transform. Mallik and Kanoria [14] studied a two-
dimensional thick, transversely isotropic plate with a heat 
source, while the lower surface of the plate rests on a hard 
foundation and is thermally insulated, the top surface of 
the plate is stress-free and has a predetermined surface 
temperature. Hasheminejad and Rafsanjani [15] reported a 
precise 3-D study for the steady-state dynamic response of 
an arbitrarily thick, isotropic, and functionally graded plate 
strip. This study was caused by the action of a transverse 
distributed moving line load propagating parallel to the 
infinite simply supported edges of the plate strip at con-
stant speed. Kaur and Singh[16, 17] discussed the MDD in 
nano-beams. Some other researchers also worked on simi-
lar research on MDD or semiconductor medium as, Nasr 
et al. [18], Abouelregal et al. [19], Abouelregal et al. [20].

The MDD is better suited for temporal remodelling 
than the fractional order derivative. It exhibits the mem-
ory effect more clearly. A better MDD model of thermoe-
lasticity was introduced to show the memory effect (the 
rate of sudden change depends on the past state). MDD 
is defined in an integral form of a common derivative with 
a kernel function on a slip-in interval. A common deriva-
tive and kernel function is used to define the MDD in 
integral form. In many models that explain physical terms 
with the memory effect, the kernels in physical laws are 
crucial. Ezzat et al. [21] studied the thermo-viscoelastic-
ity with MDD. Ezzat et al. [22, 23] discussed the MDD in 
magneto-thermoelasticity and thermoelasticty with two 
temperatuer.

The primary goal of the current work is to use memory-
dependent derivatives to examine the deformity in a trans-
versely isotropic thick circular plate with ring load due to 
thermal and mechanical sources. The heat conduction 
equation depending on the memory-dependent deriva-
tive is developed in Sect. 2 along with the formulation of 
the governing equations for the GN-III theory of thermoe-
lasticity. Four alternative kernel functions, one of which is 
non-linear in nature, have been taken into consideration. 
A thick plate is taken into consideration as part of the for-
mulation of the problem in Sect. 3, the Laplace and Hankel 
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transform to solve the issue, and the results are produced in 
the transformed domain. Section 4 described the boundary 
conditions. Section 5 presents the application of the prob-
lem. However, the resulting quantities are achieved in the 
physical domain by utilizing the numerical inversion tech-
nique in Sect. 6. Some particular cases are also figured out 
from the present investigation as mentioned in Sect. 7. Sec-
tion 8 provides a full explanation of the numerical findings 
and discussion of the current study, as well as comparisons 
of each physical field for various kernels. To highlight the key 
findings, Sect. 9 summarises the present work’s conclusion.

2 � Basic equations

The constitutive relations for an anisotropic thermoelastic 
media are as follows:

Modified Heat Conduction equation with MDD and GN-
III theory following Green and Naghdi [24] and Wang and 
Li [25] is

where

Here Cijkl
(
Cijkl = Cklij = Cjikl = Cijlk

)
.

First-order MDD for a differentiable function f(t) for a fixed 

time t with delay � > 0 is given as:

(1)tij = Cijklekl − �ijT

(2)Cijklekl,j − 𝛽ijT,j = 𝜌üi

(3)Kij𝜑,ij + K∗
ij
𝜑̇,ij =

(
1 + 𝜒D𝜒

)(
𝛽ijT0ëij + 𝜌CET̈

)

(4)T = � − aij�,ij ,

(5)�ij = Cijkl�kl ,

(6)eij =
1

2

(
ui,j + uj,i

)
, i, j = 1, 2, 3.

The choice of the K (t − �) and � are determined by the 
material properties [26]. The kernel function K (t − �) is 
written as:

where � and � are constants. Additionally, the comma indi-
cates the derivative w. r. t. the space variable and the dot 
superimposed on it signifies the time derivative.

3 � Formulation of the problem

Suppose that a transversely isotropic thick circular plate 
occupies the space defined by 0 ≤ r ≤ ∞,−b ≤ z ≤ b , 
with a ring load of thickness 2b. Axisymmetric heat sup-
ply should be applied to the plate in both the radial and 
axial directions. Heat flux g0F(r, z) is prescribed on the 
upper and lower surfaces of the thick circular plate with 
ring load at a constant temperature T0 . For this problem, 
we take a cylindrical polar coordinate system (r, �, z) sym-
metric around the Z-axis. Our analysis is restricted to two 
dimensions due to the plane-axisymmetric nature of 
the problem, which means the field component (v = 0) 
and (u,w, and �) is independent of � . In addition, using 
Slaughter [27] on (1)–(3), we obtain the equations for 
transversely isotropic thermoelastic solids with two tem-
peratures and no energy dissipation by following the 
appropriate transformation.

D� f (t) =
1

�

t

∫
t−�

K (t − �)f �(�)d�,

K (t − �) = 1 −
2�

�
(t − �) +

�2

�2
(t − �)2

=

⎧
⎪⎨⎪⎩

1 � = 0, � = 0,

1 + (� − t)∕� � = 0, � = 1∕2,�
1 + (� − t)∕�

�2
� = 1, � = 1.

(7)C11

(
�2u

�r2
+

1

r

�u

�r
−

1

r
u

)
+ C13

(
�2w

�r�z

)
+ C44

�2u

�z2
+ C44

(
�2w

�r�z

)
− �1

�

�r

{
� − a1

(
�2�

�r2
+

1

r

��

�r

)
− a3

�2�

�z2

}
= �

�2u

�t2
,

(8)
(
C11 + C44

)( �2u

�r�z
+

1

r

�u

�z

)
+ C44

(
�2w

�r2
+

1

r

�w

�r

)
+ C33

�2w

�z2
− �3

�

�z

{
� − a1

(
�2�

�r2
+

1

r

��

�r

)
− a3

�2�

�z2

}
= �

�2w

�t2
,

(9)
(
K1 + K

∗
1

�

�t

)( �2�

�r2
+

1

r

��

�r

)
+
(
K3 + K

∗
3

�

�t

) �2�

�z2
=
(
1 + �D�

)[
T0

�2

�t2

(
�1

�u

�r
+ �3

�w

�z

)
+ �CE

�2

�t2

{
� − a1

(
�2�

�r2
+

1

r

��

�r

)
− a3

�2�

�z2

}]
.
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Constitutive relations for the transversely isotropic 
medium are

where

To facilitate the solution, the following dimensionless 
quantities are introduced:

Let us take the Laplace and Hankel transforms defined by

Using dimensionless quantities defined in (14) in 
Eqs. (7)–(13) and by suppressing the primes and applying 
(15) and (16) on the resulting quantities, we get

(10)trr = C11err + C12e�� + C13ezz − �1T ,

(11)tzr = 2C44erz ,

(12)tzz = C13err + C13e�� + C33ezz − �3T ,

(13)t�� = C12err + C11e�� + C13ezz − �1T ,

erz =
1

2

(
�u

�z
+

�w

�r

)
, err =

�u

�r
, e�� =

u

r
, ezz =

�w

�z
,

T = � − a1

(
�2�

�r2
+

1

r

��

�r

)
− a3

�2�

�z2
,

�1 =
(
C11 + C12

)
�1 + C13�3,

�3 = 2C13�1 + C33�3.

(14)

r
� =

r

L
, z� =

z

L
, t

�

=
C1

L
t, u

�

=
�c2

1

L�1T0
u,w

�

=
�C2

1

L�1T0
w,

T
� =

T

T0

, t
�

zr
=

t
zr

�1T0
, t

�

zz
=

t
zz

�1T0
, t

�

rr
=

t
rr

�1T0
,

�� =
�

T0

, a
�

1
=

a1

L2
, a

�

3
=

a3

L2
.

(15)f ∗(r, z, s) =

∞

∫
0

f (r, z, t)e−stdt,

(16)f̃ (𝜉, z, s) =

∞

∫
0

f ∗(r, z, s)rJn(r𝜉)dr.

(17)

(
−𝜉2 − s

2 + 𝛿2D
2
)
ũ + (1 − 𝜉)𝛿1Dw̃

+
(
−(1 − 𝜉)

(
1 − a3D

2) + a1𝜉
3
))
𝜑̃ = 0,

(18)

(1 − 𝜉)𝛿1Dũ +
(
𝛿3D

2 − 𝜉2𝛿2 − s2
)
w̃ −

𝛽3
𝛽1

D
(
1 + 𝜉2a1 − a3D

2
)
𝜑̃ = 0,

where

where

The non-trivial solution of (17)–(19) yields

where

(19)

− 𝛿6s
2(1 − 𝜉)ũ −

𝛽3
𝛽1

𝛿6s
2
Dw̃ −

(
𝛿7s

2
(
1 + 𝜉2a1 − a3D

2
)

+𝜉2
(
K1 + 𝛿4s

)
− D

2
(
K3 + 𝛿5s

))
𝜑̃ = 0,

�1 =
C13 + C44

C11
, �2 =

C44

C11
, �3 =

C33

C11
, �4 =

K∗
1
C1

L
,

�5 =
K∗
3
C1

L
, �6 = −(1 + G)

T0�
2
1

�
,

�7 = −(1 + G)�CEC
2

1
,

G =
1

χ

[(
1 − e−sχ

)(
1 −

2β

χs
+

2α2

χ2s2

)
−−

(
α2 − 2β +

2α2

χs

)
e−sχ

]
.

(20)t̃zz =
∑

Ai(�, s)�icosh(qiz) +
∑

�iAi(�, s) sinh
(
qiz

)
,

(21)t̃rz =
∑

Ai(�, s)dicosh(qiz) + �
∑

Ai(�, s)qisinh(qiz),

(22)t̃rr =
∑

Ai(�, s)Ricosh(qiz) +
∑

SiAi(�, s) sinh
(
qiz

)
,

(23)
t̃�� =

∑
Ai(�, s)Micosh(qiz) +

∑
NiAi(�, s) sinh

(
qiz

)
,

�i = �9ξ −
β3

β1

(
1 + a1�

2
)
li −

β3

β1
a3liq

2
i
,

�i =
(
�9 + �3di

)
qi ,

Mi =

(
1 +

�

2

)
−
(
1 + a1�

2
)
li + a3liq

2
i
,

Ni =
(
�8 + �9di

)
qi ,

Ri = �8

(
1 +

�

2

)
− li

(
1 + a1�

2
)
+ a3liq

2
i
,

Si = qi
(
1 + �3di

)
, i = 1, 2, 3.

(24)(AD6 + BD4 + CD2 + E)(ũ, w̃, 𝜑̃) = 0.
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where ζ1 = − �2 − s2,

The solutions to Eq. (24)can be written in the form

A = δ2δ3ζ8 − ζ11δ2ζ7,

B = δ2ζ5ζ8 + δ3ζ1ζ8 + δ2δ3ζ9 − δ2ζ7ζ10 − ζ7ζ1ζ11

− �2
2
ζ8 + ζ2ζ6ζ11 + ζ4ζ7ζ2 − δ3ζ6ζ4,

C = ζ1ζ5ζ8 + δ2ζ9ζ5 + δ3ζ1ζ9 − ζ7ζ1ζ10 − ζ2
2
ζ9

+ ζ2ζ6ζ10 + ζ3ζ2ζ7 − ζ3ζ6δ3 − ζ4ζ6ζ5,

E = ζ5ζ1ζ9 − ζ6ζ5ζ3.

ζ2 = �1(1 − ξ),

ζ3 = a1ξ
2 − (1 − ξ),

ζ4 = a3(1 − ξ),

ζ5 = − s2 − �2�2,

ζ6 = − �6s
2(1 − ξ),

ζ7 = − �6s
2
β3

β1
,

ζ8 = −
(
K3 + �5s

)
+ �7s

2a3,

ζ9 = −�7s
2
(
1 + a1�

2
)
+ ξ2

(
K1 + �4s

)
,

ζ10 = −
(
1 + a1�

2
)β3
β1

,

ζ11 = a3
β3

β1
.

(25)ũ =
∑

Ai(𝜉, s)cosh
(
qiz

)
,

(26)w̃ =
∑

diAi(𝜉, s)cosh
(
qiz

)
,

(27)𝜑̃ =
∑

liAi(𝜉, s)cosh
(
qiz

)
.

where Ai,i = 1, 2, 3 being undetermined constants.and 
±qi(i = 1, 2, 3) are the roots of the Eq. (24) and di and li are 
given by

4 � Boundary conditions

We consider a stress-free surface at z =  ± b, a cubical thermal 
source and normal force of unit magnitude is applied [3]. 
Mathematically, these can be written as

By putting the values 𝜑̃,�tzz �, trz from (20)–(20) and (27) in 
boundary conditions (28)–(30) and applying Hankel trans-
form on the resulting equations yields

Solving (31)–(33) for Ai , and putting in (25)–(27) and 
(20)–(23)we obtain the various components of displace-
ment, stresses, and conductive temperature as

di =
�2�8q

4
i
+
(
�8�1 − �4�6 + �2�9

)
q2
i
+ �1�9 − �6�3(

�3ζ8 − �7�11
)
q4
i
+
(
�3�9 + �5�8 − �7�10

)
q2
i
+ �5�9

,

li =
�2�3q

4
i
+
(
�2�5 + �1�3 − �2

2

)
q2
i
+ �1�5(

�3ζ8 − �7�11
)
q4
i
+
(
�3�9 + �5�8 − �7�10

)
q2
i
+ �5�9

.

(28)
��

�z
= ± goF(r, z),

(29)tzz(r, z, t) = f (r, t),

(30)trz(r, z, t) = 0.

(31)
∑

Ai(𝜉, s)liqi𝜗i = ±goF̃(𝜉, z),

(32)
∑

Ai(𝜉, s)𝜂i𝜃i +
∑

𝜇iAi(𝜉, s)𝜗i = f̃ (𝜉, s),

(33)
∑

Ai(�, s)
(
�2qi�i + (1 − �)li�i

)
= 0.

(34)

ũ =
f̃ (𝜉, s)

Δ

{
−
[
G2G9 − G8G3

]
𝜃1 +

[
G1G9 − G7G3

]
𝜃2

−
[
G1G8 − G2G7

]
𝜃3
}

+
goF̃(𝜉, z)

Δ

{[
G5G9 − G8G6

]
𝜃1 −

[
G4G9 − G6G7

]
𝜃2

+
[
G4G8 − G5G7

]
𝜃3
}
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where

(35)
w̃ =

f̃ (𝜉, s)

Δ

{
−
[
G2G9 − G8G3

]
d1𝜃1 +

[
G1G9 − G7G3

]
d2𝜃2 −

[
G1G8 − G2G7

]
d3𝜃3

}

+
goF̃(𝜉, z)

Δ

{[
G5G9 − G8G6

]
d1𝜃1 −

[
G4G9 − G6G7

]
d2𝜃2 +

[
G4G8 − G5G7

]
d3𝜃3

}

(36)
𝜑̃ =

f̃ (𝜉, s)

Δ

{
−
[
G2G9 − G8G3

]
l1𝜃1 +

[
G1G9 − G7G3

]
l2𝜃2 −

[
G1G8 − G2G7

]
l3𝜃3

}

+
goF̃(𝜉, z)

Δ

{[
G5G9 − G8G6

]
l1𝜃1 −

[
G4G9 − G6G7

]
l2𝜃2 +

[
G4G8 − G5G7

]
l3𝜃3

}

(37)
�tzz =

f̃ (𝜉, s)

Δ

{
−
[
G2G9 − G8G3

](
𝜂1𝜃1 + 𝜇1𝜗1

)
+
[
G1G9 − G7G3

](
𝜂2𝜃2 + 𝜇2𝜗2

)
−
[
G1G8 − G2G7

](
𝜂3𝜃3 + 𝜇3𝜗3

)}

+
goF̃(𝜉, z)

Δ

{[
G5G9 − G8G6

](
𝜂1𝜃1 + 𝜇1𝜗1

)
−
[
G4G9 − G6G7

](
𝜂2𝜃2 + 𝜇2𝜗2

)
+
[
G4G8 − G5G7

](
𝜂3𝜃3 + 𝜇3𝜗3

)}

(38)
�tzr =

�f (𝜉, s)

Δ

{
−
[
G2G9 − G8G3

](
l1(1 − ξ)𝜃1 + 𝛿2q1𝜗1

)
+
[
G1G9 − G7G3

](
l2(1 − ξ)𝜃2 + 𝛿2q2𝜗2

)
−
[
G1G8 − G2G7

](
l3(1 − ξ)𝜃3 + 𝛿2q3𝜗3

)}

+
goF̃(𝜉, z)

Δ

{[
G5G9 − G8G6

](
l1(1 − ξ)𝜃1 + 𝛿2q1𝜗1

)
−
[
G4G9 − G6G7

](
l2(1 − ξ)𝜃2 + 𝛿2q2𝜗2

)
+
[
G4G8 − G5G7

]
l3(1 − ξ)𝜃3 + 𝛿2q3𝜗3)

}

(39)
�trr =

f̃ (𝜉, s)

Δ

{
−
[
G2G9 − G8G3

](
R1𝜃1 + S1𝜗1

)
+
[
G1G9 − G7G3

](
R2𝜃2 + S2𝜗2

)
−
[
G1G8 − G2G7

](
R3𝜃3 + S3𝜗3

)}

+
goF̃(𝜉, z)

Δ

{[
G5G9 − G8G6

](
R1𝜃1 + S1𝜗1

)
−
[
G4G9 − G6G7

](
R2𝜃2 + S2𝜗2

)
+
[
G4G8 − G5G7

]
(
(
R3𝜃3 + S3𝜗3

)}

Δ = G1

[
G5G9 − G8G6

]
− G2

[
G4G9 − G6G7

]
+ G3

[
G4G8 − G5G7

]

Δ1 = −f̃ (𝜉, s)
[
G2G9 − G8G3

]
+ goF̃(𝜉, z)

[
G5G9 − G8G6

]

Δ2 = f̃ (𝜉, s)
[
G1G9 − G7G3

]
− goF̃(𝜉, z)

[
G4G9 − G6G7

]

Δ3 = −f̃ (𝜉, s)
[
G1G8 − G2G7

]
+ goF̃(𝜉, z)

[
G4G8 − G5G7

]

Gi = liqi�i ,

Gi+3 = �i�i + �i�i ,

Gi+6 = �2qi�i + (1 − �)li�i ,

cosh
(
qiz

)
= �i , sinh

(
qiz

)
= �i , i = 1, 2, 3.

5 � Applications

As an application of the problem, we take the source func-
tions as

where δ (ct − r) is the Dirac delta function.
Applying Laplace and Hankel Transform, on Eqs. (40)–(41), 

gives

(40)F(r, z) = z2e−�r ,

(41)f (r, t) =
1

2�r
�(ct − r).

(42)F̃(𝜉, z) =
z2𝜔

(
𝜉2 + 𝜔2

) 3

2

,

(43)
f̃ (𝜉, s) =

1

2𝜋

√
𝜉2 + s

c2

2
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6 � Inversion of the transforms

In order to obtain the solution in the physical domain, the 
transforms in Eqs. (34)-(39) has to be inverted. For this, first, 
we will invert the Hankel transform by

The method for evaluating this integral is described in 
Press et al.[28].

7 � Particular cases

	 (i)	 If we take K∗
ij
≠ 0 , Eq. (3) is GN-III theory or GN the-

ory with energy dissipation.
	 (ii)	 Equation (3) becomes GN-II theory or GN theory 

without energy dissipation if we take K∗
ij
= 0,

	 (iii)	 If we take Kij = 0 the equation of the GN theory of 
type III reduces to the GN theory of type I, which is 
identical to the classical theory of thermoelasticity.

8 � Numerical results and discussion

This section presents numerical results that illustrate the 
theoretical results and the effects of MDD. The material 
properties of transversely isotropic cobalt has been chosen 
for the numerical calculation. According to [29], the physi-
cal information for a single cobalt crystal is provided by

(44)f(r, z, t) =

∞

∫
0

ξf̃(ξ, z, s)Jn(ξr)dξ.

C11 = 3.07 × 1011 Nm−2,

C12 = 1.650 × 1011 Nm−2,

C13 = 1.027 × 1010 Nm−2,

C33 = 3.581 × 1011 Nm−2

C44 = 1.510 × 1011 Nm−2,

CE = 4.27 × 102j Kg−1 deg−1,

�1 = 7.04 × 106 Nm−2 deg−1, � = 8.836 × 103 Kg m−3

�3 = 6.90 × 106 Nm−2 deg−1,

K1 = 0.690 × 102 Wm−1 Kdeg−1, K3 = 0.690 × 102 Wm−1 K−1,

The values of normal force stress tzz , tangential stress tzr , 
radial stress trr , and conductive temperature � for a trans-
versely isotropic thermoelastic solid with two temperature 
is illustrated graphically to demonstrate the effect of MDD.

	 (i)	 The solid black line corresponds to K (t − �) = 1 
when � = 0, � = 0,

	 (ii)	 Th e  d a s h e d  re d  l i n e  co r re s p o n d s  to 
K (t − �) = � − t + 1 when � = 0, � =

�

2
,

K∗
1
= 0.02 × 102 NSec−2 deg−1,

K∗
3
= 0.04 × 102 NSec−2 deg−1.

Fig. 1   Variations of displacement component u with radius r

Fig. 2   Variations of displacement component w with radius r
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	 (iii)	 The  dotted b lue  l ine  cor responds  to 

K (t − �) =
[
1 +

(�−t)

�

]2
 when � = 1, � = 1.

	 (iv)	 The dash-dot yellow line corresponds to without 
MDD.

Figure 1 exhibits the displacement component w w.r.t.r 
for various values of the kernel function of MDD. The vari-
ation in the displacement component sharply decreases 
with the change in the radius of the thick circular plate. 
The kernel function K (t − �) = 1 when � = 0, � = 0 shows 
the higher variation near the interface and starts vanishing 
towards the outer surface of the thick circular plate. How-

ever kernel function K (t − �) =
[
1 +

(�−t)

�

]2
 when 

� = 1, � = 1 reduces the variation in the displacement 

component. So lower the value of the kernel function 
higher the variation in the displacement component. 
Moreover, the displacement component shows the oppo-
site behavior without MDD.

Figure 2 depicts the values of displacement component 
w w.r.t.r for various values of the kernel function of MDD. 
The variation in the displacement component sharply 
decreases with the change of radius of the thick circular 
plate till the half value of r and then there is a rise in the 
value of w  . The kernel function K (t − �) = 1 when 
� = 0, � = 0 shows the minimum variation near the inter-
face and starts vanishing towards the outer surface of the 
thick circular plate.  However kernel function 

K (t − �) =
[
1 +

(�−t)

�

]2
 when � = 1, � = 1 increases the vari-

ation in the displacement component. So lower the value 

Fig. 3   Variations of conductive temperature � w.r.t. radius r

Fig. 4   Variations of tangential stress t
zr

 with radius r

Fig. 5   Variations of normal stress t
zz

 with radius r

Fig. 6   Variations of radial stress t
rr

 with radius r
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of the kernel function lowers the variation in the displace-
ment component. Moreover, the displacement compo-
nent shows the maximum variation without MDD.

Figure 3 demonstrates the variations of conductive 
temperature � w.r.t.r for various values of the kernel func-
tion of MDD. The variation in the � sharply decreases with 
the change in the radius of the thick circular plate. The 
kernel function K (t − �) = 1 when � = 0, � = 0 shows the 
higher variation near the interface but away from the load-
ing surface, it follows remains constant near the zero value. 

However kernel function K (t − �) =
[
1 +

(�−t)

�

]2
 when 

� = 1, � = 1 reduces the variation in the � . So lower the 
value of the kernel function higher the variation in the � . 
Moreover, the � shows the maximum value without MDD.

Figure 4 illustrates the variations of tangential stress tzr 
w.r.t.r for various values of the kernel function of MDD. In 
the initial range of distance r, the value of tzr follow an 
oscillatory pattern for all the various values of the kernel 
function of MDD. The kernel function K (t − �) = 1 when 
� = 0, � = 0 shows the lowest variation near the interface 
but away from the loading surface, it follows remains con-
stant near the zero value. However kernel function 

K (t − �) =
[
1 +

(�−t)

�

]2
 when � = 1, � = 1 maximizes the 

variation in the tzr . So higher the value of the kernel func-
tion higher the variation in the tzr.

Figure 5 shows the variations of normal stress tzz w.r.t.r 
for various values of the kernel function of MDD. In the 
initial range of distance r, the value of tzz follow an oscilla-
tory pattern for all the various values of the kernel function 
of MDD. The kernel function K (t − �) = 1 when � = 0, � = 0 
shows the lowest variation near the interface but away 
from the loading surface, it follows remains constant near 
t h e  z e r o  v a l u e .  H o w e v e r  k e r n e l  f u n c t i o n 

K (t − �) =
[
1 +

(�−t)

�

]2
 when � = 1, � = 1 maximizes the 

variation in the tzz . So lower the value of the kernel func-
tion higher the variation in the tzz.

Figure 6 shows the variations of radial stress trr w.r.t.r for 
various values of the kernel function of MDD. In the initial 
range of distance r, there is a sharp decrease in the value 
of radial stress trr with distance r various values of the ker-
nel function of MDD then the variations are very small 
owing to the scale of the graph and the kernel function 
K (t − �) = 1 when � = 0, � = 0 shows the highest variation 
near the interface but away from the loading surface, it 
follows remains constant near the zero value. However 

kernel function K (t − �) =
[
1 +

(�−t)

�

]2
 when � = 1, � = 1 

minimize the variation in the trr . So lower the value of the 
kernel function higher the variation in the trr.

9 � Conclusions

Transversely isotropic thick circular plates with ring loads 
are investigated in the present study. The modified 
Green Nagdhi heat conduction equation with & without 
energy dissipation by introducing memory-dependent 
derivatives with two temperatures has been used to 
model the problem. From the graphs, it is clear that there 
is a momentous effect of isotropy on the deformation of 
various components of displacement, stresses, tempera-
ture change, and conducive temperature. The effect of 
the kernel function of MDD theory has an imperative 
impact on the investigation of the deformation of the 
body. As distance r varied from the point of application 
of the load source, sharp decrease in the values of all the 
characteristics quantities of the thick plate. It is seen that 
as the disturbances travel through different constituents 
of the medium, the variations of tzz , tzr, and �, it experi-
ences abrupt shifts, resulting in an erratic/uniform pat-
tern of curves. The trend of curves demonstrates how the 
MDD theory affects the medium and fits the necessary 
cr iteria for the investigation.  Kernel function 

K (t − �) =
[
1 +

(�−t)

�

]2
 when � = 1, � = 1 decreases the 

variation in the displacement component, of tzz , tzr, and 
�. The outcomes of this research are exceptionally valu-
able in the 2-D problem of the dynamic response of GN-
III theory with MDD in transversely isotropic thermoelas-
tic solid with two temperature which has numerous 
geophysical and industrialized uses. The findings from 
this study are helpful in engineering issues, notably in 
determining the condition of stresses in a thick circular 
plate that has experienced internal transient heat.
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