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Abstract
The magnetohydrodynamic (MHD) mixed convection of heat and mass transfer is carried out using finite difference 
method applied inside a tilted porous cavity saturated with a hybrid nanofluid due to the presence of the double-moving 
lid and the heat sources. In contrast to the earlier research, various effects which are recognized by heat generation in 
the local thermal non-equilibrium case at the extended Brinkman Darcy model subjected to inclined magnetic field are 
thoroughly examined numerically. For instance, unusual observations of the cold mass surrounding the heat source 
emphasize that the maximum fluid temperature highly depends on the forced convection. Additionally, solid-phase 
temperature acts in accordance to the heat source location while fluid temperature is agitated by the moveable sides 
which points up the disparity at the thermal energy transportation. However, the transfer of heat and mass at the model 
requires a specific conduct due to the existence of damping factors. The magnetic field, for example, suppresses the fluid 
flow. Moreover, the thermal non-equilibrium condition deteriorates the global heat generation.

Article Highlights

•	 The flow shear at the proposed model is more feasible for the heat and mass transfer than the buoyancy force.
•	 Local thermal non-equilibrium case creates inaccessible regions that disapprove the harmony in the flow behavior.
•	 The ratio of natural to forced convection is the most pertinent to the thermal nonequilibrium scenario.

Keywords  MHD mixed convection · Porous medium · Hybrid nanofluid · Local non-thermal equilibrium · Wavy sides · 
Circular heat source · Nusselt number

List of symbols
B0	� Magnetic field strength
C	� Concentration
Cp	� Specific heat at constant pressure (J kg K−1)
Da	� Darcy number
g	� Acceleration due to gravity (m s−2)
Gr	� Grashof number, Gr = g�f H
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H	� Length of cavity (m) or reference length

H*	� Inter-phase heat transfer coefficient
Ha	� Hartmann number, B0H
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�f∕�f

K	� Thermal conductivity (W m−1 K−1)
kr	� Modified conductivity ratio
N	� Normal vector
Num	� Average Nusselt Number
Nus	� Local Nusselt number
P	� Dimensionless pressure, pH∕�nf�
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p	� Fluid pressure (Pa)
Pr	� Prandtl number,�f∕�f
Q	� Constant heat flux
Q0	� Heat generation/absorption coefficient
Re	� Reynolds number, U0H∕�f
Ri	� Richardson Number
T	� Temperature
U, V	� Dimensionless velocity components, u/U0, v/U0
u, v	� Velocity components in x, y directions (m s−1)
X, Y	� Dimensionless coordinates, x/H, y/H
x, y	� Cartesian coordinates (m)

Greek symbols
ε	� Porosity
ρ	� Density (kg m−3)
φ	� Dimensionless concentration
θ	� Dimensionless temperature
μ	� Dynamic viscosity (N s m−2)
σ	� Effective electrical conductivity (μS cm−1), S for 

siemens
ν	� Kinematic viscosity (m2 s−1)

Φ	� Magnetic field inclination angle
ϕ	� Solid volume fraction
α	� Thermal diffusivity (m2 s−1) , k∕�cp
β	� Thermal expansion coefficient (K−1)

Subscripts
0	� Reference
C	� Cold
bf	�  base fluid
h	� Hot
hnf  	� Hybrid nanofluid
m	� Average
p	� Nanoparticle
s	� Solid phase
w	� Wall

1  Introduction

Mixed convection with magnetic fields is successfully used 
in polymers, metallurgy, geothermal energy extraction, 
and fusion reactors. Due to its properties, it is utilized in a 
wide range of industries, including mechanical engineer-
ing, the petroleum industry, chemical engineering, the 
medical profession, and other physiological frameworks 
[1–5]. This idea is especially helpful for applications like 
magnetic resonance imaging, blood pumping, radiofre-
quency ablation, cancer tumor treatment, nuclear reac-
tor cooling, magnetic electro-catalysis, metallurgical 
processes, thermal protection, receiving and transmitting 
antennas, magnetic electro-catalysis [6–10], etc.

Additionally, obstructions existence at the convection 
have been compared by Scott et al. [11] to the opening 
function, where the blockages are like flaps. They split 
motion into two main categories: bulk density variations 
and motion pressure gradient, which may both be utilized 
to explain natural convection flow in multizone enclo-
sures. Partitions should span the ground and roof of a 
square cavity, according to Chang et al. [12], such that heat 
transfer reduces as the thickness of the partition climbs. 
Moreover, Eshaghi et al. [13] have studied the double-
diffusive natural convection in an H-shaped cavity with 
a baffle. They reported that the best Nusselt number and 
Sherwood number have been grasped. According to Nan-
steel and Greif [14] and Lin and Bejan [15], impediments 
between zones tend to keep the boundary layer’s ther-
mal equilibrium condition stable, which suggests a gen-
eral drop in convective heat transmission. As per Sahoo 
et al. [16], the rectangular blockage at the vertical channel 
causes a "fluid flow step" that is "backward-facing" and can 
alter the maximum average temperature. In addition, heat 
transmission in vertical channels with semi-circular barri-
ers has been studied by Said and Krane [17]. Depending on 
the Rayleigh number, the obstruction resulted in a drop in 
the average Nusselt number at a uniform wall temperature 
(it increases as Ra decreases). In the same context, Seyyedi 
et al. [18] have investigated heat transfer characteristics 
as well as entropy generation in a hexagonal enclosure. 
While, An economic analysis was carried out [19] for heat 
transfer between two non-similar circular cylinders. How-
ever, Dogonchi et al. [20] have proved that the suction 
process has a dual effect on heat transfer and fluid flow 
using the Duan-Rach approach.

Shahriari et  al. [21] reported their findings in a 
research on Magnetohydrodynamic natural convec-
tion within the angled undulating cavity packed with 
CuO-water nanofluid. They observed that the mag-
netic field’s inhibitory impact causes the mean Nus-
selt number and Bejan number to become decreasing 
functions as the Hartmann number increases, while 
entropy formation is enhanced. Another illustration 
is Sheremet et al.’s [22] study of the Magnetohydrody-
namic non-driven convection of a nano-fluid in an open 
porous "high cavity" with a "corner heater". Moreover, 
Dogonchi et al. [23] reported that “Rayleigh number 
could overshoot the velocity gradient” for the natural 
convection at a porous medium saturated between 
two square cylinders filled with magnetic nanofluids. 
In addition, Mandal et al. [24] studied the magnetohy-
drodynamic mixed bioconvection.

On the other hand, the larger amplitude and higher 
frequency of the moving wall can effectively mix the vis-
cous fluid, according to a significant study by Li et al. [25]. 
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Moreover, Zou et al. [26] concluded that the flow direc-
tion should be taken into account to promote convective 
mixing. To examine the effects of the Lorentz force on the 
free convection inside the wavy triangular cavity, Shek-
aramiz et al. [27] carried out a numerical research. They 
discovered that entropy generation first rises with rising 
Hartmann numbers before remaining constant.

For instance, in a square cavity containing Cu-water 
nanofluids, Rashad et al. team ’s [28] numerically exam-
ined the MHD mixed convection flow. In a porous cavity 
with a lid with a “Cattaneo-Christov” heat flux pattern by 
mixed convection, Jakeer et al. [29] numerically investi-
gated the effect of the heated barrier location on the mag-
neto-hybrid nanofluid flow. For MHD natural convection, 
Sheikholeslami and Sadoughi [30] investigated the “lattice 
Boltzmann” technique inside a porous cavity that was filled 
with a nanofluid enclosing that contained 4 square-heat-
ers. In addition, CuO-MWCNT-oil hybrid nanofluid’s turbu-
lent flow field, heat transfer, and entropy formation in a 
trapezoidal container under the influence of a magnetic 
field were all quantitatively investigated by Aghaei et al. 
[31] using the finite volume approach. According to their 
research, the average Nusselt numbers for different Ray-
leigh numbers and Hartmann numbers decrease with the 
increased "volume fraction" of nanoparticles. Additionally, 
the efficiency of heat exchange is dramatically altered by 
the nanoparticles dispersed, especially those made of met-
als (Cu, Al2O3, ZnO, Ag, and SiO2) inside the fluid matrix as 
compared to regular liquid flows (Khanafer et al., Chamkha 
et al., and Aly et al., [32–35]). Tiwari and Das [36] looked 
into the supplementary effect for a lid-driven cavity, while 
Billah et al. [37] looked into the buoyancy-driven force at 
a slanted triangular compartment. Moreover, The Nusselt 
number greatly change based on the shape of the used 
nanoparticles [38].

In accordance with the size, form, and composition of 
the nanoparticles that are dispersed inside them, nano-
fluids have different thermal conductivities (Suresh et al. 
[39]). For instance, metallic particles have a "higher thermal 
conductivity than non-metallic particles". Nevertheless, 
as a result of their size, cylindrical nanoparticles function 
better thermally than spherical nanoparticles ones. Con-
sequently, when the atomic structure of the fluid matrix is 
precisely treated, significant changes take place. For busi-
nesses looking for a product that exhibits excellent stabil-
ity and superior chemical inertness, Al2O3 is the solution. 
However, this will oftentimes be inadequate for nanofluid 
applications because they will lose their benefit of heat 
conductivity. This problem can be handled by adding a 
few metal particles to an aluminum framework to improve 
its thermal characteristics. By chemically preparing 
CuO–Al2O3 combinations and hydrogen-reducing them, 
Jeena et al. [40] created the Cu–Al2O3 nanocomposites. 

Biswas et al. [41] were able to rise the thermal performance 
at a tilted porous cavity using Cu–Al2O3–water nanofluid 
subjected to the partially active magnetic field. Sung-Tag 
Oh et al. [42] demonstrated the fabrication of an Al2O3–Cu 
nanocomposite using powder mixtures of fine Al2O3 and 
copper oxide sizes. As an Al2O3–Cu/water hybrid nanofluid 
flowed through a circular tube with a constant heat flux, 
Suresh et al. [39] assessed the "Nusselt number and friction 
factor". Davood Toghraie et al. [43] concluded from their 
experimental studies on ZnO–TiO2/EG hybrid nanofluids 
that the significant increase in heat transmission occurs 
either at a warmer temperature proportionate to solid vol-
ume fraction or vice versa.

However, it is reported that when carbon nanotubes 
(CNTs) were attached to the surface of spherical oxide 
nanoparticles (Huang et al. [44]) then the thermal con-
ductivity was significantly enforced (Han et al. [45]) due 
to the strong thermal action among the CNTs attached to 
the alumina/iron oxide particle. On the other hand, nano-
encapsulated phase change material has been utilized [46] 
for free convection in a porous, wavy enclosure. For a bet-
ter comprehension, Suresh et al. [39] discovered that for a 
hybrid Al2O3–Cu/deionized water nanofluid with a "0.1% 
volume concentration", the Nusselt number "was 13.56% 
greater than that of water at Reynold number (Re) = 1730". 
Furthermore, Labib et  al. [47] reported that improved 
heat transmission in mixes of Al2O3 nanoparticles in CNT/
water nanofluids is enabled by the shear shining features 
of CNT nanofluids. We contend that because the increment 
is independent of any discernible chemical change in the 
research area, qualitative advancement can happen at the 
heat transfer. The distribution of Nusselt numbers at cavi-
ties, on the other hand, is said to follow the geometric pat-
tern of the wall by Arefmanesh et al. [48], which is one of 
the key purposes of wavy walls at cavities. Engineers can 
create thermal access points depending on flexible usage 
at various locations using these models. Additionally, it 
reduced the development of entropy (Alsabery et al. [49]). 
Alongside, Das and Mahmud [50] discovered that the heat 
exchange rate is significantly influenced by the amplitude 
of the wavy wall and the amount of undulations, particu-
larly in the convective mode (Kumar [51]). A further impor-
tant aspect is that when the hollow wall is wave shaped, 
the fluid domain is vulnerable to some disruption, as is the 
case in storm courses, earthquake systems, and maritime 
transportation.

Nevertheless, because various mediums have varying 
temperatures, heat transportation to trace energy dynam-
ics follows a path along a temperature gradient. The 
viewpoint of thermal equilibrium is used to analyze the 
above phenomenon. In contrast, the term "local thermal 
non-equilibrium" (LTNE) is used to describe situations in 
which there is a “significant seepage velocity, a significant 
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temperature difference between the fluid and solid matrix 
of a porous medium, or when a heat source exists in either 
a solid domain or a pure fluid domain within the porous 
medium” as was stated by Alsabery et al. [52]. Accordingly, 
when the heat transmission coefficient is low, the tempera-
ture of the solid phase is lower than the temperature of 
the fluid phase as a result of Baytaş’s [53] application of a 
heat source to the solid phase. Aside from that, Sheremet 
et al. [54] show that a lower interface heat transfer coeffi-
cient implies to decrease in the heat exchange rate, which 
inhibits the LTNE. In addition, Zargartalebi et al. [55] found 
that the buoyancy ratio has a negative impact on the heat 
exchange ratio while positively affecting the Rayleigh 
number. This finding indicates that the Rayleigh number 
enhances the thermal equilibrium because the thermal 
transport via diffusion is greater than that via convection. 
The system’s increasing entropy state, however, causes the 
buoyancy ratio to induce a non-equilibrium state to rise.

In light of the influence of Buongiorno’s concept, 
Tahmasebi et al. [56] discovered that speeding up the 
exchange of heat at the interface entails slowing down the 
interchange of the micro liquid phase. Regarding Brown-
ian motion, this model. On the basis of our knowledge, 
Brownian motion prevents heat exchange at the contact. 
However, Nield et al. [57] found that the local Nusselt 
number is poorly dependent on the Darcy number or the 
fluid–solid heat exchange parameter and relies entirely on 
the Peclet number and the solid/fluid conductivity. This 
could be due the advection/diffusion regimes are so effec-
tive since the velocity profile overtakes heat transfer in 
boundary layer flows. Nonetheless, we may conclude that 
there is a connection between the Darcy number and the 
heat exchange parameter in that scenario to understand 
why the heat exchange is ineffective. The reliability of the 
local thermal equilibrium for all porous media when the 
conduction mode is predominate has been shown by Kim 
and Jang [58].

Furthermore, when the interstitial heat transfer coef-
ficient is proportional to Reexponent>1 (such as sintered 
metals and cellular ceramics) and the convection mode 
is dominant, the local thermal equilibrium is applicable. 
For the purpose of choosing an appropriate analytical 
interpretation, Amiri et al. [59] made the supposition 
that the constant heat flux at boundaries is satisfied 
when either heat propagation is based on tempera-
ture gradients (effective conductivities) or each phase 
receives the same amount of the flux at the interface. 
In addition, Mahmoudi and Karimi [60] have shown that 
the Nusselt number for the first method is higher than 
the other one for the second. The Darcy number was 
negatively associated with the thickness of the local 
thermal non-equilibrium porous zone, which they 
were able to measure. Aside from that, Izadi et al. [61] 

have observed that the thermal nonequilibrium case 
deteriorates as the thermal conductivity ratio and heat 
transfer parameter increase. Moreover, the reduction in 
the thermal resistance [76] of fluid phase can enhance 
the heat transmission rate due to the increase in the 
thermal conductivity ratio. In addition, permeability 
influences the Nu number (the dimensionless quantity) 
of both solid/fluid phases due to nanoparticles rotating 
around the center of gravity. Sivasankaran et al. [62] 
have found that exchange speed of thermal energy is 
enhanced by increasing values of the modified con-
ductivity ratio and the porosity of the media. Entirely, 
Tahmasebi et al. [63] have found that the average Nu 
is supported by Rayleigh number, Darcy number, and 
thermal conductivity ratios at solid and fluid phases. 
Furthermore, the convection interaction regime at 
pores increases the Nu for the solid phase whereas 
decreases it for the nano-fluid.

Regarding the running study, the control parameters 
of the model encompasses various heat and mass dynam-
ics have been analyzed numerically in line with the MHD 
mixed convection around a central circular heat source 
and the other cold wavy boundaries. The manuscript is 
organized as following; first section is the introduction 
where we shed light on the different styles of heat trans-
fer mechanisms due to fluid flow within miscellaneous 
media under different conditions. In the second section, 
the mathematical formulation for the problem is desig-
nated. Then the fundamentals of the numerical investiga-
tion are demonstrated in the third section. Therefore, at 
section four, the results are displayed in the form of the 
contours of the temperature and fluid flow which disclose 
the active regions within the cavity while the Nusselt num-
ber profiles monitor the heat flux behavior at the bounda-
ries. Ultimately, the fifth section sum up the findings of the 
proposed work.

Fig. 1   Schematic diagram of the model
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2 � Mathematical modeling

Figure 1 shows the preliminary geometry of an undulating 
inclined cavity. The involved wavy cavity is filled by porous 
media and hybrid nanofluids. The flow of porous medium is 
subjected to the extension of Darcy’s law using Dupuit-Forch-
heimer relationship. The right and left side wavy-walls are cold 
( Tc ), the bottom and top sides are adiabatic. Moreover, the fluid 
domain is inclined with angle α and the magnetic field has an 
inclination angle Φ . The hybrid nanofluid convection is not 
in a local thermodynamic equilibrium condition. The normal 
direction and constant value are considered for the gravity 
acceleration. Dirichlet type applied on all boundaries (no-slip 
condition). According to the previously specified hypotheses, 
continuity, momentum, concentration, and energy equations 
are formulated for hybrid nanofluids, incompressible, laminar, 
and single-phase flows in steady-state as follows [64, 65]:

The boundary conditions imposed on the flow field are 
taken as:
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On the right wall

On the top wall

On the bottom wall

On the inner circular cavity

where u and v are the velocity components, T  is tem-
perature, s-index refers to solid phase, f-index refers to 
fluid phase, C stands for the concentration of nanopar-
ticles, �hnf  is the density of the hybrid nanofluid, �hnf  is 
kinematic viscosity. g is a gravity, p is a pressure, �hnf  is 

(7.2)
u = v = 0, Tf = Ts = Tc ,C = Cc , x

= H − AH
[

1 − ���(2��y∕H)
]

, 0 ≤ y ≤ H

(7.3)u = ±�tU0, v = 0, Tf = Ts = Tc ,C = Cc , 0 ≤ x ≤ H

(7.4)
u = ±�dU0, v = n = 0, Tf = Ts = Tc ,C = Cc , 0 ≤ x ≤ H

(8)Tf = Ts = Th

a dynamic viscosity, β* = (− 1/ρ)(dρ/dC)T,p, the buoyancy 
rate due to nanoparticle concentration currents, and Q0 
is the heat generation.

2.1 � Dimensionless forms of equations

Presenting the next non-dimensional variables (Eq. 9) 
into Eqs. (1)–(7) yields the dimensionless equations 
(Eqs. 10–15):
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coefficient;

And the corresponding dimensionless boundary @@
conditions are;
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in the above Eq. (13) �eff ,hnf  is defined as

where

2.2 � Thermophysical properties of nanofluid 
and hybrid nanofluid

While some research has looked at determining the ther-
mophysical properties of nanoparticles (Table 1), classical 
models do not necessarily apply to nanofluids. Experimen-
tal results facilitate the selection of an appropriate model 
for a particular property. Defining the effective properties 
of TiO2/water nanofluids and TiO2–Cu/water hybrid nano-
fluids (Table 1), respectively, are as follows:

which determine density of nanofluid, the density of 
hybrid nanofluid is specified as [66]:

where ϕ is the overall volume concentration of two differ-
ent types of nanoparticles dispersed in hybrid nanofluid 
and is calculated as; � = �TiO2

+ �Cu , and the heat capaci-
tance of the nanofluid given is as,

(22)�eff ,hnf =
keff ,hnf
(

�cp
)

hnf

(23)keff ,hnf = �khnf + (1 − �)ks

(24)�nf = (1 − �)�bf + ��p

(25)�hnf = �TiO2
�TiO2

+ �Cu�Cu + (1 − �)�bf

(26)(�Cp)nf = �(�Cp)p + (1 − �)(�Cp)bf

where �bf  and �p are the coefficients of thermal expansion 
of the fluid and of thesolid fractions respectively.

Hence, for hybrid nanofluid, thermal expansion can be 
defined as follows:

Thermal diffusivity,�nf  of the nanofluid isdefined as:

knf  is the thermal conductivity of the nanofluid which 
for spherical nanoparticles, according to the Maxwell–Gar-
netts model [67], is:

Thus, thermal diffusivity, �hnf   of the hybrid nanofluid 
can be defined as;

If the thermal conductivity of hybrid nanofluid is 
defined according to Maxwell model,

The effective dynamic viscosity of the nanofluid based 
on the Brinkman model [68] is given by

where μbf is the viscosity of the fluid fraction, then the 
effective dynamic viscosity of the hybrid nanofluid is;

(29)(��)hnf = �TiO2
(��)TiO2

+ �Cu(��)Cu + (1 − �)(��)bf

(30)�nf =
knf

(�cp)nf

(31)
knf

kbf
=

(kp + 2kbf ) − 2�(kbf − kp)

(kp + 2kbf ) + �(kbf − kp)
,

(32)�hnf =
khnf

(�Cp)hnf
,

(33)

khnf

kbf

=

((

�TiO2
kTiO2

+ �CukCu

)

�
+ 2kbf + 2

(

�TiO2
kTiO2

+ �CukCu

)

− 2�kbf

)

×

((

�TiO2
kTiO2

+ �CukCu

)

�
+ 2kbf −

(

�TiO2
kTiO2

+ �CukCu

)

+ �kbf

)−1

(34)�nf =
�bf

(1 − �)2.5

Table 1   Thermophysical properties of water, Copper, and Titanium 
[69–71]

Property Water Copper (Cu) TiO2

ρ [kg/m3] 997.1 8933 4250
Cp [J/kg] 4179 385 686.2
k [W/m K] 0.613 401 8.9538
� [K−1] 21 × 10−5 1.67 × 10−5 0.9 × 10–5

� [μS/cm] 0.05 5.96 × 10–7 2.38 × 106

According to (6), heat capacity of hybrid nanofluid can 
be determined as follows:

The thermal expansion coefficient of the nanofluid can 
be determined by:

(27)
(�Cp)hnf = �TiO2

(�Cp)TiO2
+ �Cu(�Cp)Cu + (1 − �)(�Cp)bf

(28)(��)nf = �(��)p + (1 − �)(��)bf
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and the effective electrical conductivity of nanofluid was 
presented by Maxwell as

(35)�hnf =
�bf

(

1 −
(

�TiO2
+ �Cu

))2.5
,

and the effective electrical conductivity of hybrid nano-
fluid is;

(36)
�nf

�bf
= 1 +

3

(

�p

�bf
− 1

)

�

(

�p

�bf
+ 2

)

−
(

�p

�bf
− 1

)

�

Fig. 2   Mapping between 
physical and computational 
models

(a) (b)

Fig. 3   Comparison between 
the present results (right) and 
those obtained by Cheong 
et al. [74] (left)

Table 2   Comparisons of the 
horizontal velocity with those 
of Khanafer and Chamkha 
[75] at Gr = 100 and Pr = 0.71, 
� = 0%.

Re Minimum velocity UMin Maximum velocity UMax

Khanafer and 
Chamkha [75]

Present Error (%) Khanafer and 
Chamkha [75]

Present Error (%)

100 − 0.2122 0.2035 4.99 1.000 1.000 0
400 − 0.3099 − 0.3212 3.65 1.000 1.000 0
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3 � Numerical method and validation

A grid transformation is accomplished to perform the 
numerical contributions at an appropriate computa-
tional domain which accelerates the convergence of the 
approximated solutions and averts the numerical errors 
yielded sometimes from the accumulation of the digital 
truncations during the improvement of numerical itera-
tions. The variables domain needs to abstain from the 

(37)
�hnf

�bf
= 1 +

3

(
(

�TiO2
�TiO2

+�Cu�Cu

)

�bf
−
(

�TiO2
+ �Cu

)

)

(
(

�TiO2
�TiO2

+�Cu�Cu

)

��bf
+ 2

)

−

(
(

�TiO2
�TiO2

+�Cu�Cu

)

�bf
−
(

�TiO2
+ �Cu

)

)

geometrical complexity of wavy boundaries, stagnation 
points, and critical points which often cause disturbances 
in the approximation solution. This issue could be more 
realistic from the physical domain view but it sacrifices the 
stability of the solution environment. Therefore, such an 
approved computational domain is used with the finite 
volume method presented in [72, 73] which is extended 
here to the non-orthogonal grids. This technique starts 
with definitions of the new coordinates (ξ, η) as following:

Fig. 4   Effect of heat generation variation (Q = {0.1,0.2,0.3,0.4,0.5, 1}
from left to right) on contours of streamlines (1st row), isotherms 
of fluid phase (2nd row), isotherms of solid phase (3rd row), isocon-

centrations (4th row), for TiO2–Cu/water hybrid nanofluid at the 
moderate values; Ha = 10, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, 
ε = 0.5, γ = 0.5, Φ = π/3, ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05
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Using Eq. (38), the irregular physical model is mapping 
to a rectangular computational model as it is shown in 
Fig. 2. The resulting transformed system is treated using 
the finite volume method. Here, the advection terms are 
evaluated using "the second upwind scheme", whilst the 
Laplace operators are handled using the central difference 
methods. Iteratively utilizing ADI (alternating direction 
implicit), the resultant algebraic structure is solved. This 
study’s convergence criteria were selected to be system-
atic. Additionally, the size of the grid is discovered to be 
appropriate for all computations after doing several grid 
tests. Additionally, Fig. 3 compares the outcomes of the 
current simulation to those attained by Cheong et al. [74] 
in certain instances (ϕ = φ = Ha = Q = 0). It is discovered that 

(38)X1 = A(1 − cos(2��Y), X2 = 1 − A(1 − cos(2��Y), � =
X − X1

X2 − X1

, � = Y

the outcomes are in good accordance with one another. 
Furthermore, another comparison test is performed with 
the results of Khanafer and Chamkha [75] where the 
mixed convection due to the moving of the upper wall 
of a square enclosure has been examined. Table 2 shows 
an excellent agreement between the results are obtained.

4 � Results and discussion

In this section, the obtained results are presented step-
by-step in terms of key parameters such as the heat gen-
eration parameter (Q) is varied from 0.1 to 1, the effects 
of Hartmann number (Ha) is varied from 0 to 150, the 

(a) (b)

Fig. 5   Heat generation heat transfer parameter profiles of the local Nusselt number of fluid phase for TiO2–Cu/water Hybrid Nanofluid at 
Ha = 10,Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05

(a) (b)

Fig. 6   Heat generation heat transfer parameter profiles of the local Nusselt number of solid phase for TiO2–Cu/water Hybrid Nanofluid at 
Ha = 10, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05
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radiation parameter 0–5, the porosity parameter (ε) varied 
as 0.4 to 0.9, the inter-phase heat transfer coefficient (H*) 
is varied from 0.005 to 50, the Darcy number ( Da ) is varied 
from 10–1 to 10–5, Prandtl number Pr = 6.2, and the nano-
particle volume fraction (ϕ) is varied from 0.01 to 0.05. The 
obtained results have been illustrated using streamlines, 
isotherms of fluid phase, isotherms of solid phase, isocon-
centrations and Local and average Nusselt and Sherword 
numbers. Except for the variations in the respective fig-
ures, these values are considered to be fixed on the entire 
computation; Ha = 10, ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05, Q = 1, λ = 2, 
α = Φ = π/3, Da = 10–3, kr = l, λd = λt = 1, and γ = 0.5.

It is important to glance on the prominent terms at the 
governing equations. For example for momentum con-
servation equations, the surface forces are represented 
by the pressure components at the porous medium, while 
the body forces come from gravitational term which the 
linear combination of both heat and nanoparticles con-
centration and the magnetic field. The term H*(θs − θf) in 
energy equation points to the internal heat exchange 
between the solid and fluid phases which characterizes 
the non-thermal equilibrium at porous medium.

For streamlines as in Fig. 4, there are two vortices of the 
utmost stream function that are concentrated adjacent to 
the mobile surfaces (top and bottom). The unnormal issue 
is the stagnant fluid around the heat source which means 
that the forced convection dominates more regions than 
the natural convection. It could be back to the value of 
Richardson number where “Ri (→ 1)” in this study which is 
relatively small. The effect of heat generation parameter 
“Q” is weak due to the non-thermal equilibrium. For the 
fluid isotherms, two vortices are established near to those 
of streamlines. Still the amazing event is the cold fluid 
around the heat source region meaning that the supre-
mum fluid temperature is created basically from forced 
convection. The solid isotherms are different than fluid 

isotherms at the location. The isotherms are two adjoin-
ing vortices and their centers (maximum solid tempera-
ture values) are away from those of streamlines because 
the solid isotherms approaches to the heat source. The 
two vortices are united at the left half may be due to the 
numerical calculations or the effect of the cavity inclina-
tion angle. The two solid vortices appeal to make a circle 
around the heat source. For the interpretation; the non-
thermal equilibrium enhances the inconsistency between 
the fluid and solid isotherms distributions. We can see 
that fluid temperature is greatly affected by the movable 
sides while the solid temperature is influenced in the heat 
source position. the mutual effect between solid and fluid 
phase could not be neglected but it doesn’t represents the 
basic factor of heat transmission here. Moreover, the iso-
concentrations contours are concentrated at the bottom-
left corner due to the effect of inclination angle “α”.

The fluid Nusselt number along the bottom side (Fig. 5) 
scores nonzero values at the origin point of the cavity 
which is the conjunction point of movable bottom side 
and wavy left side. Besides, Nusselt number completely 
vanishes when arrives the right side so the left side is so 
active region while the right corner is semi isolated region 
at the cavity may be due to the effect of the inclination 
angle. Normally, As “Q” increases the Nusselt number 
increases (Fig. 6). On the other hand, the solid Nusselt 
number along the bottom side is represented by a curve 
of the second order which is symmetric around the heat 
source location. Consequently, this represents an evidence 
of the robust dependency between the heat source posi-
tion and the heat transfer at the solid phase which has 
been mentioned above at the contours discussion. In 
addition, the average Nusselt number (Fig. 7) for the fluid 
phase is larger (~ 100%) than that of the solid phase, which 
reflex the strong fluid response to the Q parameter more 
than the solid phase.

(a) (b)

Fig. 7   Heat generation heat transfer parameter profiles of the average Nusselt number of fluid phase (top) and solid phase (bottom) for 
TiO2–Cu/water Hybrid Nanofluid at Ha = 10, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05
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Fig.8   Effect of Hartmann number variation (Ha = {0, 50, 75, 100, 
150}from left to right) on contours of streamlines (1st row), iso-
therms of fluid phase (2nd row), isotherms of solid phase (3rd row), 

isoconcentrations (4th row), for TiO2–Cu/water hybrid nanofluid at 
the moderate values; Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, 
ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05

Fig. 9   Hartmann number for heat transfer profiles of the local Nusselt number of fluid phase (left) and average values (right) for TiO2–Cu/
water Hybrid Nanofluid at Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05
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(a) (b)

Fig. 10   Radiation heat transfer parameter profiles of the local 
Nusselt number of solid phase along the bottom (left figure) and 
the left side (right figure) for TiO2–Cu/water Hybrid Nanofluid at 

Ha = 10, Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, ε = 0.5, γ = 0.5, Φ = π/3, 
λ = , α = , ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05

(a) (b)

Fig. 11   Radiation heat transfer parameter profiles of the average Nusselt number of fluid phase (a) and solid phase (b) for TiO2–Cu/water 
nanofluid at Ha = 10, Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05

(a)
(b)

Fig. 12   Internal heat transfer parameter profiles of the average Nusselt number of fluid phase (left) and solid phase (right) for TiO2–Cu/water 
nanofluid at Ha = 10, Q = 1, Da = 10–3, Ri = 1, Grc = 1, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05
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Fig. 13   Effect of the porosity (ε = {0.4, 0.5, 0.6, 0.7, 0.9}from left to right) the isotherms of fluid phase for TiO2–Cu/water nanofluid at the mod-
erate values; Ha = 10, Q = 1, Da = 10–3, Ri = 1, Grc = 1, H.* = 10, Rd = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05

(a) (b)

Fig. 14   Porosity parameter profiles of the average Nusselt number of fluid phase (left) and solid phase (right) for TiO2–Cu/water Hybrid 
Nanofluid at Ha = 10, Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05

Fig.15   Effect of Darcy number variation (Da = {10–1, 10–2, 10–3, 10–4, 
10–5}from left to right) on contours of streamlines (1st row), iso-
therms of fluid phase (2nd row), isoconcentrations (3rd row), for 

TiO2–Cu/water hybrid nanofluid at the moderate values; Ha = 10, 
Q = 1, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , 
ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05
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The effect of Hartmann number appears as a feedback 
of the inclination angle of the magnetic field used in the 
model as it is shown at Fig. 8 for the streamlines. Conse-
quently, the magnetic field enhances the contours defor-
mation along the second diagonal of the square cavity. 
Accordingly, as “Ha” increases, the supreme isotherms 
extend through the left side of the cavity (because of 
the cavity inclination angle effect too) and join to each 
other. Therefore, the magnetic field supports the thermal 
equilibrium case where the fluid and solid isotherms are 
congruent. Iso-concentrations contours show a slightly 
reasonable response to the isotherm’s dynamics may be 
because both of them is added to momentum conserva-
tion equations as a linear component. Fluid Nusselt num-
ber along the bottom boundary (Fig. 9) shows variations 

at the left side of the cavity as “Ha” changes. By the way, 
the difference between left and right halves is discussed 
above (Fig. 6). The noticeable point here is that Hartmann 
number suppresses the heat transfer (more than ~ 18%); 
meaning that the magnetic field has a negative effect on 
the forced convection which clearly appears at Fig. 9 for 
the average fluid Nusselt number. Therefore, the magnetic 
field works for the equilibrium between the forced and 
natural convection regimes.

Solid Nusselt number (Fig. 10) along the bottom shows 
a somewhat change near to the midpoint as the radiation 
parameter increases while it keeps as a latent at the limits. 
The fluid average Nusselt number (Fig. 11) discovers the 
inhibitory role of the radiation which could be due to the 
Titanium nanoparticles characters while for the solid mean 

(a)
(b)

Fig. 17   Richardson number profiles of the average Nusselt number of fluid phase (left) and solid phase (right) for TiO2–Cu/water Hybrid 
Nanofluid at Ha = 10, Q = 1, Da = 10–3, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , α = , ϕCu = ϕ TiO2 = ϕ/2, ϕ = 0.05

Fig. 16   Effect of Richardson number variation (Ri = {0.5,0.8,1,10,100} 
on contours of streamlines (1st row), and isotherms of fluid phase 
(2nd row), for TiO2–Cu/water hybrid nanofluid at the moderate 

values; Ha = 10, Q = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, λ = , 
α = π/3, ϕCu = ϕTiO2 = ϕ/2,ϕ = 0.05
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Nusselt number is vice versa. As we can see, the fluid Nus-
selt number decreases about 10% while the solid Nusselt 
number increases about ~ 13%. Figure 12 reflects again the 
opposite behavior of heat transfer at the solid and fluid 
phases. It’s found that the solid average Nusselt number 
is enhanced by “H*” while it decays for the fluid phase. 
The reason could be referred to some factors such as the 
thermophysical properties of the used nanoparticles, the 
dominant convection regime, or the boundary condition 
effects.

Streamlines increase as the porosity increases (Fig. 13) 
which agrees with the natural behavior. On the other hand, 
Fig. 14 shows that the average Nusselt number decreases 
as the porosity increases, because of the forced convec-
tion decay. Exhaustively, the average fluid Nusselt falls 
down ~ 60% while the average solid Nusselt descends 
only ~ 6%. In the same context, Fig. 15 shows the Darcy 
number effect, where “Da” tracks the permeability at the 
unit area intersection. Decreasing “Da” means weak forced 
convection which clearly appears from streamlines. Con-
sequently, the supreme isotherms vortices transfer from 
the top/bottom boundaries to the circular source at the 
center. The amazing phenomenon is that the concentra-
tion descends all over the boundaries while grows up 
around the circle heat source.

It’s known that the augmentation for the Richardson 
number supports the natural convection [76], therefore 
the streamlines and isotherms are concentrated around 
the heat source (Fig. 16). As a consequence the fluid Nus-
selt number is depressed ~ 23% while the solid Nusselt 
number arises ~ 7% (Fig. 17). Th interpretation is for the 
large “Ri”, the natural convection dominates the fluid flow 
regime, so the fluid temperature difference between the 
heat source and the other sides decreases in general, but 
for solid temperature difference is still great due to the 
non-thermal equilibrium condition. Ultimately, for the 
cavity geometry, Fig. 18 shows the effect of wave ampli-
tude. As shown, for small A, the contours present uniform 
vortices as the fluid mass increases. As “A” increases, the 

Fig. 18   Effect of wave amplitude variation (1st row: A = 0.05, 2nd 
row: A = 0.15) on the streamline, isotherms of fluid phase, isotherms 
of solid phase, isoconcentration (from left to right respectively) for 

TiO2–Cu/water hybrid nanofluid at the moderate values; Ha = 10, 
Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, 
λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05

Fig. 19   Wave amplitude parameter profiles of the fluid average 
Nusselt number for TiO2–Cu/water hybrid nanofluid at Ha = 10, 
Q = 1, Da = 10–3, Ri = 1, Grc = 1, H* = 10, Rd = 0.5, ε = 0.5, γ = 0.5, Φ = π/3, 
λ = , α = , ϕCu = ϕTiO2 = ϕ/2, ϕ = 0.05
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average fluid Nusselt number (Fig. 19) decreases ~ 15% 
because as “A” increases, the fluid flow is hampered. There-
fore, the convection regime is deficient and fluid Nusselt 
number descends.

5 � Conclusion

The mixed convection phenomenon of hybrid nanoflu-
ids within an undulating porous cavity has been investi-
gated within this paper. The contours of the streamlines, 
isotherms of both fluid and solid phases and isocon-
centrations have been inspected as well as the profiles 
of local and average Nusselt number of the fluid/solid 
phase under local thermal non-equilibrium case at vari-
ous key parameters such as the coefficient of heat gen-
eration/absorption Q, Hartmann number Ha, porosity 
parameter ε, an inter-phase heat transfer coefficient H*, 
undulation parameter λ, Darcy parameter Da, magnetic 
field inclination angle Φ, and hybrid nanofluid parameter 
ϕ. The remarkable points at the thermodynamic model 
under the study could be concluded as:

•	 The hybrid nanofluid around the circular heat source is 
somewhat clotted where there is low temperature and 
very slow motion,

•	 This infers that the isolated wavy sides put down the 
buoyancy force which is the main pillar of natural con-
vection,

•	 The local thermal non-equilibrium case (LTNE) plays a 
prominent role as it could create some isolated regions 
through the entire cavity domain. Therefore, the fluid 
isotherms are pulled toward the movable surfaces 
while the solid isotherms concentrated close to the 
central heat source,

•	 Consequently, the heat transfer is not accompanied 
with the mass transfer. Moreover, there is somewhat 
an isolation between the nanofluid mass and the solid 
matrix,

•	 The driven lids mounting at top and bottom surfaces 
enforces the forced convection dominancy,

•	 In this arrangement, the circular heat source serves as 
a thermal barrier and flow resistance.

•	 The fluid response to heat generation “Q” is much 
stronger (~ 100%) than the solid response,

•	 The magnetic field strengthens the thermal equilibrium 
state which satisfies the balance between the natural 
convection and the forced convection,

•	 The thermal effect of the parameters {Ha, Rd, H*, Ri} is 
reverse when the phase changes (solid/fluid). While the 
effect of {Q, ε} doesn’t change. This because the last two 
factors don’t change the convection regime. However, 

the former parameters are either directly related to the 
LTNE case or change the dominant regime obviously.

•	 The average fluid Nusselt number descent due to the 
porosity is ~ 60% which represents ten times the of that 
at the solid descent.

•	 Iso-concentrations contours show a slightly reasonable 
response to the isotherm’s dynamics when the mag-
netic field varies.

•	 The magnetic field has a negative effect on the forced 
convection.

•	 The average Nusselt number decreases as the porosity 
increases.
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