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Abstract

This article presents the Proportional Integral Resonant Controller (PIRC-controller) as a novel control strategy to sup-
press the lateral vibrations and eliminate nonlinear bifurcation characteristics of a vertically supported rotor system.
The proposed control algorithm is incorporated into the rotor system via an eight-pole electromagnetic actuator. The
control strategy is designed such that the control law (PIRC-controller) is employed to generate eight different control
currents depending on the air-gap size between the rotor and the electromagnetic poles. Then, the generated electrical
currents are utilized to energize the magnetic actuator to apply controllable electromagnetic attractive forces to suppress
the undesired lateral vibrations of the considered rotor system. According to the suggested control strategy, the whole
system can be represented as a mathematical model using classical mechanics’ principle and electromagnetic theory, in
which, the rub-impact force between the rotor and the stator is included in the derived model. Then, the obtained discrete
dynamical model is analyzed using perturbation techniques and validated numerically through bifurcation diagrams,
frequency spectrums, Poincare maps, time responses, and steady-state whirling orbit. The obtained results illustrate that
the proposed control algorithm can mitigate the nonlinear vibration and eliminate the catastrophic bifurcations of the
rotor system when the control gains are designed optimally. In addition, the system dynamics are analyzed when the
rub-impact occurrence between the rotor and the pole housing is unavoidable. The acquired results revealed that the
system may perform periodic-1, periodic-n, or quasiperiodic motion with one of two oscillation modes depending on
both the impact stiffness coefficient and the dynamic friction coefficient.

Article Highlights e The proposed controller forces the Jeffcott rotor to
respond as a linear system with small oscillation ampli-

e Nonlinearity dominates the uncontrolled rotor tudes.
response, where it suffers from the jump phenomenon e The rotor oscillates with full-annular-rub or partial-rub-
and multiple solutions. impact mode when rub-impact occurs between the

rotor and stator.
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Abbreviations

g1, 4,4, 4, Displacement, velocity, and accelera-
tion of the rotor in X direction.

G295, 4 Displacement, velocity, and accelera-
tion of the rotor in Y direction.

Gs: 45 Displacement, velocity, of the PIRC-
controller that is coupled to the rotor
in X direction.

GGy Displacement, velocity, of the PIRC-
controller that is coupled to the rotor
inY direction.

u Linear damping of rotor system in X
andY directions.

A Nonlinear stiffness coefficient of rotor
system

Q The angular speed of the rotor
system.

E The rotating disc eccentricity.

61,63 Proportional gains of the
PIRC-controller.

8,64 Derivative gains of the
PIRC-controller.

N1 Feedback gains of the PIRC-controller.

A Ay Internal feedback gains of the
PIRC-controller.

k Impact stiffness coefficient.

U Dynamic friction coefficient.

r=1/4:+q; Radial displacement of the rotor
system.

uir-1) Unit step function, where
Ur—1) = { 1,r>1

0,r<1

PmmmMm=1,2;

n=0,1,...,9 Linear and nonlinear electro-mag-
neto-mechanical coupling between
the rotor, controller, and magnetic
actuator.

c The detuning parameter, where
c=Q-1

ab Steady-state vibration amplitudes of
the controlled rotor system in X and Y
directions.

b1, b, Steady-state phase-angles of the

controlled rotor system in X and Y
directions

1 Introduction

Rotating machinery is an essential part of several indus-
tries such as machine tools, automotive industries, aero-
space engines, military industries, and autonomous power
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engineering. Ensuring safe working conditions and avoid-
ing the catastrophic failure of these types of machines
is the main task of scientists and engineers. One of the
important reasons for the failure of the rotating machines
and sometimes destruction are the nonlinear vibrations.
Several causes can induce undesired vibrations for the
rotating machines such as the rotating shafts eccentric-
ity, the propagation of the cracks, the improper align-
ment in the case of a multi-rotor system, the wear of the
bearing system, the occurrence of rub and/or impact
between the rotor and its housing, and the asymmet-
ric rotors. Therefore, many research articles regarding
vibration analysis and control of rotating machinery are
published annually as an indication of the importance of
this issue, where Yamamoto [1] discussed the influence
of the bearings’ clearance on the rotor dynamics at the
primary resonance more than sixty years ago. Ehrich [2]
investigated the dynamical behaviors of the rotor system
at subharmonic response conditions more than thirty
years ago when the bearings’ clearance is considered. In
addition, Ganesan [3] studied the asymmetry of the bear-
ings system on the oscillatory behaviors of the rotating
machines more than twenty years ago. Moreover, Chavez
et al. [4] investigated both theoretically and experimen-
tally the motion bifurcation of an asymmetric Jeffcott
system having radial clearance and subject to rub-impact
force, where the theoretical and experimental results
demonstrated that the considered system could perform
period-1, period-2, or period-3 motion depending on the
rotor angular speed. The nonlinear dynamics of the rotor
systems with nonlinear stiffness behaviors have been
studied extensively [5-13], where Kim and Noah [5], and
Adiletta et al. [6] investigated analytically and experimen-
tally the dynamical characteristics of the Jeffcott system
having a nonlinear restoring force. They reported that the
studied system may perform either a chaotic motion or a
quasiperiodic one according to the damping magnitude
beside the periodic solution. Yamamoto et al. [7-9] studied
the motion bifurcation and the corresponding dynamical
behaviors of a Jeffcott rotor model having cubic nonlin-
ear stiffness coefficients at %— and 15— order subharmonic
resonance case. Ishida et al. [10] studied the nonstationary
oscillation of a Jeffcott system having nonlinear stiffness
coefficients when subjected to acceleration through the
first critical speed. In addition, the dynamical behaviors
of the Jeffcott rotor with nonlinear spring characteristics
have been investigated when the angular speed is one,
two, and three times the rotor critical speed in the case of
1:1 internal resonance [11], where the authors reported
the complex dynamics of the system at the case of the
combined resonance condition. Cveticanin [12] analyzed
the free vibration of a rotor system having cubic nonlin-
ear restoring force. where the obtained results showed
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that the system may perform circular motion or vibrate
along a straight line depending on the initial position and
velocity. The horizontally suspend rotor with nonlinear
spring properties has been studied by Yabuno et al. [13].
The authors demonstrated that the considered rotor sys-
tem is governed by two coupled second-order differential
equations comprising both cubic and quadratic nonlinear
terms. They utilized the normal form analysis to prove that
the system exhibits either forward or backward whirling
depending on the rotor angular speed. On the other hand,
the propagation of the cracks over the shaft surfaces due
to either concentration of the stresses or the material
imperfections may cause undesired chaotic motion for
the rotating machines [14, 15]. In addition, the rub-impact
forces that occur between the rotor and the stator parts
are one of the main destruction reasons for the machine
structure [16-21]. The rub-impact occurs when the lateral
vibration amplitude exceeds the air-gap size between the
rotors and their housing. However, the main source of
these undesired lateral vibrations is the imbalance [1-21],
the shaft asymmetry [22, 23], or both.

Accordingly, many research articles have been dedi-
cated to suppressing or at least mitigating these destruc-
tive oscillations in rotating machinery either by active or
passive control strategies [24-28]. Ishida and Inoue [24]
introduced a passive vibration absorber to mitigate the
unwanted vibrations of a rotor system having a nonlinear
restoring force. The authors used four electromagnetic
poles to couple the rotor system to the designed absorber,
where the authors have succeeded to reduce the rotor lat-
eral vibrations to a small vibration level as well as elimi-
nating the catastrophic bifurcation. Ji et al. [25], and Xiu-
yan and Wei-hua [26] applied two different time-delayed
active control techniques to eliminate the rotor unwanted
vibrations that arise due to the shaft imbalance. In addi-
tion, Saeed et al. [27, 28] introduced two different active
control techniques to eliminate the rub-impact impact
force between the Jeffcott rotor and stator using 4-pole
as active actutor.

The nonlinear dynamics for different configurations
of the electromagnetic actuators (i.e., 6-pole [29], 8-pole
[30-32], 12-pole [33], and 16-pole [34-36]) have been
extensively investigated with different control tech-
niques, but they have not been applied as active actuators
before to suppress the nonlinear oscillation of the rotat-
ing machinery. Moreover, the 4-pole magnetic actuator
only has been applied extensively with different control
algorithms as an active actuator to mitigate the undesired
nonlinear vibrations of the Jeffcott rotor systems. However,
the 8-pole magnetic actuator has many advantages over
the 4-pole system such as better suspension characteris-
tics and high dynamic stiffness coefficients.

Accordingly, the 8-pole active magnetic bearings sys-
tem with a novel PIRC-control algorithm is integrated as
a single unit to suppress the undesired lateral vibration
and eliminate the catastrophic bifurcation of a vertically
suspend nonlinear Jeffcott rotor system for the first time
within this article. Based on the introduced control strat-
egy, the system mathematical model is obtained as a dis-
continuous two-degree-of-freedom dynamical system
coupled linearly to two first-order differential equations.
The system mathematical model is analyzed both ana-
lytically and numerically. The obtained results illustrated
that the PIRC-control algorithm can mitigate the nonlin-
ear vibration and eliminate the catastrophic bifurcations
of the rotor system when the control gains are designed
optimally. Furthermore, the system dynamics are explored
numerically when the rub-impact force is unavoidable.
The acquired results reveal that the system may oscillate
either with a full-annular rub or partial rub-impact mode
according to the impact stiffness and the dynamic friction
coefficients.

This article is organized such that Sect. 2 is dedicated
to derive the whole system mathematical model. Sect. 3 is
intended to explore the system dynamics when the rub-
impact force between the rotor and stator is neglected,
while in Sect. 4 the nonlinear dynamics of the controlled
system are simulated when the rub-impact force between
the rotor and stator is considered. Finally, the main
obtained results are concluded in Sect. 5.

2 Equations of motion
2.1 Jeffcott-rotor system

The equations of motion that govern the nonlinear lateral
vibrations of the considered Jeffcott-rotor system shown
in Fig. 1 can be expressed as follows [13, 24, 37]:

mx(t) + cx(t) + Fpy = mfw? cos(wt) (M

my(t) + cy(t) + Foy = mfa? sin(ewt) 2)

where m is the mass (in kilogram) of the rotating
disc, ¢ represents the linear damping parameter in
Newton.second /meter, Fgy and Fg, denote the restoring
forces (in Newton) of the shaft carrying the discin X and Y
directions, respectively, f denote the eccentricity (in meter)
of the rotating disc, @ is the angular speed (in second ") of
the Jeffcott-rotor system, and t represents the time vari-
able (in second). According to Refs.[13, 24]. It is considered
that the Jeffcott-rotor restoring force Fy is a cubic nonlin-
ear function of the radial displacement (R = OC) of the
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Fig. 1 Schematic diagram of

a vertically supported Jeffcott Y
system with nonlinear restor-

ing forces

~,

Pa————— L P

c(x(t),y(1))

(A)

rotating disc away from the origin O as shown in Fig. 1b.
accordingly, F, can be expressed as follows:

Fr = kiR(t) + k,R*(t), R(t) = V/x2(t) + y2(t) 3)

where k;, denote the shaft linear stiffness coefficient (in
Newton /meter), and ky represents the nonlinear stiff-
ness coefficient of the shaft (in Newton/meter3). Based on
Eq. (3), F; can be resolved into its normal components in X
andY directions (i.e., Fzy and Fyy) as follows:

Fax = [k.R + kyR®|cos(B) = kx(t) + ky [x3(t) + x(t)y*(1)]
(4)

Fay = [K.R + kyR®] sin(B) = koy(6) + ky[y3(®) + X2(0)y (D)]
5

Inserting Egs. (4) and (5) into Egs. (1) and (2), yields

mx(t) + cx(t) + kx(t) + ky (X*(t) + x(Dy*(t)) = mfw? cos(wt)
(6)

my(t) + cy(t) + ky () + ky (y>(t) + X*(0)y(t)) = mfw? sin(wt)
(7)
To control the undesired nonlinear oscillations x(t) and
y(t) of the studied nonlinear model given by Egs. (6) and
(7), Itis proposed to control these lateral vibrations utilizing
both the Proportional Integral Resonant Controller (PIRC)
that integrated to the rotor system via 8-pole magnetic
actuator as shown in Fig. 2. The suggested control strategy
will apply the control forces F,,and F,, on the rotor system
in X and Y directions, respectively, which will be obtained
in Sect. 2.2. In addition, if the applied controller fails to pre-
vent the rub-impact force between the rotor and the 8-pole
housing an additional force F;, and F,, will be developed
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on the rotor-housing interface. Accordingly, the equations
of motion of the controlled Jeffcott-rotor system should be
modified to:

mx(t) + cx(t) + kyx(0) + ky (x> () + x(0)y* (1))
= mfw? cos(wt) + Fy; + Fs,

my(t) + cy(t) + ky () + ky (y3() + X2y (D))

9
= mfw? sin(wt) + Fy; + Fy,. ©)

where F,; and F,, represent the resultant control force
components in X and Y directions that will be applied by
the proposed PIRC controller via the 8-pole magnetic actu-
ator, while F, and F,, denote the normal components of
the rub-impact forces that develop between the rotor and
the pole-housing interface when the PIRC fails to mitigate
the rotor oscillation as explained in Sects. 2.2 and 2.3.

2.2 Control forces F,,;and F,,

According to Fig. 23, the applied electromagnetic attractive
force ﬂ(j =1,2,...,8)of each pole on the Jeffcott-rotor sys-
tem can be computed relying on the electromagnetic theory
as follows [38]:

I?
f = %ﬂonZAcos(w)#, j=1,2,..8 (10)
j
where u,, is the air-gab magnetic permeability, n the wind-
ing number of each coil of the eight poles, Acos(y) is the
effective cross-sectional area of the electromagnetic pole,
I;is the j™ pole electrical current, and H; is the effective
air-gap size. Based on the geometry of Fig. 2b, for the
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Fig. 2 Jeffcott rotor system controlled via 8-pole magnetic actuator and PIRC controller: a the rotating disc at its nominal position with air-
gap size s, and b the rotating disc with small displacements x(t) and y(t) and actual air-gap sizesH;, (j = 1,2, ..., 8)

Fig.3 Jeffcott rotor system with rub-impact force between the
rotating disc and the 8-pole housing

small lateral displacements x(t) and y(t) of the rotor sys-
tem in X and Y directions, the effective air-gap size can be
expressed as follows

Hi=so®x, j=15

I-IJ=501y’ j=3l7 (11)
H; = sq ¥ x cos(a) Fy cos(a), j=2,6

H; =sq £ x cos(a) Fy cos(a) j=4,8

Based on Eq. (10), the control forces fj(j =12,...,8)
can be adjusted to control the undesired lateral oscil-
lation of the Jeffcott rotor via adjusting the electrical
current /; of the eight poles according to predefined
control law. Within this article, the Proportional Integral
Resonant Controller (PIRC) is suggested to generate the
control currents lj(j =1,2,...,8)based on the rotor states
x(t) and y(t), and the controller states u(t) and v(t) as
follows:

I, = 1ly— kix + kyu,
I, = Iy — kyx cos(a) + kyu cos(a) — kyy cos(a) + k,v cos(a),
Iy =ly—ksy + kv,
I, = Iy + kyx cos(a) — kyu cos(a) — k;y cos(a) + k,v cos(a),
ls = Iy + kyx — kyu,
lg = Iy + kyx cos(a) — k,u cos(a) + k;y cos(a) — k,v cos(a),
L= ly+kyy — kyv,

lg = Iy — kyx cos(a) + kyu cos(a) + kyy cos(a) — k,v cos(a).

(12)

where the equations of motion of the proposed controller
are given as follows [39]:

U+/’1U=}’1X: (13)
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V4 pv =7y (14)

where U, v denote the velocities of the IRC- controller,

u, v are the displacements of the IRC- controller, p,, p, are

constants represent the internal feedback gains, and y;, v,

denote the feedback control gains. Now, substituting

Egs. (11) and (12) into Eq. (10), we have
R

1 1
fi = ZﬂonzACOS(W)m = —ﬂo”ZACOS(V’)<

ly = kyx + kyu 2
1 4 ,

So— X
(15)
2

1 1y
fy = = ugn*Acos(y) =
2= 2k () H2

_ lyonzAcos(w) ( Iy — kyx cos(a) + kyu cos(ar) — ksy cos(a) + kv cos(a) )2’
4 So — X cos(a) — y cos(a)
(16)
2 2
1 o lo — ksy + kv

f, = = pon*Acos = = —py,n*Acos _— |

3= gHo () 2 7Ho W) Py
(17)

2
1
f, = ZMO”ZA cos(u/)Hi:3

lo + kyx cos(a) — kyu cos(ar) — ksy cos(a) + kv cos(a) )2

1. 2
=- A
i cos(w)( o +X cos(a) — y cos(a)

(18)

2 2
1 5 1 Iy + kyx — kyu
fo = —usn*Acos(w)—= = — u,n*Acos 2 27,
5= Mo (v) 2 7Ho (l//)( Py

(19)

1 2 6
fo = — pgn“Acos(y) —
6= ZHo (W)Hé

_ lﬂonzA costy) lo + kyx cos(a) — kyu cos(a) + ksy cos(ar) — kav cos(a) 2,
4 So + X cos(a) +y cos(a)

(20)

1 2 I + ksy — kv \ 2
f, = ZﬂonZA cos(u/)H—; = Z#o”ZA COS(I//)(OS;fy4 +(21)

1 A
fy = —pgn?Acos(y) — = — pon*A cos
s = 4 Ho (v) H2 2Ho (v)

Iy — kyx cos(a) + kyu cos(a) + ksy cos(a) — k,v cos(a) \ 2
So — X cos(a) +y cos(a) '

(22)

According to the system structure shown in Fig. (2), one
can express the resultant control forces F,;and F,;in X and
Y, respectively as follows:

Fi, =f, —fs+(f, + f, — f, — f) cos(a), (23)

Fyy =f3—f, + (f, + £ — fs — fg) cos(a). (24)

Substituting Egs. (15) to (22) into Egs. (23) and (24), with
expanding the resulting equations using Maclurin series
up to third-order approximation, yields

1
Fi1 = S Hon*A cos(q;)((—3 -
4 S5

412 8k, cosz(a)+8l§ cos’(@)  4lok, oo (Blke cos’(@)  Hoky\
52 s3 52 52 52
0 0 0 0 0

<8k§ cos’(a) 4812 cos*(a) 16k, k; cos*(ax) _ 48loks cos*(a) _ 24k, cos*(a) )xy2
55 S5 55 So 5o

8k2 cos*(a)  4k2
( 2 (@) —2>xu2

3 3
S S0

3
0 %o

. 8k2 COS4(a)XV2 N <1210k2 _ 8kik,  16kk; cos*(a)

3 53

SO 0 (25)

4 4

3

4 3

N 241k, cos*(a) )xzu N (24lok2 cos*(a)  16kyk; cos*(a) )yzu N (48/0k4 cos’(@)  16ksk, cos*(a)

50 S0

2
4k;

16k, k, cos* 16k, k, cos*
- 1a - 43 (a))xyv+—2 43 (a)yuv+(—3+
So S0 So
2 4
_ 12lgk; | 8kj cos®(a@) >X3>,
5 5
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50
8lg  24lpk, cos*(a)

S S

0 0
1612 cos*(a)

5 4 5

0 50 SO

S
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8/5 cos?(a)

1 412 41k,  8lk, cos?(a)
Fy = ZﬂonzA COS(W)<<S—; - 023 -3 3 +
0

SO 0

S

N (16k1 kycos*(a)  24l,k; cos*(a)  48lyk, cos*(a)

3
0

241k, cos*(a)  16k,k, cos*(a

+< 044 ()_ 1433 ()>X2V+
50

8k2 cos(a)
e

3 3
0 5o

4

4
50

5 0

S

§3

5 0

0
24l,k, cos*
n oK4 (a))

4
0

y2v+<

S S

8k3 cos(a)

: )y N (8I0k4 c;)sz(a) N 4I02k4 )v
50 50 50
R 8k2 cos*(a) 48/ cos?(a) R
)x y + ( 5 5 )x y
0 0
, (1210k4 _ 8ksk,  16ksk, cos*(a)
sq ss 53

0 (26)

4k )yv2 . (48/0k2 cos*(@)  16kk; cos*(a)

4

50 0

2 2
1612 cos*(a) . 8k2 cos*(a) _ 12lgky

16k, k, cos* 16k, k, cos*
bl b it - (@ )xyu 4—24 45 (a)xuv + (

3
%o 0

241 k, cos*(a) 4k> 8/
_ o3 (a) " 3 _0>)y3

4 53 SS

SO 0 0

5 3 54

SO 0 0

2.3 Rub-impact forces F,,and F,,

When the control forces F;,and F,,fail to suspend the Jeff-
cott rotor system in its hovering position, the rotating shaft
may contact the magnetic poles housing that is resulting
in the development of both the normal impact and the
tangent forces (i.e., Fy and F;) between the rotor-stator
interface as shown in Fig. 3. Therefore, when the radial
oscillation amplitude R(t) = y/x2(t) + y2(t) of the rotor
system exceeds the nominal air-gap size s, (i.e., if R(t) > s;),
the forces Fy and F; appears between the rotor-stator
interface, otherwise, they become zeros. Accordingly,
using the unit-step function U, one can express the forces
Fyand F; as follows [27, 28]:

Fn(t) = kp(R(t) — so) UR(t) — s9), (27)

Fr(t) = pugFn () = paky(R(t) — so)UR(L) — sp). (28)

where k,, is the linear stiffness coefficient of the pole hous-
ing, 1, denote the dynamic frictional coefficient between

the rotating disc and the inner surface of the pole housing,
and R(t) — s, > Orepresents the displacement of the pole
housing away from its nominal position due to the impact
of the rotor system. Based on the geometry of Fig. 3, one
can resolve the forces Fy, and F; into their horizontal and
vertical component (i.e., F;; and F,,) using the relations
cos(wt) = ’F—;and sin(wt) = ’F—;as follows:

F,, = Fy sin(wt) — Fy cos(wt) = k—;(R = $o)(pey —X)U(R = s),
(29)

Fy;, = —F; cos(wt) — Fy sin(wt) = —%’(R —So)(ex +y) URR = sp).
(30)

2.4 Controlled Jeffcott-rotor system

Inserting Egs. (25), (26), (29), and (30) into Egs. (8) and (9),
one can obtain the following discontinuous differential
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equations that govern the nonlinear dynamics of the con- ~ where u and v are given by Egs. (13) and (14). Introducing
trolled Jeffcott system as follows: the dimensionless quantities

mX(t)+cx(t) + kx(0) + ky (X () + x(t)y*(t)) = mfw? cos(wt)
42 gl k 2 812 cos2(a) 4l .k
4 $3 2 3 2
0 0 0 0
N <8lok2 cos(a) . 4ok, )u N <8k§ cos*(a) N 48/5 cos*(a) , 16kik; cost(@)

2 2 3 5 3
0 0 0 0 0

_ 48lpk; cos’(a) 241k, cos* (@) )xy2 . <8k§ cos*(a)  4k3 )Xu2 N 8k2 cos*(a)

S S S

S S S S S

2

— XV
5 5 5 5 5

12lhk,  8kik, 16k k, cos*(a)  24lpk, cos*(a)y , 241k, cos*(a)  16k,k; cos*(a)\ 37)

+ < 4 T3 3 + 4 )X u+ < 4 B 3 )y u
S0 5o 5o So 5o So

481k, cos*(a)  16ksk, cos*(a) 16k, k, cos*(a) 16k,k, cos*(a)

+ < = - = - = )xyv s
0 0 0 0

X
S4 SS 3 >

<4k12 8l 24k, cos*(a) 16/2cos*(@)  12I,k, 8k? cos*(a) 3]
+—- + - +
0 0 0 0 0 0

k
+ Eh(R — s0)(Hey = X)U(R = so),

405
5
41k, 8l ks, cos? 812 cos?®(a) 81k, cos’(a) 4k 16k, k, cos*
_Mof3 _ ©hf3 (“)+0 >y+<04 ()+ 04>v+< 143 (@)

my(t) + cy(t) + ky () + ky (> (@) + X’y (1)) = mfw? sin(ot) + % Uoh*A cos(y) [(

2 2 3 2 2 3

50 50 5o 50 50 %0
24lgk; cos*(a) 48k, cos*(a)y ,  (8kjcos*(a) 48[5cos*(@)y ,  /24lgk, cos*(a)
_ . - " )x Y+ ( 5 + - )x Y+ <—4
SO SO S0 SO SO
2
16k, :os“(a))xzv N 8k; c03s“(or)yu2 N <12/2k4 _ 8k33k4 _16ksk, :os‘*(a) N 241k, ios“(a) )yzv
S S S S S S
0 0 0 0 0 0 (32)
8kjcos*(a) 4kp\ /48lpk,cos*(@)  16kyks cos*(@)  16k;k, cos*(a)
+<—3+—3>yv +< - - 5 - 5 )xyu
%0 50 50 50 %0
16k,k, cos*(a) 4k? 813 24lpky cos*(a)  16l5cos*(a)  12l4k,
R e— <—3 t5 - 7 + o
%0 S5 o 50 50 %0

8k2 cos*(a) k
3—3>y3] - Fh(R = So)(Hex + YI)UR — s0)

5
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X g =Ygl ¥
‘71—501(72 50'q3 sor% %

By By X 2 2 R
r=4/ = = ==
q1+q2 <fo> +<So> s’
. x . oo a
T=w.,t = — = =
nlr 41 wnso'qz wﬂso'% wn50,q4
_ v P X Ho— y — c
- wnsolq1 w%solqz w%solﬂ ma, "
S 5 5 s
8y = 2k, 6, = 2hy, 8y = 2k, 6, = 2k,
o o o o
k ki f
=L k= fF=20Q=2} =24,
ma; ma? So o, ,

/12:/7—2’/1:—,’72:

, 2
w, w, w,

2
\/7 W into Eqgs. (13), (14), (31), and (32), one can
0

derive the following dimensionless equations of motion
of the whole system:

I=

, and

d*q, dq,

dr? dr

+ P15Q$Q3 + P16CI§Q3 1 0179192494 T 018929394 + P19CI?

+ 5= V@, - anue - 1),

d’q, daq,

dr? dr

+ psz§q4 + stcﬁ% + 027919293 + 28919394 + ngQi

~ K= V(ua, + apu -1,

rub-impact force between the rotor and the poles housing
when letting k = 0 to determine the conditions at which
the rub-impact can occur. Secondly, the whole system
model is analyzed numerically as a discontinuous nonlin-
ear system to explore the rotor dynamics when the rub-
impact force between the rotor and stator surely occurred.

3.1 Analytical solution

To obtain an analytical solution to the nonlinear dynami-
cal system given by Egs. (33) to (36) when the rub-impact
force between the rotor and stator is neglected (i.e., when

+50r = V) (pq, = @)U =) = =5(r = 1) (19, + 6, )Ur = 1) = 0),

+u—— + 1 + Hq; + 6,05) = EQ? CoS(QT) + 1oy + p11d3 + 1120195 + p130195 + P1401 4,

+u——+4q, + /l(qi + Q2Q$) = EQ?sin(Qr) + P20492 + 2144 + PzzCIzCﬁ + /723%%2; + P24Q2Q§

dq
_d‘: +41G3 =maqy, (35)
dq
_d: + 42 G4 = 112G, (36)

Equations (33) and (34) represent the equation of
motion of the controlled Jeffcott system, while Egs. (35)
and (36) are the equations of motion of the coupled IRC
controller. The coefficients of Egs. (33) to (36) are given in
Appendix A.

3 Continuous dynamical system

Itis clear from Eqgs. (33) and (34) that the controlled Jeffcott
system is governed by a discontinues nonlinear dynamical
system due to including the rub-impact force between the
rotor and the 8-pole housing, where no straightforward
method to investigate this system analytically. There-
fore, Egs. (33) to (36) are analyzed within this work in two
stages. In the first stage, Egs. (33) to (36) are analyzed as a
continuous nonlinear dynamical system via neglecting the

an approximate solution to Egs. (33)- (36) can be derived
using perturbation methods as follows [40, 411:

q1(7,€) = q10(To, Ty) + €411 (To, Ty, (37)
q,(7,€) = Goo(To, T1) + €G51(To, T4), (38)
G5(t,€) = €q30(To, Ty) + €2G31(Ty, Ty, (39)
Qa(7,€) = €Qao(To, T) + €24 (To, T) (40)

where ¢ <« 1is a book-keeping parameter, T, = 7, and
T, = et are the fast and slow time scales, respectively.
Using the chain role for differentiation, one can express
the ordinary derivatives % and dd—; in term of Tyand T, as
follows:

d 42 0 .
—- =Do+eD,—— = D2 +2eDyD;, D; = I j=01
(41)
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To start the solution procedure, the system parameters O (e):
should be scaled as follows [40, 41]. .
) _ _ ) ) (Do + 41)d30 = il Ghros (45)
H=¢ji, A=¢€lE=¢eE n =efj,n, = effy,
=¢ep,.,j=1,2,k=0,1 9 (42)

Pk =€Pjs) = 1,24, k=0,1,..,9. (Do + ,12)q40 = 7,050 (46)
(D(Z, + 1G4y == 2DyD1qy19 — iDyGqo — ZQ?O - /Tquéo + P10G10 + P11930 + 512%0‘@0 + 513‘71OQ§0 (47)
+ /714(710‘74210 + /715‘730‘730 + :516‘7§OQ30 + $17910920940 + P18920930940 T 519‘7?0 +EQ? cos(Q),

(Dé + 1)q51 = —2DyD; Gy — iiDyq50 — quo - j‘ho‘ﬁo + P20920 + P21940 + ﬁzz%ocﬁo + ﬁ23q20qio (48)

+ /524‘720‘7§0 + ﬁzsqgo%o + ﬁzecﬁo%o + $27910920930 + P28910930940 T /329‘730 + EQ? sin(Qr).

Substituting Egs. (37) to (42) into Egs. (33) to (36) con-
sidering that k = 0, one can obtain the following set of
differential equations after comparing the coefficients of
the same power of &:

0 (€9):
(DS +1)g10 =0, (43)
(D + 1)ay =0, (44)

The solution of Egs. (43) to (46) can be expressed as
follows:

G10(To, Ty) = A(T)e™ + A(T))e™™, (49)
A20(To Ty) = B(Te™ + B(T e ™, (50)
30(Tor Ty) = ;AT )™ + 6,A(T e ™™, (51)
Qao(To, Ty) = 8,B(T))e™ + 5,B(T,)e . (52)

where i = 4/—1,A(T;) and B(T;) are unknown functions
that will be defined next, ands, = 2—;51,52 = g—;ﬁz.

Inserting Eqs. (49) to (52) into Eqgs. (47) and (48), yields

(D2 + 1)qyy = [~ifiA + p1oA + 8,1 A — 3TAPA — IB*A + 51,B2A + 26,6, 513AA + 625,3A%A
+62514B°A+ 6, 5,5B?A + 26, 515sB2A + 5, 516B2A + 6,5,,B°A + 615, 515B7A + 35,,A%A
— 2JABB + 2,,ABB + 25,5,p,,ABB + 26, p;sABB + 6,p,,ABB + 5,p,,ABB

+6,6,p15ABB + 6,6,515ABB — 2iD,Ale’™ + [—]A> — JAB? + j;,AB? + 52,3A°

+ 82514AB2 + 8, 515A% + 8, 516AB? + 6,5,,AB + 6,6,p,5AB + j1,A%1e¥ 0

+ %E’Qze’mo + cc,

(D2 + 1)ayy = [~ifiB + pyoB + 8,53, B — 2AAAB + 25, AAB + 25,6, 5,,AAB + 26, 5,,AAB
+ 81 PyyAAB + 8, pry AAB + 5,5, ,5AAB + 5,6,5,5AAB — IA?B — 31B?B + j,,A’B
+26,8,5238%B + 623B?B + 525, A’B + 5,555 B2B + 26, 5,5B?B + 6,/,4A’B

+ 8,5,7A’B + 6,6,5,5A°B + 35,0B%B — 2iD,Ble’™ + [—IA’B — 1B® + j,,A%B

+ 85938 + 62 pogA’B + 8,,5B% + 5,5,6A’B + 81 pp7A’B + 5,6, p25A°B + pogB1e>T0

- %iEQze’QTO + cc.
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where cc refers to the complex conjugate terms. Equa-
tions (53) and (54) should have bounded solutions to have

Inserting Eqs. (55) into Egs. (53) and (54), one can drive

the solvability conditions of Egs. (53) and (54) as follows:

—ifiA+P10A + 81511 A — 3IA%A — JB?A + 1,B?A + 26,6, 513 A%A + 82513A%A + 625,,8°A
+ 5, 515B2A + 26, 5,5B°A + 6, 515B*A + 6,5,,B°A + 6,6,5,4B%A + 35,0A%A — 2]ABB + 2j5,,ABB (56)
+ 26,6,1,ABB + 25, 5,cABB + 6,,,ABB + 5,,,ABB + 8,5,,5ABB + 5,5,,5ABB — 2iD, A

+ %Ea + 6)%e’*To =,

—ifiB+p50B + 655218 — 2AAAB + 255, AAB + 26,8, 524 AAB + 26, 5,sAAB + 6, 5,,AAB
+ 8,,7AAB + 5,6, 5,4AAB + 6,5,,4AAB — AA?B — 31B?B + j,,A’B + 26,5,/,3B°B

+ 623828 + 62,4, A2B + 6,5,5B2B + 26, 5,5B2B + 6,5,4AB + 61 5;A’B + 6,6,,5A’B

+ 35,0B%B — 2iD,B — %iE’(1 +0)%e®To = 0,

a stable controlled system. Accordingly, the small divisor
and the coefficients of €0 in Egs. (53) and (54) should be
vanished. Therefore, to obtain the solvability condition
Egs. (53) and (54) at the primary resonance case (i.e,, when
Q — 1), let us use the parameter ¢ to represent the close-
ness of Q to the system natural frequency w = 1as follows:

To analyze Eqgs. (56) and (57), let us express the func-
tions A(T;) and B(T,) in their polar forms as follows [40, 41].

AT)) = %a(ﬂ )T, B(T,) = %b(ﬂ et (58)
By substituting Eqs. (58) into Eqgs. (56) and (57),

one can derive the following autonomous dynami-
cal system after separating the real and imaginary parts

Q=1 =1 9
to teo (3) and restoring the parameters into their original form
(e=ei=tE=ff==275="%G=12k=12..9)"
da _ _ 1 ou+ Lab2asingp, —2¢,) — 22O 1 op2 s Gin@d, — 26,) — | i s
dr = 27778 1 Y2241 8 P12 ! 2424y
1a6%02p14 5N, — 2¢,) 1 ab*n32 25014 COSQ2p, — 2¢p,) 1 Ab* 2 A3p14SINQ2, — 2¢0,)
8 (A2 +1y 4 (A3 +1)? 8 (43 +1)?
_1@mps  1ab%mpyg 1620016 OS2y = 2y) 1 ab%iy Ay pi6 Sin(2, — 24,)

8 A2+1 4 A2+ 8 A+

8 A+ (59)

1001017 €052y = 2¢;)  1ab21y 4517 SINQR¢y — 2¢)) 1 ab2mymapig Sin(2y — 24,)

8 A+ 8 A+

_ lab2’71’l2'11/’18‘505(2¢1 —2¢)) 1 ab’n 1y 25018

8 B+ +1)
1 ab’m, 1y 4,p15 COS(2¢1 — 2¢h,)

(Z+DA3+1)

o R+ DR+ 1) AR+ 8
_1 abzm M A1 42018 SIN2P, — 2¢,) — lEQ2 sin(¢,),
8 (43 + DA+ 1) 2
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db _
dr

e

dr

1 1 .
- Eby - ga2b/1 SinRep, — 2¢,) —

102602 pyy SN2y — 2¢,) 1 @212 A1 pyq COSQ2ey — 2b,) 1 G002 A2 pyy SN2, — 2¢0,)

lazbn1n2/l1ﬂzp28 SiNQ¢p, — 2¢,) 1

=6 — 2a’i—

1
+ gbzp12 cos(p, — 2¢,) +

+ 1 b’y A2p15 SNy — 2¢b)

1bmpyy 1, . 1 b3’7§/12P23
———= + —a‘bp,, sin(Qp; — 2¢p,) — —————
2%_’_1 8 P2 SIN(2¢h, b,) 2 (/@4‘1)2

+
8 (A2 +1) 4 (A2+1) 8 (A2 +1)

_10%mpys  1a%bmypag + 1 @%by 56 OS2, — 26b,) N 1.a%bny 45026 SN, — 2¢,)

§A§+1 4 A2+ 8 A+1 8 A+
B lazbn1 Py7 COSQ2y — 2b,) N lazbm/l]py SiNQ¢p, — 2¢,) N lazb'ﬁ’?z/’zs SinQ¢p; — 2¢,) (60)

8 A2+ 8 A2 +1 8 (AZ+D(A3+1)

l azb771 Ny A1 P28 COS(2; — 2¢p,) l azb’ﬁ My A1 Pog _ l a2b771 M242028(2¢1 — 2¢h,)

8 (Z+DAZ+1) CARHDEHD 8 (B DE+)

—EQ? ,
8 (22 +1D)(A2+1) FEe cos(@,)

3 25— %bzz cos(2¢p, — 2¢,) + %pm +

8 4

1'71)”1/’11 1,5
2(A3+1) 4
1 01743 éaz’h/ﬁmg 102m 2501, 1 U3y,

B(2+1)? B (RZ+12 4 R+1)7  4(Z+17

12

1621201, 0521 —2¢b,) 1 022 Ayp14 5N, — 2¢,) 1 b2 A2py, OS2, — 2h,)

+
8 (2 +1)2 4 (A2 +1)2 8 (A2 +1)2
3@Mmiips  10°mAips  167m 4016 COSQ2¢y — 2¢)) L1 b’ 16 SINRY; = 24,) 61)
8 (2+1) 4 (#2+1) 8 (A2 +1) 8 A+
16%my45017 L1 b2HyAap17 COSQpy = 2y) 1 b%myp7 SINQR¢; — 2¢)) 1 b2 mnadsAaprg
4 (5+1) 8 AB+1) 8 (A3+1) 42 +D(A2+1)

+ 1 b1,y A1 Ay prg COS(2001 — 2¢b,) + 1 b2 1,015 COS(2¢; — 2¢h,) 1 b2 1y A1 p1g SINQRep; — 2¢h,)

8 (AZ+DA2+1) 8 (BN +1 8 (2 + 1)(A2 +1)

3 > 1 52
+ =a — —EQ“ cos(¢hy),
8  (B+D24+1) 8" 71" 2q 4
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df/’z 3 1 1 1 1 MyA2p24 1
2 5= 202 — ~aP A — ~aP A COS(2p; — 200y) + = pag + = 2P | 22
7 °" 3 2 5 Cos(2¢; — 2¢h,) 2P0+ 5 G2+ 1) 29 P22
b2n2p b2n2A2p a’n A2p an?p
C+102P22C05(2¢1 _24’2)4‘l 3 2fm 3 Tfs 1 21 1P 1 3 1724
8 B(A2+1)2 8 (AB3+1)2 4 AT+1)2 4 +1)
1002024 COS(201 — 2¢hy) 1 @2 A1 pag SINQRy — 2¢b,) 1 G*12 A2y COS(2D, — 2b,)
8 (/1? + 1)2 4 (/lf +1)2 8 (/l% + 1)2
3 b’y A2P25 102’12/12:026 102’12/12:026 cos(2¢; —2¢,) 1 a*Nyp26 SINQ2¢; — 2¢5) (62)
8 (2+1) 4 A2+1 8 (A2+1) 8 (A2+1)
102’71/11/’27 102'11 Py7 SINQ2p; — 2¢5) + laz'h A1Py7 COS(2¢1 —2¢5) 1 a’MtadaArpag
4 (2+1) 8 G2+ 1) 8 (2 +1) AR+ DA+

l 02’71 1y A Ay pag COS(2D, — 2¢h;)

102’71 Ny A2 P285IN2P, — 2¢p,)

A’y 1,p28 COSQp; — 2¢b,)

8 2+ D2 +1) 8
1 a’ ity A1 pasSin2ey — 2¢y)

8 (AZ+DA2+1)

3 1
b2 —EQ?
+ ) P29 + 2b

A2+ 1A+ 1)

1
8 (A2 + 1)+ 1)

sin(¢,).

where ¢, = o7 — 0,, ¢, = o — 6,. Substituting Egs. (49),
(50), (51), (52), and (58) into Egs. (37) to (40), yields

g,(r) = a(r) cos (Qr — ¢,(1)), (63)

4,(t) = b(z) cos (Qr — ¢,(7)), (64)

ma(r)

addition, a,(r) and b,(z) represent the vibration ampli-
tudes of the IRC-controller that is coupled to the rotor sys-
tem, where a,(r) and b,(z) are a constant multiple of the

rotor vibration amplitudes (i.e, a,(z) = | n,/4/42 + 1 )a(z)

andb,(r) = <n2/ ﬂﬁ + 1>b(r)). Moreover, the evolution

g5(r) = FrEy [4; cos(Qr — ¢, (7)) + sin(Qr — ¢, (7))] = a,(z) sin (Qr — P, (2) + ) (65)
1
1n,b(7) . .
qs(t) = e [4, cos(Qr — (7)) + sin(Qr — @,(7))| = by (1) sin (Qr — P, (7) + ) (66)
2
a(0) = —A=a(1), by (r) = —Z=b(x),y; = tan”" (A7), y, = tan™' (4,)
where Vi Vign ~ of rotor vibration amplitudes (i.e., a(r) and b(z)) are gov-

Equations (63) to (66) represent the periodic solution of
the dynamical system given by Egs. (33) to (36) when the
rub-impact force is neglected. Based on Egs. (63) to (66),
one can deduce that a(r) and b(z) are the oscillation ampli-
tudes of the controlled Jeffcott system, while and ¢, (z)
and ¢,(7) denote the corresponding phase angles. In

erned by the autonomous dynamical system given by
Egs. (59) to (62). Accordingly, one can explore the steady-
state vibration amplitudes of the controlled system by set-
ting a(z) = b(zr) = ¢,(r) = ¢,(z) = Ointo Eqs. (59) to (62)
to obtain the following nonlinear algebraic system:
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1 1 . 1.an,p14 1 .5 .
a,b, ¢, d,) =— —au + —ab?Asin(2ep, — 2¢,) — — — —ab?p,, sin(2¢p, — 2
gq( b1, 9,) 5 H 8 in(2¢, b,) > /1%_‘_1 8 P12 SIN(2¢, ;)
1013 Ap13 1 a6 3p1,Sin2py — 2¢,) 1 ab?n3 A,py, COS(2¢, — 2¢b,)
4 (A3+1)2 8 (A2+1) 4 (A2+1)
_ lab2"§’1§/’145in(2¢1 —2¢,) _ 103’71/’15 _ 1ab27l1l’16
8 (A2 +1)2 8241 4 241
lab2n1p16 cos(2¢; —2¢,) labzmﬂb]pwsin(Zd)1 - 2¢,) 67)
8 A2+ 8 A2+
_1ab%myp17,CO5Q2¢1 = 2¢,) 1 ab’n, 45017 SINQR¢y — 2¢))
8 A+ 8 A+
_ labz’ﬁ M2P1g SNy —2¢y) lab2’71’72/11ﬂ18 cos(2¢; —2¢,) 1 ab’n 1y 25018
8 (AB+DA2+1) 8 A2+ 12 +1) A2+ A2+ )
N lab2n1n2/12p18cos(2¢1 —2¢y) labzmnz/l]/lzpm Sin¢, —2¢,) 1rge Sin() = 0
8 2+ D22 +1) 8 (A +DA3+1) 2 T
1 1 . 16mp 1 ,
a,b, ¢y, d,) =— =bu — —a?bAsin(2p, — 2¢,) — — ——= + —a*bp,, sin(2p, — 2
go( b1, 9) 3 U 8 (29, ¢,) 3 ﬂ§+1 8 P22 SIN(2¢, ¢2)
1031220055 1 @262 pyy SINQ2y — 2¢b,) 1 A2bn? Ay pyy COS(2¢0, — 2b,)
4 (A5+12 8 (A2+1) 4 (22 +1)
lazb’ﬁz}b%pm Sin2¢; — 2¢,) 3 lb3112p25 3 lazbﬂzpze
8 (A2 +1) 8 A2+1 4 A2+
N lazbnzp26 cos(2¢p, — 2¢,) N lazb;12/12pz6 Sin(e, — 2¢,) 68)
8 A+ 8 A+
_1a%biypy; cOSQ2¢y — 2¢)) N 1.0%bm, Ay pa7 SinQ2epy — 2¢,)
8 A2 4+1 8 A2+
n lazb’ﬁ’?z/’zs sin¢; — 2¢,) + lazb’ﬁ MyA1P2g COS(2P1 —2¢)) 1 a’bn ny A1 pag
8 (AZ+DA3+1) 8 A2+ 1)(A2+1) 42+ 1A+ )
1 azb"l1’12)~2/723 Ccos(2p; —2¢,) 1 azb’ﬁ A1 Aypag SINRDy — 2¢0,) 1 _
- 4 - — —EQ“ cos(¢,) =0,
8 2+ D2 +1) 8 R+ DA +1) 2
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(A) 3.5 T T : . : . . .
(solid line) Stable periodic solution
B3 [easennee (dotted line) Unstable periodic solution
00 0 (circle) Numerical solution (Forward sweep)
251 o (dot) Numerical solution (backward sweep) ]
Unstable
2r periodic
® E=0.045 solution

0.5

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.25
o
(B) 3.5 1 ,
(solid line) Stable periodic solution
E SECEEREe (dotted line) Unstable periodic solution
00 o (circle) Numerical solution (Forward sweep)
251 e (dot) Numerical solution (backward sweep) 7
Unstable
2r periodic
2 E=0.045 solution
151 E=0.03 7
E=0.015
1
0.5
o = = ——
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
o
2 2 2 E=0.045
372 3n/2 3n/2 ¢1
(7] 0
g 8 s —
o = =)
5 g 5 $2
] ™ Q ™ ® ks
g 2 8
£
& & o
w2 /2 2 ;
0 0 0
02 01 0 0.1 0.2 02 01 0 0.1 0.2 0.2 0.1 0 0.1 0.2
o o o
©) (D) (E)

Fig.4 A, B oscillation amplitudes (a, b) of the uncontrolled Jeffcott system versus ¢, C, D, E the corresponding phase angles (¢,
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3 - T T T 3 T Y Py 2
E=0.03,[........ 4,(0)=q,{0)=1.0, §(0)=41,(0)=0.0 E=0.03, | 9(0=0,(00=1.0.4,(0)=0,(0=0.0) |
,| 0=0.05 — 4,(0)=q,(0)= §,(0)=4,(0)=0.0 51 050.05 | ——q,(0=q,(0)= a,(0)=4,(0)=0.0 \‘\.&
& 1
3
g 0
I
0
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Q
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©
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EX003,0%005 | q,02q,0=4,0=4,(000 E=0.03,050.05 [ ¢ (0)=q,(0/=1.0,§,(0/=3,(0)=00
2r . )
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I _ 2 2
r(r)=(a() *a5() r(r)=v/(g(r) (7))
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0 200 400 600 800 1000 0 200 400 600 800 1000
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Fig.5 Numerical simulation of the rotor temporal oscil- tial conditions  g,(0) = g,(0) =1.0,G,(0) =¢,(0)=0 and

lations according to Fig. 4 when E =0.03,6 =005 A, B,
C steady-state lateral temporal vibrations and the cor-
responding whirling orbit of the rotor system at the ini-

93(a,b, 91, ¢) =0 — %au - %bzz - %bzx 0520, — 20,) + %pm +

1 @*n2pss

4,(0) = g,(0) = ¢,(0) = ¢,(0) = 0, (D, E) the corresponding radial

oscillation r(z) = 1/q;(7) + q,(7)

1 mAipas

22+ 1)
3 a’ny Ay pys 1 bz”%’lgpm

lb2

2 P12

1 *nZpy,

1
+ =b?p., cosQep, — 2¢,) +
8 P12 P1 @3 8 (/ﬁ +1)7

8 (22+1)2 42412  4(R2+17

10213p14,€05Q20, — 2¢,) 1 %13 4,014 5N, — 20,) N 16212 25p,4 OS2, — 2¢0,)
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Based on Egs. (67) to (70), one can explore the perfor-
mance of the proposed control strategy (i.e., PIRC— con-
troller) in reducing the oscillation amplitudes of the rotor
system (i.e. g, b) via solving the nonlinear algebraic sys-
temg;(a, b, ¢;,¢,) = 0( = 1,2,3,4)in terms of the system
and control parameters (i.e., 0, E, 61, 65, 63, 64, 11, 121 Aqs A5)
as given in Sect. 3.2. In addition, the solution stability of
Egs. (67) to (70) can be checked by exploring the eigen-
values of the linear dynamical system corresponding to
the nonlinear system (59)-(62). To obtain the linearized
dynamical system corresponding to Egs. (59) to (62), let
(A10s b10s P10s 20) be the equilibrium point of the autono-
mous system (59) to (62) and suppose (a,q, by, ¢4, P,1) be
a small perturbation about this equilibrium point. There-
fore, one can write

a=0a;0+0a;,b=010+ b1, = 1o+ 11,0, = Py + ¢21l}
a= anb = 611(}51 = d’n:(ﬁz = d)21'
71)
Inserting Egs. (71) into Egs. (59) to (62) with expand-
ing for a;;, by;, @11, @57 and keeping the linear terms only
yields the following linearized model

. 09, a9, 09, 09,

a;, = a, + b, + bqq + b1 72
N7 e T g, Tt g Pt g, O (72)

: 09, 09, 09, 09,

b,. = a,, + b, + ¢ + ¢ ’ 73
R PR L TR L PR G L P e (73)
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R+ DA +1) g "%
0g; 09, 0g; 0g;
o = ap + by + ¢+ b1 74
P R T L PO G L P e (74)
09, 09, 99, 99,
@y = a,, + b, + ¢, + b5q. 75
e R TR P AL P (75)

where the coefficients of Egs. (72)-(75) are given in Appen-
dix B. The above linear dynamical system (i.e,, Egs. (72) to
(75)) is topologically equivalent to the nonlinear system
given by Egs. (59) to (62) (see Ref. [42]). Accordingly, the
stability of the nonlinear system (59)-(62) can be investi-
gated by checking the eigenvalues of the linear system
(72)-(75).

3.2 Sensitivity analysis and numerical validation

Relying on the analytical investigation given in Sect. 3.1,
the performance of the purposed control technique (i.e.,
PIRC-controller) is studied within this section via solving
the nonlinear algebraic system (67)-(70) (using New-
ton-Raphson algorithm [43]) in terms of the different con-
trol gains (i.e.,8,, 65, 63, 64,117, 115, A1, 4,) utilizing o or E as
the main bifurcation parameter. The control performance
can be evaluated via plotting the steady-state vibration
amplitude (g, b) of the Jeffcott system versus o or E at the
different control gains. In addition, the whirling direc-
tion of the rotor system either forward or backward can
be determined by plotting the steady-state phase-angles
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(¢4, ¢,) versus the same bifurcation parameter (i.e., o orE).
Relying on Egs. (63) and (64) the Jeffcott system may per-
form forward whirling oscillation as long as¢, > ¢,, but
when ¢, > ¢, this implies that the rotor system exhibits
backward whirling motion. Moreover, the rotor system
performs vibration along a straight line with a slope ¢,
wheng, = ¢,.The dimensionless system parameters that
are used in the current analysis are adopted as follows:
E=0.03,u=00151=0056, =6 =1,6, =68, =0015,7,

=, =A =4 =1a=45%06=0,Q=1+0,k=5, and
ue = 0.2[13, 24, 39]. The following subsections are organ-
ized such that the dynamical behaviors of the uncontrolled
Jeffcott system are discussed in Sect. 3.2.1 when letting
P = Py = 0 =0,1,...,9) into Egs. (67) to (70), while
Sects. 3.2.2 is intended to explore the influences of the
different control gains (i.e.,6,8,, 83,64, 17,15, 41, 45) on
the steady-steady vibration amplitudes and the whirling

direction (either forward or backward) of the considered
Jeffcott system.

3.2.1 Uncontrolled rotor system

Based on the derived Egs. (67)-(70), the oscillation ampli-
tudes (a, b) of the uncontrolled Jeffcott system and the
corresponding phase angles (¢,, ¢,) are plotted versus ¢
at three different magnitudes of the disc eccentricity E as
shown in Fig. 4. It is clear from Fig. 4A and B that the rotor
lateral vibrations are symmetricin X and Y directions, and a
monotonic increasing function in E. In addition, the figures
demonstrate that the nonlinear characteristics dominate
the system response when ¢ > 0 (i.e, when the rotor angu-
lar speed Q is higher than the system natural frequency
w = 1, where 6 = Q — 1), where the rotor system may have
a bistable periodic solution. Moreover, Fig. 4C, D, and E
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Fig. 12 Numerical simulation of the rotor temporal oscillations
according to Fig. 11 when o = —0.1 at the initial conditions
G,(0) = g,(0) = G,(0) = g,(0) = 0: A, B temporal lateral vibrations

confirm that the steady-state phase difference between the
lateral vibrations in X and Y directions is always constant
(i.e, ¢, — ¢, = m/2) regardless of the rotor angular speed
and the eccentricity magnitudes, which confirm the forward
circular whirling motion of the considered rotor system.

To demonstrate the accuracy of the angu-
lar speed response curve given in Fig. 4, numerical
simulation for the equations of motion of uncon-
trolled Jeffcott system (i.e., Egs. (33) and (34) when
k= P =Py = 0G=0,1,...,9)) are illustrated in Fig. 5
according to Fig. 4 when E =0.03,6 =0.05 at the
two initial sets g,(0) = g,(0) = ¢,(0) = G,(0) =0 and
g,(0) = g,(0) = 1.0,= ¢,(0) = ¢,(0) = 0. Figure 5A, B, and
C show the steady-state temporal lateral vibrations and
the corresponding whirling motion, and Fig. 5D and E
illustrate the instantaneous radial oscillations r(z) at the
considered initial conditions. By examining Fig. 5, one
can deduce that the rotor system is sensitive to the initial
conditions, where the system can oscillate by one of two
periodic solutions depending on the initial conditions.

Accordingly, the main target of this article is to control
the undesired lateral vibrations of the considered Jeffcott
system and eliminate the catastrophic nonlinear charac-
teristics via designing a novel control strategy (i.e., PIRC
-controller).
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g, () and g,(v), € temporal radial vibrations r(r) = 1/q%(z) + g2(2),

and D the corresponding steady-state whirling orbit

3.2.2 Controlled rotor system

Based on Egs. (12), (33), (34), (35), and (36), the dimen-
sionless parameters §, = %kw 5y = %kz, 8y = j—(‘)’k3,
8y = j—;’k4, A=, 0=2,n = andn, = Zrepresent
the control gairnws of th:a sugge;ted PIRC—cnontroIIer.
Therefore, this section is dedicated to explore the effect
of these control parameters on the oscillation ampli-
tudes and the whirling direction of the considered rotor
system via solving the nonlinear algebraic system given
by Egs. (67) to (70).

The influence of the proportional gain (i.e., §;and &)
on the rotor oscillation amplitudes (g, b), and the whirl-
ing direction (i.e., ¢»1, ¢,) is depicted in Fig. 6. The fig-
ure illustrates the evolution of g, b, ¢;, and ¢, against o
at the three different values of the proportional gains
8, = 63 = 0.95,1.0,and 1.05. It is clear from the figure that
the increase of the proportional gains to 6, = §; = 1.05,
shifts the Jeffcott system response curves to the right
leading to avoiding the high oscillation amplitude at the
perfect resonance (perfect resonance means that o = 0.0).
However, the rotor system may oscillate with strong
vibration amplitudes when the angular speed is higher
than the system’s natural frequency (i.e., when ¢ = 0.2).
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In addition, the figure demonstrates that the decrease of
6, = 63 = 1.05t0 6, = 6; = 0.95, shifts the response curve
to the left. Accordingly, one can deduce that the control
gains 6,and 6; act as a proportional gain that can be uti-
lized to avoid the resonance vibrations of the considered
system via shifting the resonant peaks either to the right
or the left at the perfect resonance conditions. Moreover,
Fig. 6C, D, and E demonstrate that the phase difference
¢, — ¢, = 7/2°, which confirms that the rotor system
always performs a circular forward whirling motion.

The effect of the control gains 6, and §, on the steady-
state vibration amplitudes and the corresponding phase
angles of the controlled rotor system are depicted in
Fig. 7. It is clear from Fig. 7A and B that the increase
of the control gains (6, and §,) from 6, = 6, = 0.001 to
6, = 6, = 0.015 has decreased the vibration amplitudes
along o— axis and forced the nonlinear rotor system to
respond as a linear system. In addition, Fig. 7C-E dem-
onstrated that the rotor system can perform circular
forward whirling motion only along o— axis, where the
phase differences ¢, — ¢, is always z /2° regardless of the
control gain. Figure 8 shows the evolution of the rotor
oscillation amplitudes and the corresponding phase-
angles versus o at the different values of the feedback
gains n;and #, (i.e., 1, =5, = 0.1,0.5, and 1.0). It is clear
from Fig. 8A and B that the system steady-state lateral
vibrations are a monotonic decreasing function of the
feedback gains #,and #,. Moreover, Fig. 8C-E depict that
the phase difference ¢, — ¢, is #/2° along the o— axis
regardless of the magnitudes of the feedback gains #,
and n,. By examining Figs. 7 and 8 one can demonstrate
that the control gains (8,, 6,) and feedback gains (1, 1)
of the proposed PIRC— controller act as damped control-
lers, where the increasing of 6, = §, and , = 5, increases
the damping coefficients of the Jeffcott system, which
ultimately reduce the undesired vibration amplitudes of
the rotor system.

Figure 9 shows the lateral vibration amplitudes (a and
b) of the controlled Jeffcott system at three different val-
ues of the control parameters 4, and A, of the PIRC-con-
troller (see Egs. (35) and (36)). By examining Fig. 9A and
B, one can note that the rotor vibration amplitudes are a
monotonic increasing function of 4, and 4,. In addition,
Fig. 9C-E show that the rotor system can only perform
forward whirling motion along o— axis regardless of the
magnitudes of the control parameters A,and 4,, where the
phase-difference ¢, — ¢, is z/2°.

Finally, Fig. 10 shows the evolution of the lat-
eral vibration amplitudes (a,b) and the correspond-
ing phase-angles (¢,,¢,) at three high levels of
the disc eccentricity £ (i.e. E=0.05,0.1, and 0.15)
when the control parameters are selected such as
6,=6;=10,6,=6,=0015n,=n,=4,=4,=1.0

by comparing Figs. 4 and 10, we can conclude that the
proposed control technique has suppressed the nonlin-
ear behaviors and forced the rotor system to respond as a
linear one regardless of the strong excitation force. In addi-
tion, the sensitivity of the uncontrolled system has been
avoided after control. Relying on the acquired results from
Figs. 6,7, 8,9 and 10, it is possible to reshape the unde-
sired nonlinear dynamical characteristics of the considered
rotor system using the proposed PIRC— controller.

4 Discontinuous dynamical system
and rub-impact force

When the rotor lateral displacements x(t) and/or y(t)
are larger than the nominal air-gap size s, between the
rotating disc and the 8-pole housing as shown in Fig. 2a a
rub-impact force develops between the rotating disc and
8-pole housing interface as shown in Fig. 3. These rub and
impact forces may be resulting in different catastrophic
dynamical behaviors of the considered system. There-
fore, this section is intended to investigate the nonlinear
dynamics of the Jeffcott system when the controller fails
to keep the rotor lateral displacements x(t) and/or y(t)
smaller than the nominal air-gap size s, via solving the
discontinuous dynamical system given by Egs. (33) to (36)
when k # 0and u; # 0.

Based on the introduced dimensionless variables
g, = i and g, = é given before Eq. (33), where

G,(7) = a(r)cos(Qt — (7)) and g,(r) = b(r)cos(Qr — ¢, (7))
as given by Eqgs. (63) and (64). Accordingly, one can deduce
that the rub and/or impact forces between the Jeffcott
rotor and the pole housing occur when the oscillation
amplitudes a(z) and/or b(r) are larger than unity (i.e, when
a(r) > 1and/or b(z) > 1). Relying on this condition, it is
possible to predict the rub-impact force between the rotor
and stator utilizing the response curves given in Sect. 3 as
in Figs. 4,6,7,8,9and 10.

For example, Fig. 10A and B depict that the proposed
PIRC-controller failed to prevent the rub-impact occur-
rence between the rotating disc and the pole housing at
a specific interval of the parameter o (i.e., at
—0.08 < 6 < 0.04) when the disc eccentricity E = 0.15,
where a > 1and b > 1. According to Figs. 10A and B, 11
is established when 6, =6;=1,6,=6,=0.015,1, =
ny=~4 =4 =1k=5pu =02 and E=0.15, where
Fig. 11A and B are obtained via solving Egs. (67)-(70). On
the other hand, Fig. 11C is obtained via plotting the
steady-state Poincare-map of the radial oscillation

r(r) = 1/4(r) + g3(z) for the discontinuous system given
by Egs. (33)-(36) utilizing ¢ as the main bifurcation
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Fig. 15 Numerical simulation of the rotor temporal oscillations
according to Fig. 11 when ¢ =0.06 at the initial conditions
G,(0) = g,(0) = G,(0) = G,(0) = 0: A, B temporal lateral vibrations

parameter on the interval —0.1 < ¢ < 0.1. It is clear from
Fig. 11A and B that the Jeffcott system may be subjected
to rub and impact force when the rotor angular speed
within the range Q =1+ ¢,6 € [-0.08,0.04] because
a > landb > 1ontheinterval —0.08 < ¢ < 0.04.Therefore,
the system bifurcation diagram has been established in
Fig. 11C according to Fig. 11A and B on the interval
—0.1 < ¢ <0.1atk = 5.0and y; = 0.2to explore the nature
of the rotor motion when the rub-impact force occurs
between the rotor and stator.

By examining Fig. 11C, one can notice that the Jef-
fcott system exhibits aperiodic motion as long as
o € [—0.08,0.04] U [0.04,0.069], otherwise the rotor sys-
tem will oscillate with periodic motion. It is clear from
Fig. 11C that the rotor performs aperiodic oscillation
on the interval —0.08 < ¢ < 0.04 due to the rub-impact
occurrences between the rotor and stator, wherea > 1and
b > 1on thisinterval as shown in Fig. 11A and B. However,
Fig. 11C demonstrates that the Jeffcott system performs
aperiodic motion also on the interval 0.04 < ¢ < 0.069
despite a < 1and b < 1on this interval shown in Fig. 11A
and B.The main reason for these aperiodic oscillations can
be interpreted as “strong transient vibration induces a sus-
tained rub-impact force between the rotor and stator’, where
this phenomenon will be explained next in detail through
Figs.14,and 15.

g,(z) and g,(z), € temporal radial vibrations r(r) = 1/q%(z) + g5(2),

and D the corresponding steady-state whirling orbit

Figures 12, 13, 14, and 15 visualize the temporal
oscillations and the corresponding whirling motion of
the considered Jeffcott system according to Fig. 11C
at the three different values of the rotor angular speed
Q =1+0,6 =-0.1,0,and 0.06 via solving the discontin-
uous dynamical system (33)-(36) numerically with zero
initial conditions. Figure 12 illustrates the instantaneous
lateral vibrations, the radial oscillation, and the corre-
sponding steady-state whirling motion of the controlled
rotor at o = —0.1. It is clear from Fig. 12 that the transient
and the steady-state vibration amplitudes are smaller
than unity (i.e,, g;(r) < 1,g9,(r) < 1, and r(r) < Talong
the interval 0 < 7 < o). Therefore, the controlled rotor
system can oscillate safely with circular forward whirl-
ing motion without rub-impact occurrence between
the rotating disc and the 8-pole housing as demon-
strated in Fig. 12D. On the other hand, Fig. 13 simulates
the system'’s instantaneous lateral vibrations, the radial
oscillation, and the corresponding steady-state whirling
motion when ¢ = 0. The figure demonstrates that the
Jeffcott system exhibits a quasiperiodic oscillation due
to the rub-impact force occurrence between the rotor
and the 8-pole housing, which agrees with Fig. 11A and
B wherea > 1and b > 1ato = 0.

It is clear from Figs. 11A and B that the steady-state
vibration amplitudes a and b are smaller than unity
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on the interval 0.04 < ¢ < 0.069 (i.e., a&b < 1 as long
as 0.04 < ¢ < 0.069), which means that the rotor sys-
tem can oscillate safely without rub-impact occurrence
between the rotor and stator. However, Fig. 11C dem-
onstrates that the system performs aperiodic motion
on the interval 0.04 < ¢ < 0.069 due to the rub-impact
occurrence between the rotor and stator. To explain the
contradiction between Fig. 11A, B, and C on the inter-
val0.04 < ¢ < 0.069, the system temporal Egs. (33)-(36)
are numerically simulated according to Figs. 11 when
o = 0.06 (i.e.c = 0.06 € [0.04,0.069]) as shown in Figs. 14
and 15, where Fig. 14 depicts the system motion when
the rub impact force is neglected (i.e. when k = u, = 0.0),
but Fig. 15 illustrates the system dynamics when k = 5.0
andy, = 0.2. By examining Fig. 14, one can notice that the
rotor system exhibits strong transient lateral vibrations
(i.e., g(r) > 1,g,(z) > 1,r(z) > 10n short time interval),
where these instantaneous vibrations reach the steady-
state with oscillation amplitudes smaller than unity when
the rub-impact force is neglected (i.e., when k = y; = 0.0).
On the other hand, Fig. 15 demonstrates that the strong
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transient oscillations shown in Fig. 14 may cause a sus-
tained rub-impact force between the rotor and stator
when the rub impact force is considered. Accordingly,
one can conclude that a > 1and/or b > 1is not the only
sufficient condition for the occurrence of a rub-impact
force between the rotor and stator, but also the strong
transient oscillations may be resulting in a sustained rub-
impact occurrence between the rotor and stator even if
the steady state amplitude of this transient oscillation is
smaller than unity as depicted in Figs. 14 and 15.

To investigate the system dynamics at a wide range
of the rotor eccentricity E, the steady state vibration
amplitudes (a,b) of the controlled Jeffcott system
are plotted against E via solving Egs. (67)-(70) when
6=00,6=6,=16=6,=0015=n=4A=4,=1 as
shown in Fig. 16A and B. It is clear from Fig. 16A and
B that the controlled system can oscillate safely with
oscillation amplitude smaller than the air-gap size as
long as the eccentricity magnitude E < 0.1045. But
the increase of E beyond 0.1045 may increase the sys-
tem’s lateral vibration amplitudes to become larger
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than the air-gap size, which ultimately leads to rub-
impact occurrence between the rotor and stator. To
confirm the accuracy of the analytical results obtained
in Fig. 16A and B, the corresponding bifurcation dia-
gram of the discontinuous system (33)-(36) is estab-
lished via plotting the steady-state Poincare-map of the
radial oscillation r(z) versus the disc eccentricity when
6=0.0,6,=6;=1,6,=6,=0.0151,

=m=A=24=1,k=50,u =02 at zero initial
conditions as shown in Fig. 16C. By examining Fig. 16C,
one notices that the rotor system can perform periodic
motion as long as 0 < E < 0.1045, otherwise, the system
will oscillate with rub-impact mode to perform aperiodic
oscillation, which exactly agrees with the same results
drawn From Fig. 16A and B.

Based on Figs. 16, 17 and 18 demonstrate the effect
of a small increase of the rotor eccentricity from £ = 0.1
to E = 0.106 on the oscillatory behaviors of the consid-
ered discontinuous system (33)—(36. It is clear from Fig. 17
that the Jeffcott system exhibits periodic oscillation with
forward circular motion when E = 0.1. However, Fig. 18
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with full-annular-rub mode when k = 0.5, C, D Periodic-n motion
with partial-rub-impact mode when k = 25.0, and E, F quasi-peri-
odic motion with partial-rub-impact mode when k = 50.0

demonstrates that the periodic motion of the rotor system
at £ = 0.1has been bifurcated to a quasiperiodic motion
when E became 0.106.

The influence of the impact stiffness coefficient k
on the bifurcation of the rotor motion is investigated
as shown in Fig. 19 via plotting the system bifurcation
diagram utilizing k as the main bifurcation parameter
when £ =0.15,6 =0.0,6, =6; =1,6, =6, =0.015,%, =
Ny = A, = A4, = 1, 4y = 0.2 along the interval0 < k < 50.
Based on the established bifurcation diagram, it was
found that the Jeffcott system can oscillate by one of two
vibration modes (which are full-annular-rub mode and
partial-rub-impact mode) depending on the magnitude
of the impact stiffness coefficient k, where Fig. 19 illus-
trates that the rotating disc can perform forward whirling
motion in continuous contact with the 8-pole housing as
long as the impact stiffness coefficient 0 < k < 1(i.e., the
rotor performs full-annular-rub motion when0 < k < 1).
However, as soon as k exceeds 1, the rotor system escapes
to the partial-rub-impact mode to perform quasiperiodic
motion alongl < k < 50.
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Fig.23 Numerical simulation of the rotor temporal oscillations

according to Fig. 21 when pu; =055 at the initial conditions
g,(0) = g,(0) = G,(0) = G,(0) = 0: A temporal radial vibrations r(z) = ‘/qf(r) + q%(r), and B the corresponding steady-state whirling orbit

The temporal motions of the considered Jeffcott sys-
tem have been simulated in Fig. 20 according to the two
vibration modes that are reported in Fig. 19. The figure

shows the steady-state whirling motion and the cor-
responding frequency-spectrum of the Jeffcott system
according to Fig. 19 at the three values of the impact
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Fig.24 Numerical simulation of the rotor temporal oscillations

4:(0) = g,(0) = ¢,(0) = G,(0) =

stiffness coefficient k = 0.5, 25, and 50. It seems from the
numerical simulations shown in Fig. 20A and B that the
Jeffcott system performs periodic motion outside the
boundary of the 8-pole housing when k = 0.5.This means
that the rotor system moves along a circular path in con-
tinuous contact with the 8-pole housing, which is known
as a full-annular-rub mode. On the other hand, Fig. 20C
and D illustrate that the rotor system performs periodic-
n motion with partial-rub-impact mode when k = 25.0,
while Fig. 20E and F demonstrate that the Jeffcott system
exhibits a quasiperiodic motion with partial-rub-impact
mode when k = 50.0.

The nonlinear dynamics of the controlled Jeffcott sys-
tem have been explored for a wide range of the dynamic
friction coefficient u, via obtaining the system bifurca-
tion diagram utilizing y; as the bifurcation parameter
on the interval 0 < u, < 0.55 as shown in Fig. 21 when
E=0.1506=00,6,=6;=1,6,=6,=0.015n, =n, =
A = A, =1,k =5.0.1tis clear from the figure that the sys-
tem will oscillate with a full-annular-rub mode as long as
0 < yr < 0.044. However, the increase of y beyond 0.044
resulting in a partial-rub-impact mode for the rotating shaft.
Relying on Fig. 21, the temporal oscillations of the controlled
rotor system are numerically simulated as shown in Figs. 22
and 23 at 4, = 0.01and 0.55, respectively. Figure 22 demon-
strates the full-annular-rub mode, while Fig. 23 depicts the
partial rub-impact oscillation of the Jeffcott system. Finally,
Fig. 24 illustrates the temporal vibrations and the corre-
sponding whirling motion of the controlled rotor system
according to Fig. 21 but when y, = 0.6. It is clear from the
figure that the rotor may lose its stability to respond with
unbounded motion, which implies practically the destruc-
tion of the considered system if the interface between the
rotor and stator is a rough surface with a dynamic friction
coefficient y; = 0.6.
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0: A temporal radial vibrations r(z) =

0.6 at the initial conditions

according to Fig. 21 when pu; =0. initi iti
1/ @2(r) + g3(r), and B the corresponding steady-state whirling orbit

5 Conclusions

Nonlinear vibration control of a vertically supported Jef-
fcott rotor has been investigated in this article utilizing
the Proportional Integral Resonant Controller (PIRC). The
proposed controller has been integrated into the consid-
ered rotor system via an eight-pole electromagnetic actua-
tor. The control strategy is designed such that the PIRC-
controller generates control currents according to the
instantaneous lateral displacements of the rotating shaft,
which are measured using suitable displacement sensors.
These control currents are used to energize the 8-pole
electromagnetic actuator in order to generate controllable
electromagnetic attractive forces in the air-gap between
the 8-pole housing and the rotating shaft in such a way
that mitigates the undesired nonlinear vibrations of the
considered rotor system. Relying on the electromagnetic
and mechanical coupling between the Jeffcott system, the
magnetic actuator, and the PIRC-controller, the whole sys-
tem mathematical model is derived with the aid of both
the classical mechanics’ principle and the electromagnetic
theory, where the rub-impact force between the rotating
shaft and the 8-pole housing is included in the obtained
model. Then, the derived discontinuous dynamical system
has been investigated analytically and numerically. Sen-
sitivity analysis for the different control parameters has
been explored. In addition, the dynamical characteristics
of the considered system have been investigated when
the proposed control algorithm fails to prevent the rub-
impact force between the rotor and stator. According to
the above discussions, the following important remarks
can be concluded:

1. The nonlinearity dominates the response of the
uncontrolled Jeffcott system, where the system may
suffer from the jump phenomenon, sensitivity to the
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initial conditions, and the existence of multiple peri-
odic solutions at a specific range of the rotor angular
speed.

2. The coupling of the PIRC-controller to the considered
rotor system can reshape the rotor dynamics and
modify its bifurcation characteristics according to
the designed control gains. (6;, 85, 83, 64, 11, Has A, Ad).

3. The controller’s proportional gains (6;,6;) can be
used to avoid the strong oscillation amplitudes at
the perfect resonance conditions via shifting the
resonant peaks either to the right or the left of ¢ = 0

4. The control gains (6,, 6;) and/or the feedback gains
(111, 11,) of the proposed PIRC- controller can be used
to eliminate the catastrophic nonlinear bifurcation
behaviors via increasing the linear and nonlinear
damping parameters of the considered rotor system.

5. The optimal design for the control gains of the PIRC-
controller can force the Jeffcott rotor to respond
as a linear dynamical system with a single periodic
attractor regardless of the rotor angular speed and
disc eccentricity.

6. The failure of the PIRC-controller to keep the rotor
vibration amplitudes smaller than the nominal air-
gap size between the rotor and the 8-pole housing
makes the rub and/or impact between the rotor and
stator inevitable.

7. Strong transient oscillations may be resulting in a
sustained rub-impact occurrence between the rotor
and stator even if the steady-state amplitudes of
these transient oscillations are smaller than the air-
gap size between the rotor and stator.

8. The rotor system may oscillate with one of two
vibration modes when the rub and/or impact occur
depending on the magnitude of both the impact
stiffness coefficient and dynamic friction coefficient
with fixing the other parameters, where these modes
are the full-annular-rub and the partial-rub-impact.

9. In general, the rotor system performs periodic-n or
quasiperiodic motion in the case of the partial-rub-
impact mode, otherwise, the system exhibits a peri-
odic lateral vibration with circular forward whirling
motion.

10. The controlled rotor system may lose its stability to
respond with unbounded motion, which implies
practically the destruction of the considered sys-
tem if the interface between the rotor and stator is
a rough surface with a dynamic friction coefficient
g > 0.6.

Based on the above discussion, it is recommended
to verify the above results experimentally soon. In addi-
tion, the application of this type of controller on the

muti-degree-of-freedom rotor system will remain under
the scope of future research work.
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Appendix A:
P10 = 4 + 8 cos?(a) — 85, cos(a) — 45,,

P11 = 86, cos?(a) + 46,,

p1, = 855 cos*(a) + 48 cos*(a) + 165,55 cos*(a)
— 486, cos*(a) — 246, cos*(a),

p13 = 862 cos*(a) + 453,

P14 = 852 cos*(a),

p1s = 126, — 88,6, — 166,6, cos*(a) + 244, cos*(a),
Prg = 248, cos*(a) — 166,65 cos*(a),

pr; = 486, cos*(a) — 168,68, cos*(a) — 165,65, cos*(a),

prs = 166,58, cos*(a),
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pro = 452 + 8 — 246, cos’(a) + 16 cos*(@) — 126, + 852 cos*(@),  p,. = 126, — 85,8, — 16555, cos* () + 246, cos*(a),

Py = 4 + 8 cos?(a) — 855 cos*(a) — 455, e = 246, cos*(a) — 168,68, cos*(w),
py1 = 85, cos*(a) + 44y, Py = 488, cos*(a) — 165,56, cos*(a) — 166,65 cos*(a),
pyy = 852 cos*(a) + 48 cos*(a) + 168,55 cos*(a) g = 166,6, cos*(a),

— 485, cos*(a) — 2465 cos*(a),
Pag = 452 + 8 — 2465 cos*(a) + 16 cos*(a) — 1255 + 852 cos*(a)-

py3 = 852 cos*(a) + 452,
Appendix B:

pas = 862 cos*(a),

99, 11 . 1 mpy 1 . 3 a7 A prs
3o = 2# + gbfoa sin(2¢no — 2620) — 5 e gbfop12 SiN(2¢1 — 2¢50) — FRyEITc
1 1
L1 b2 .12 p14 SN2 — 2¢) 1 b2 .13 Ayp14 COSQ1g — 26h5) 1 b2,ab’n3 A2p14 SN2 — 2¢by)
8 (A3 +1)? 4 (43 +1)? 8 (A3+1)
2 2 2
3 afomms 1 bfo’hpw 1 b?g’ﬁﬂm Cos(2¢19 — 2¢50) 1 bfo’ﬁ A1P16 SIN(2¢h19 — 2¢h5)
8 A+ 4 A2+ 8 A2+ 8 A2+
1 b3112P17 COS(2h10 = 26h30) 1 b2 2217 SIN2b1o — 2603) 1 b3,ab* 1113015 SIN(21o — 26h30)
8 A2 +1 8 A2 +1 8 R+DA2+1
2 2 1 2
1 b3t 241 P15 COS(2¢h10 — 2¢00) 1 blothaAapig + 1 bioMa 4215 COS(210 — 2¢h)
8 R+ D2 +1) 4R +N(2+1) 8 R+ D2 +1)
1 bfo’ﬁ Ny A1 42018 SIN(210 — 2¢50)
8 2+ DA2+1) '
0g 1 1 1 a0 12014 COSQep1o — 2¢h20)
ﬁ =107 COS(26h10 — 2h30) = Z10b0p15 COS2b1o — 2b0) + 010 1(“/12 " 1)21
1 5
+ 1 Gmbfo”;izpm SiN(2¢o — 2¢05) 1 a1obf0’7§/1§/’14 €os(2¢;o — 2¢h) 1 a10b$0'71p16 SiN(2¢19 — 2¢py0)
2 (A2 +1)2 4 (22+1)2 4 2+1
2 2 1
1 awaom 21916 COS(2¢h10 — 2¢h3) + 1 a1ob$o’121’17 SN2 — 2¢hy) 1 a1ob$0’12/12917 €oS(2¢h19 — 2¢h50)
4 A2+ 4 A2 4+1 4 A24+1
1 2 2
1 a1ob$o’71’72/’18 COS(2¢h19 — 2¢0) + 1 a1ob$0”l1 M A1P15 SIN(219 — 2¢hy0) 1 a1ob$0’71 242015 SIN10 — 2¢)
4 (B +DA3+1) 4 (A +1DA3+1) 4 (B +DA5+1)
a,,b? Ay Ao prg COS(2h10 — 2¢D50)
_ 1010939 MaA 4218 $10 — 2¢39 _ lEQZ cos(do),
4 A+ D3 +1) 2
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a9,
0@,

99,
daq,

99,

ob,;

1 1
— —a,0b3 A cOs(2h1o — 2¢hy) + Zawaop12 €os(2ep1o — 2¢h5) — 2

1 . 1
- :‘awbm/1 SiN(2¢h19 — 2¢p50) + Zambmpzz(zd’m — 2¢5) — 2

1 a1ob$o'1§P14 €oS(2¢h19 — 2¢y)

4 (Z+1)2
1 1003113 4214 SINQ215 = 26by) + 1 1030115 45914 COS(2h10 — 2¢b30) + 1 1002111 P16 SINQR¢b1o = 265)
2 (2 +1) 4 (2 +1y 4 2241
+ 1 awb?o’ﬁ A1P16 COS(2¢10 — 2¢p5) 1 a1ob120’72/’17 SiN(2¢1g — 2¢) + 1 C’mb?o”lz/lzpw €oS(2¢p19 — 2¢y)
4 A+ 4 A+ 4 241
1 a10b$0’71 2918 COS(2p15 — 2¢hy) 1 a1ob1zo’l1 241915 SINRP19 — 2¢0y) 1 a1ob$o’l1 M222P15 SINRP1o — 2¢hy)
4 AT+ DA+ 1) 4 (AT+DA+ 1) 4 2+ DA +1)
1 GrobigM My 4 4215 05210 — 2h30)
4 A2+ D2 +1) '

1 A10b1072 P2 SINQ2eD10 — 2¢b5)

(2 +17
1 a10b1oazbn12/l1p24 €os(2¢19 — 2¢p50) + lambm'hzfﬁpu Sin(2¢q0 — 2¢050) 1 a10b10M2P26
2 (2 + 17 4 (2 +1)? 2 241
+ 1 G19b10/M2P26 COS(2h10 — 2¢09) " 101001012 A2P26 SIN(210 = 2050) 1 A10b10M1 P27 COS(2h10 = 20h30)
4 A5+ 4 241 4 P
+ 1 a19b10M1 41927 5IN2e10 = 2¢h) + 1 G19b10MM3028 SIN21g — 2¢by) + 1 a10b10M11141 P2 COS(2h10 = 2¢h0)
4 A2+ 4 (AZ+DA2+1) 4 (AZ+DA3+1)
_ 1010b1oMMyA1P2g 1 10b10M111242P28€05(2010 — 26h50) + 1 019b10M M3 41 42928 SIN(2¢10 — 2¢h0)
22+ 1)(A2+1) 4 RZ+DA2+1) 4 A2+DA2+1) '

1 1 Mapy 1 3 b3y 42023

1 2 . 2 .
=——pu— =a;,Asin(2 —2¢,50) — = + —a sin(2 —2¢5) —

SH g0 $10 = 220 2/@_'_1 8 10P22 $10 = 2920 2 (l§+1)2
1 afo’?12P24 Sin(2¢19 — 2¢5) 1 ‘7’%07712}”1/’24 Cos(2¢19 — 2¢p5) + 1 C’%o’hz/ﬁ/’m $in(2¢1o — 2¢)
8 (2 +17 4 (2 +17 8 (2 +17

3 bfoflzl’zs 1 a%oﬂzpza + 1 afo’b/’zs €os(2¢h19 — 2¢py0) + 1 afoﬂzizl’zs SiN(2¢1 — 2¢h50)
8 2+1 4 1241 8 A2+ 8 2+1
1 afofh P27 €COS(2h15 — 2¢h59) + 1 afg’ﬁ A1P27 SN2 — 2¢h50) + 1 a%o’h 15028 SIN2P15 — 2¢h50)
8 A4+ 8 A2+ 8 (A2+1)(A2+1)
1 afo’h 1y A1 P28 COS(21o — 2¢h50) 1 afo"h M2A1P28 1 afo’ﬁ’?zﬂzpzscos(Z(f’m = 2¢hy)
8 (AZ+DA3+1) 4R2+ND(A3+1) 8 (AB+DA2+1)

o 190ty Aops SinQepro — 2¢o)

8 (AZ+DA3+1)
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09, 1 1 1 a$0b10’712/’24 €OS(2¢h19 — 2¢py)
o = Zafobm/l cos(2¢1o — 2¢50) + Zafobmpzz €010 = 2¢20) — 5 T
1 a70b101; 21 9245IN(2¢10 — 2¢p) + 1 07b10M; 41924 COS(210 = 2b30) 1 G33b10M2P265IN(2h10 — 26h30)
2 (A2 4+1)2 4 (A24+1)2 4 A+
1 a70b1012 4226 COS(2h10 — 2¢b0) + 1 05,0101 9275IN(2¢10 — 2¢p0) + 1 a5,b1011 41 P27 COS(2eh10 — 20020
4 5 +1 4 R 4 P
1 afobm’h M2P28 COS(2¢h10 — 2¢0) 1 afobm’ﬁ 1241 P288IN(2¢p15 — 2¢h50) + 1 afobm’ﬁ M2420285IN(2¢10 — 2¢h50)
4 (Z+DA3+1) 4 (AZ+DA3+1) 4 (AZ+DA3+1)
1.a3,010M 12 A1 A P25 COS(2¢h10 — 26h5)
4 A2+ 1)(A2+ 1) '
99, 15 15 1 a$0b1o’71zpz4 Cos(2¢h19 — 2¢py0)
. = Zamb]oﬂ €os(2¢g — 2¢50) — Zawbmp22 €cos21o — 2¢h50) + 1 (lf Ty
1 351017 41924 SIN10 = 26b30) 1 a3ob1017 43 P24 COS(2eh10 — 2¢020) + 1 351012026 SINRb1o = 26h30)
2 (22 +1) 4 (22 +1) 4 A+
1 a34b10M2 4226 COS(2h10 — 2¢030) 1 3501011 P27 SINRb1o = 26h30) 1 3501011 2127 COS(2h10 — 26h30)
4 A+ 4 A2 +1 4 A2+
1 afobm’ﬁ 2028 COS(2¢h15 — 2¢h50) 4 1 a$0b1o’71 241 P28 SIN(2¢h1g — 2¢hyg) 1 a$0b1o’71 N2 A2P28 SIN215 — 2¢hy0)
4 2+ D2 +1) 4 R+ D2 +1) 4 R+ D2 +1)
a2 b,,a2bi, 1, Ay Ay pog COS(2¢h10 — 2¢h50)
1 %0%0 11241 42P28 10 20 +1E925in(¢20),
4 2+ D2 +1) 2
9 ofl; P 1ot 4 Q1o A
9 __3 ol 1 %ofl1 P13 3 difi 4113 +§ 101141015 +§a10p19+ 1 EQ? cos(¢hry),
day; 4 4(24+1)2 4 (A2+1)2 4 (A+1 4 2a3,
dg; _ 1 1 1 1 1610343014
b = 76104 = gbz/l COS(2¢h1 — 2¢059) + Ebwbzpu + 2010012 €021 = 20h30) + PRTEET
1 b1o'l§P14 1 b1o’1§P14 CoS(2¢h19 — 2¢hy0) 1 b10’7§ﬁzp14 SiN2¢p19 — 2¢py0)
2(5+1)2 4 (A3+1) 2 (A3+1)
1 bmngﬂ%pm COs(2h19 — 2¢h30) 1 b1omm 41916 1 b1ty A1 P16 COS(2¢15 — 2¢h3)
4 (A2+1) 2 (3+1) 4 (22 +1)
1010m19165IN(2¢10 — 2¢29) 1 b1gMaAyp17 1 bighyAypi7 COSQRebrg — 2¢h0)
4 (A2+1) 2 (5+1) 4 (AB+1)
_ 1 bygmapr75inQ2ig — 2¢59) 1 byomimaAiAypig + 1 b1gmny 41 4yp15 COSQb1g — 2¢05)
4 (A2+1) 2(3+D(A3+1) 4 A+ +1)
1 019Mm13018 COSQ2h10 — 2¢50) 1 b1gMi712 41918 SINR1g — 2¢05) + 1 b19M My 42015 SINRe1g — 2¢by)
4 (Z+D(A2+1) 4 (AZ+D(A2+1) 4 (AZ+D(A2+1)
SN Applied Sciences

A SP|

RINGER NATURE journal



SN Applied Sciences (2022) 5:41 | https://doi.org/10.1007/542452-022-05245-z Research Article

2.2
aa(p% =%bfoi SiN2¢1g — 2¢hy0) — ‘l‘bfoﬂu SiN2¢1g — 2¢hy) + %bm%pm(s,{l;(jf;g )
162013 22014 COSQRep1g — 2¢030) 1 315 A3p14 SINCOS(2eh10 — 20050) 1 b2y A1 p1 SIN(2D10 — 2by)
2 (2 +1) 4 (2 +1) 4 A2+ 1)
+ 1 bl P16 COS(210 — 2630) 1 b2 4217 SN0 — 26030) 1 blo2017 COS(2h10 = 2¢30)
4 (A2+1) 4 (2+1) 4 Z+1)
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1 0301171242015 COS(2h10 — 2h3q) 1 .
2 10 ) zamEQ2 sin(éqo),
2.2
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1 b3 111916 COSQ2eh10 — 26h50) + 1 b3 g2 A2017 5IN(210 = 2¢b) + 1 bl 12017 COSQ2eh10 — 26h50)
4 (G2 +1) 4 2+ 1) 4 (2+1)
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2
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1 010’712/’24 1 ‘1107112/’24 CoS(2¢19 — 2¢b50) 1 010’712'{1 P24 SIN(2¢h15 — 2¢h59)

5(,1%.,.1)2_2 (A241) T2 (A241)

1 o1y A7 P24 COS(2¢h10 — 26b30) L1 107242026 L1 Ay0M3 42926 COS(2h10 — 2¢h30)

4 (43 +1)2 2 (Z+1) 4 (2+1)
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0 bio3p bygnz A2p by A
94 3 1 9105023 3P10M545P23 | 3 DyoMa42P55 +%b10p29— 2;2 Estin(cbzo).
10

= + -
oby 47T T AQZE12 4 (2412 4 (2H+1)
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1 1
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