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Abstract
The failure of rolling bearings affects the function and precision of rotating machinery significantly, which has drawn lots 
of attention in this field. Dealing with the failure of rolling bearings, fault feature extraction is the first and most important 
problem. In this work, we convert the bearing fault signal into stochastic resonance dynamics equivalently. And, adaptive 
stochastic resonance is adopted to extract the fault signal feature. In addition, for industrial application of fault signal 
processing with large amplitude and noise intensity greater than 1, normalized scale transformation is introduced into 
adaptive stochastic resonance and then solved by fifth-order Runge–Kutta algorithm. Then, to further optimize the solv-
ing precision of stochastic resonance model, the scaling coefficient and step size of Runge–Kutta algorithm are chosen 
with the help of Grey Wolf Optimizer (GWO). Thus, we can obtain a fast convergence speed, high calculation accuracy and 
effective improvement of signal-to-noise ratio fault feature extraction method for rolling bearing fault signal processing. 
Finally, a comparation simulation was carried out to demonstrate the efficiency of the proposed method. Compared with 
Cuckoo Search Optimizer-based stochastic resonance signal processing method, the proposed method achieved a higher 
signal-to-noise ratio (SNR) to benefit the fault feature extraction. In summary, this work gives out a more practical and 
effective solution for rolling bearing fault feature extraction in rotating machinery fault diagnosis field.
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Article Highlights

1. Grey Wolf Optimizer (GWO) is applied to optimize the 
stochastic resonance model resolution parameters. 
Compared with Cuckoo Search optimization algo-
rithms, GWO gains the advantages of fast convergence 
speed and high calculation accuracy.

2. With the help of GWO optimization algorithm, we 
obtain a significant improvement of signal-to-noise 
ratio fault feature extraction method for rolling bear-
ing fault feature extraction.

3. By combining adaptive stochastic resonance, Runge–
Kutta algorithm and GWO, the fault feature can be 
extracted efficiently.
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1 Introduction

With the rapid development of manufacturing and elec-
tronic industry, the function and precision requirements 
of rotating machinery are increasingly improved, and 
the structure is more and more complex. In this sense, 
the safety, reliability and fault diagnosis requirements of 
rotating machinery are improved seriously. According to 
relevant data analysis, 40% of rotating machinery failures 
are caused by the failure of rolling bearings [1]. Once the 
failure of rolling bearings occurred, all kinds of losses is 
immeasurable, it is of great significance to carry out state-
based detection and fault diagnosis of rotating machinery 
[2]. The acquisition and processing of fault signals is one 
of the important steps to realize the fault monitoring and 
diagnosis of rotating machinery. The collected bearing 
fault signal is a particularly sensitive random signal. Gen-
erally, the processing of bearing fault signal includes fault 
diagnosis, residual life estimation and reliability analysis 
[3]. Among the three preventive measures of faults, the 
most important is the early diagnosis of bearing faults, 
which can be divided into three steps, as shown in Fig. 1.

As the most critical part of bearing fault diagnosis, the 
acquisition signal-based fault signal feature extraction 
method has attracted a lot of attention, such as Kalman 
filter [4], collections, empirical mode decomposition and 
combined fault feature extraction of band entropy [5], the 
kurtosis optimization variational mode decomposition of 
fault feature extraction [6], smooth cycle analysis [7], etc..

However, most of the aforementioned methods focused 
on the purpose of noise elimination. There are some prob-
lems to be overcome, such as poor accuracy, uncertain 
parameters, and difficulty in extracting early weak faults 
with strong interference components. Different from other 
denoising methods, Benzi et al. [8] proposed a stochastic 
resonance model, in which the noise signal was adopted 
to extract fault signal features. In addition, Professor Hu 
Niaoqing introduced normalized scale transform into sto-
chastic resonance model to deal with early fault detec-
tion of rotating machinery [9]. Furthermore, stochastic 
resonance has a variety of steady-state models, such as 
monostable, bistable, trustable and multi-stable. In [10], 
Woods-Saxon potential function was combined with 
stochastic resonance to optimize the bistable stochastic 
resonance model. Thus, as bistable system can be widely 

applied to multi-steady state, matched steady state and 
more complex systems, the research on bistable system 
became a hot spot.

While, restricted by the adiabatic approximation 
hypothesis, stochastic resonance is only applicable to 
feature extraction of small signals with input signal 
amplitude and noise intensity less than 1. Fortunately, 
Leng Yonggang proposed the quadratic sampling sto-
chastic resonance technology in 2002, which extracted 
the weak signals from strong noises under the condition 
of large parameters of adiabatic approximation theory 
[11]. In addition, Li et al. proposed a new frequent-shifted 
multi-scale SR method for weak signal detection of wind 
turbines, which can realize weak signal detection at any 
frequency [12]. Through frequency translation and scal-
ing, Tan Jiyong proposed the frequency shift rescaling 
stochastic resonance (FRSR) method by alleviating the 
contradiction between sampling frequency and number 
of sampling points [13].

To be honest, during the process of SR model solving, 
different model parameters result in various and subop-
timal solution. Then, the adaptive stochastic resonance 
model is proposed, which is a multi-dimensional and 
multi-parameter continuous optimization problem. In 
2013, Zhu Weina et al. used artificial fish swarm algorithm 
to adjust the stochastic resonance system parameters of 
the bistable system, so as to achieve the generation of sto-
chastic resonance effect and the enhancement of charac-
teristic signals [14]. In 2014, Li Yibo used quantum particle 
swarm optimization algorithm to optimize system param-
eters and transformed the adaptive stochastic resonance 
problem into a multi-parameter parallel optimization 
problem in [15]. In 2018, Chi Kuo carried out a research on 
the application of Cuckoo Search (CS) algorithm to sto-
chastic resonance parameter optimization. Cuckoo Search 
algorithm has brought many applicable effects in medi-
cal, measurement, electronic information, aerospace and 
other fields [16].

Among the optimal algorithm mentioned above, how to 
avoid falling into local optimal solution is always the main 
concern. Focusing on this issue, Seyedali Mirjalili proposed 
the Gray Wolf Optimization (GWO) algorithm in 2014 [17]. 
Recently, Pan Chengsheng proposed a K-means text cluster-
ing method by developing GWO [18]. Furthermore, GWO has 
demonstrated to gain a strong global search ability charac-
teristic than above mentioned methods [19].

Obtaining state information of 
rolling bearing

(Signal acquisition)

Removing noise and extract 
fault information

(Feature extraction)

Extracting and recognizing 
fault feature information

(Pattern recognition)

Fig. 1  Bearing fault diagnosis process
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Aiming at the problems of adaptive stochastic reso-
nance parameter uncertainty, poor calculation accuracy, 
multi-dimensional and multi-parameter continuous opti-
mization in realistic industrial rolling bearing fault signal 
feature extraction, we propose a rolling bearing fault 
feature extraction method based on GWO-optimized 
adaptive stochastic resonance signal processing method. 
Compared with previous research, the proposed method 
gains the advantages of higher computational speed and 
global optimal solution during optimization, and then a 
higher signal-to-noise ratio in rolling bearing fault signal 
feature extraction. In Sect. 2, the bistable SR is introduced, 
and then the SR of large parameter signal is realized by 
normalized scale transformation. In Sect. 3, the SNR fitness 
function is established to evaluate stochastic resonance 
output effect. And also, the theory of GWO algorithm, the 
calculation diagram and the technical flow of the pro-
posed method are described. In Sect. 4, we introduced an 
inner race fault data set to verify the performance of the 
proposed method. Meanwhile, CS-based stochastic reso-
nance signal processing method was adopted in inner race 
fault signal feature extraction for comparison. Finally, in 
Sect. 5, we drawn the conclusions from the proposed bear-
ing fault feature extraction method.

2  Stochastic resonance theory and scale 
transformation

Stochastic resonance has monostable, bistable, tri-stable, 
multi-stable and other steady-state models. Classical bista-
ble stochastic resonance model is the most studied and 
most in-depth nonlinear system model. Bistable system 
can be widely applied to multi-stable, matched steady 
state and more complex systems. Therefore, we chooses 
classical bistable model for study and analysis.

2.1  Basic principle of stochastic resonance

The bistable system subjected to random uncertain sig-
nals and external disturbances can be expressed by the 
Langevin equation [9]:

here, x(t) is the output of the bistable stochastic reso-
nance system, U(x) is nonlinear bistable situation func-
tion, S(t) = Af

(
2�fdt + �

)
 , is the analog deterministic 

signal, f
(
2�fdt + �

)
 is the deterministic sine of frequency 

fd and amplitude A of 1, � is the phase of the signal. Let 
N(t) =

√
2D�(t) represents the Gaussian white noise, 

where the noise intensity is denoted by D , and �(t) is the 
standard Gaussian white noise.

Nonlinear bistable situation function U(x) is as follows:

(1)ẋ(t) = −U̇(x) + S(t) + N(t)

The output state of the bistable system is similar to the 
motion of a particle between bistable potential Wells 
(Fig. 2). When x = ±

√
a

b
 , U(x) obtains the minimum barrier 

height −ΔU , and ΔU =
a2

4b
 . It can be deduced from Eq. (1) 

that:

If the intensity of the applied noise is appropriate and 
the particle achieves good coordination with the periodic 
driving force according to the Kramers transition rate rk 
transition between the two barriers, the random transi-
tion motion between the two potential Wells become an 
ordered transition motion consistent with the frequency 
of the periodic modulated signal, and the stochastic reso-
nance occurs.

2.2  Normalized scale transformation

Limited by the adiabatic approximation hypothesis, sto-
chastic resonance is only applicable to feature extraction 
of small signals with input signal amplitude and noise 
intensity less than 1. In practice, when bearings fail, the 
output signals are large signals with amplitude and noise 
intensity greater than 1. In order to transfer the collected 
fault signals into the stochastic resonance model for 
effective extraction, the normalized scale transformation 
is introduced [9]. The normalized scale transformation is 
detailed in the following content.

When a > 0, b > 0 and a, b are real numbers, assuming 
z = x

√
a

b
, � = at , Eq. (3) can be transformed to Eq. (4):

(2)U(x) = −
a

2
x2 +

b

4
x4 ⋯ a > 0, b > 0

(3)ẋ(t) = ax − bx3 + A(2𝜋fd + 𝜓) +
√
2D𝜀(t)

Fig. 2  Potential function of nonlinear bistable system
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By assuming the scaling coefficient K =

√
b

a3
 , the step 

size H = a∕fs
 , where fs is the sampling frequency, z is the 

stochastic resonance output and z(1) = 0 , then Eq. (4) can 
be solved by fifth-order Runge–Kutta algorithm with a 
high precision 0.

2.3  Adaptive stochastic resonance parameter 
optimization based on Gray Wolf algorithm

In order to extract characteristic signals effectively, the 
collected bearing fault signals are input into the stochas-
tic resonance model for normalized scale transforma-
tion. Since the transformation coefficient K  and step size 
H affect the stochastic resonance output z significantly, 
we applied GWO algorithm in the process of normalized 
scaling to obtain a higher SNR of output signal z. When 
the optimized parameters, noise intensity and nonlinear 
system are coordinated, the stochastic resonance output 
is effective, the characteristic frequency pulse is promi-
nent, thus the fault characteristic signal can be effectively 
extracted.

Since the larger the signal-to-noise ratio is, the better 
the output of stochastic resonance is, then SNR is adopted 
as the objective function of stochastic resonance output. 
The SNR is expressed as follows:

In Eq. (5), Ad is the amplitude of periodic signal, and Au 
is the amplitude of noise signal.

3  Grey Wolf Optimization algorithm

H and K  parameters mentioned in Eq. (4) are very sensitive 
to the results of differential equations and directly affect the 
output of stochastic resonance. Particle swarm optimization, 
Genetic algorithm, Firefly algorithm, Ant colony algorithm 
and other algorithms are commonly used to solve the prob-
lem, but the above methods have long computing time, low 
computing accuracy, easy to fall into local optimal and other 
problems. Literature [16] compares these optimization algo-
rithms with CS algorithm on parameter optimization, but 
the cuckoo algorithm still suffers from shortcomings such 
as optimization ability, convergence accuracy and calcula-
tion speed that need to be improved. In view of the good 
performance of the GWO algorithm, which can address the 
above problems properly, we adopts the GWO algorithm to 

(4)ż(𝜏) = z − z3 +

√
b

a3

[
Af

(
2𝜋fd

a
𝜏

)
+ N

(
𝜏

a

)]

(5)SNR = 10 log

(
Ad

Au

)

optimize the parameters H and K  in solving Eq. (4), in which 
Eq. (5) was taken as the object function in GWO.

3.1  Calculation principle of Gray Wolf algorithm

Gray wolves are at the top of the food chain, living in packs 
of 5 to 12 on average, and have a strict pyramid hierarchy. 
The gray wolf pyramid ranks �, � , �,� from top to bottom. 
Wolves search, surround and hunt prey by the first wolf � , 
the second and third wolves of the pyramid, and the bottom 
wolf � assists in hunting [17].

The predation process of gray wolves was transformed 
into a functional optimal solution to solve the problem. The 
distance between the individual wolf and its prey when the 
wolf is searching for prey is indicated as follows:

The prey position vector is represented by �p(t) , the gray 
wolf position vector is �(t) , the distance between the indi-
vidual gray wolf and the prey is indicated by R , and t  is the 
number of iterations. The synergy coefficient of vector are 
represented by A and C , respectively. Then, we have

In the process of hunting, the value of convergence fac-
tor a decreases linearly from 2 to 0, and the value range of 
random vector �1 and �2 is [0, 1].

When the prey is surrounded, the position of the prey is 
determined according to the position of the wolves in the 
first three layers of the pyramid. And the distance between 
wolf � and the optimal wolf �, � , � is estimated respectively 
to update its position. The distance between � and the opti-
mal ones is as follows:

After the distance between � wolves and optimal ones 
is obtained, the individual positions of gray wolves are 
updated:

(6)R =
|||CXp(t) − X (t)

|||

(7)�(t + 1) = �p(t) − ��

(8)A = 2ar1 − a

(9)C = 2r2

(10)

⎧⎪⎨⎪⎩

R� = ��C1X� − X ��
R� =

���C2X� − X
���

R� =
��C3X� − X ��

(11)

⎧⎪⎨⎪⎩

X1 = X� − A1R�

X2 = X� − A2R�

X3 = X� − A3R�
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The process of gray wolf attacking prey was simulated 
by the random variable A decreasing linearly from 2 to 0 
during the iteration. When A ≤ 1 , gray wolves begin to 
attack prey, and the optimal solution is obtained through 
convergence [17].

3.2  Parameter optimization of Gray Wolf algorithm

There are mutual effects among parameters such as 
step size and scale transformation factor. In this paper, 
the parameters of stochastic resonance are adjusted to 
achieve coordination with the system and noise intensity, 
so as to achieve the best effect of stochastic resonance 
output. In this paper, GWO was used to optimize the sto-
chastic resonance parameter step size and scale transfor-
mation factor. Therefore, we can find the best matching 
value of the two parameters, improve the output SNR, 
and facilitate the extraction of stochastic resonance out-
put characteristic frequency. Parameter setting of GWO: 
population number is 20, the number of population is 2.

As can be seen from Fig. 3, as the value of H and K  
decreases, the output SNR becomes larger. Furthermore, 
the continuous adjustment and optimization of parame-
ters H and K  are conducive to the synergistic effect among 
the parameters of the nonlinear system, the intensity of 
noise and the nonlinear system, which demonstrates the 
stochastic resonance phenomenon.

The calculation steps and technical flowchart of rolling 
bearing fault feature extraction based on GWO algorithm 
adaptive stochastic resonance are as follows (Seen from 
Fig. 4).

(1) GWO is initialized to determine the number of 
iterations, the number of gray wolf population, the 

(12)�(t + 1) =
1

3

(
�1 + �2 + �3

) dimension of variables and the optimization range 
of parameters H and K .

(2) Initialization of the optimal fitness value. According 
to Eq. (7), the fitness values corresponding to wolf 
individuals are calculated. The SNR of the largest gray 
wolf individual is calculated as the global optimal fit-
ness value, and the top three wolves with the best 
fitness are preserved.

(3) Update the optimal fitness value. According to 
Eq. (12), update the current gray wolf position, update 
the convergence factor and cooperation coefficient 
vector, and recalculate the fitness value of the indi-
vidual gray wolf. If the fitness value of the current 
individual gray wolf is better than that of the previ-
ous generation, then the updated current individual 
gray wolf is the global optimal fitness value.

(4) Obtain the final optimal search results of parameters 
H and K  according to the gray wolf individuals cor-
responding to the global optimal fitness value of the 

Fig. 3  Influence of GWO on output SNR after optimization of 
parameters H and K Fig. 4  Flowchart of GMO-SR algorithm



Vol:.(1234567890)

Research Article SN Applied Sciences            (2023) 5:31  | https://doi.org/10.1007/s42452-022-05241-3

final output, and input the optimal search results of 
parameters into the stochastic resonance model for 
feature extraction of the collected signals.

4  Example verification results 
and discussion

In order to verify the feasibility and effectiveness of the 
method proposed in this paper, common bearing inner 
race wear faults (as shown in Fig. 5) are introduced, and CS 
and GWO are respectively used for comparative analysis.

Experimental data were collected from the bearing fail-
ure data set collected in 2012 by Dr. Eric Bechhoefer, chief 
engineer of NRG system, on behalf of MFPT [20]. Bearing 
data and bearing working conditions are shown in Table 1.

4.1  Bearing fault signal calculation analysis 
and parameter optimization comparative 
analysis

Different from other noise elimination feature extraction 
methods stochastic resonance model is a feature extrac-
tion method of fault signal based on noise. Noise inten-
sity is one of the factors that directly affect the output of 
stochastic resonance model. Since the original signal of 
bearing fault collected contains a lot of background noise, 
in order to make better use of noise intensity and make the 
output of the stochastic resonance model more condu-
cive to fault feature extraction, the signal is pre-processed 
and filtered before the bearing fault signal is input into 
the stochastic resonance model. Multipoint Optimal Mini-
mum Entroy Deconvolution Adjusted (MOMEDA) [21, 22] 
was used for the pre-processed method. The characteris-
tics and advantages of the noise reduction effect of this 
method have been analyzed in [22]. MOMEDA is a method 

proposed by McDond [21] in 2017 to solve the deconvo-
lution problem and solve the optimal filter by obtaining 
an infinite pulse sequence as the target. Filter length and 
test period are the parameters of MOMEDA. In [22], they 
obtained the parameter optimal filter length setting and 
the best value of test period through calculation and 
analysis. The parameters are set as follows: Filter length 
L = 1000, test period T = 70.

Fig. 6 show signal waveform and spectrum after MOM-
EDA preprocessing and filtering, respectively. As shown 
in spectrum diagram, there are many harmonics near the 
high frequency in the frequency band of 0–300 Hz, and the 
fault signal is submerged in the harmonic signal and can-
not be extracted. The signal needs to be processed in the 
next step, and the filtered signal is input into the stochastic 
resonance model for fault feature signal processing.

In addition to noise intensity, the transformation coef-
ficient K  and the step size H are also one of the factors 
affecting the feature extraction of the stochastic resonance 

Fig. 5  Bearing inner race wear failure

(a) Waveform after noise reduction

(b) Spectrum diagram after denoising
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model. In [16], CS algorithm was used to optimize the sto-
chastic resonance parameters H and K  . Based on this study, 
GWO algorithm was applied in this paper to optimize the 
stochastic resonance parameters H and K .

After MOMEDA noise reduction filtering, the signal is 
transformed into the bistable SR model, and the maximum 
SNR is searched by CS and GWO, respectively. Consider-
ing the influence of the parameters, maximum iteration 
time and cycle of the two algorithms, we set the maximum 
iteration cycle was the same in both optimization algo-
rithm during the calculation and analysis. The maximum 
iteration time was set as 100, the population dimension 
was set as 2, and the number of the population was set 

as 20. CS and GWO optimization parameter settings are 
shown in Table 2.

Then, the iteration of the two above mentioned algo-
rithms was analyzed and compared. The fitness conver-
gence curves of the two optimization algorithms under 
the same conditions are shown in Fig. 7. It can be seen 
from the CS iteration curve in Fig. 7A that, at the beginning 
of optimization, it is linear and straight. When the num-
ber of iterations was 2, it fell into a local optimum, then 
converged when the number of iterations is 25. While in 
Fig. 7B, at the beginning of optimization, the curve varies 
linearly and then converged at 20. By comparative analy-
sis, we know that the convergence curve of GWO is steep 
and the convergence speed is fast. Compared with CS 
algorithm, GWO algorithm achieves better performance 
in searching the optimal global solution.

As shown in Table 3, The multipoint peak Kurtosis is rep-
resented by Mkurt. SNRin and SNRout represent the input 
SNR and the output SNR respectively. Within the same 
maximum number of iterations, the calculation time of 
GWO is 15 s, which is faster than that of CS optimization. 
The SNR of CS algorithm is 70.87%, while 72.01% for GWO. 
There is an obvious improvement in convergence speed. 
In a word, compared with CS algorithm, GWO gains higher 
computational speed, better performance in searching the 
optimal global solution, and also higher signal-to-noise 
ratio (Tables 2, 3).  

4.2  Feature extraction of bearing fault signals

In order to verify the advantages of GWO algorithm in 
parameter optimization and the practicability of the pro-
posed method in feature extraction of fault signals, we 
uses the CS-optimizer and GWO-optimizer algorithms to 
calculate and analyze the optimal solution of stochastic 
resonance parameters H and K  in coordination with non-
linear system and noise intensity to extract bearing fault 
signal.

GWO and CS parameter optimization algorithms were 
respectively used for comparative analysis of characteristic 
signal processing calculation of bearing inner race.

Figure 8 shows waveform diagram and spectrum dia-
gram calculated by SR, and compared with Fig. 6 after 
noise reduction of vibration signal. Both optimization 
methods reduce noise and enhance the characteristic 

(a) Iteration curve of CS-optimizer

(b) Iteration curve of GWO-optimizer
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Fig. 7  Iterative curves of CS and GWO search algorithms [20]

Table 1  Bearing data and bearing working conditions

Bearing data Bearing operating conditions Bearing inner 
race fault 
characteristic 
frequency (Hz)

Roller 
diameter(mm)

Pitch 
diameter(mm)

Number of 
rolling bodies

Contact 
Angle

Load (lb) Input shaft 
speed (Hz)

Sampling fre-
quency (Hz)

The sampling 
points

5.969 31.623 8 0 50 25 16,276 6000 117
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frequency of characteristic signal. Waveform diagram 
and spectrum diagram after CS-SR model processing are 

shown in Fig. 8A. It can be found that CS-SR model sup-
pressed noise and highlighted fault signal characteristic 
frequency, but there were many harmonics, and there 
were many pulses with similar amplitude to character-
istic frequency in harmonics, which easily affected the 
extraction effect of characteristic frequency.

Figure 8B demonstrates the GMO-SR signal process-
ing diagram, in which the characteristic frequencies 
are highlighted and the low-frequency signals are few, 
and the characteristic signals are amplified. Thus, the 
superiority and practicability of the proposed methos 
is verified.

5  Conclusion

In this paper, we proposed a Grey Wolf Optimizer based 
adaptive stochastic resonance signal processing algo-
rithm for rolling bearing weak fault feature extraction 
problem. The main advantage of the proposed method 
are high computational speed, signal-to-noise ratio and 
global optimal solution. To our best knowledge, these 
properties are essential for industrial applications, espe-
cially for large amplitude and noise intensity in roll-
ing bearing fault signals or defect detection vibration 
signals.

While, whether the method can be applied to other 
noisy environments or composite fault detection is out 
of the scope of this work, which are the issues to be 
explored in future. In another opinion, machine learn-
ing method, such as Support Vector Machine (SVM) and 
Gaussian Process Regression (GPR), may carry out a more 
satisfying result as the good performance demonstrated 
in [23, 24]. In addition, the possible scheme for the com-
pound fault sceneries, we could process the fault signals 
independently.

Table 3  Optimization results 
and related parameters of CS 
and GWO algorithms

Algorithm Maximum 
iteration

Population Mkurt Used time/s SNR
in

SNR
out

Improved SNR/%

CS 100 20 0.6311 31 -54.9226 -16.1154 70.87
GWO 100 20 0.6311 18 -54.9226 -15.3705 72.01

(a) Time-frequency diagram of CS-SR signal output
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Fig. 8  Spectrum diagram of CS-SR and GWO-SR signal output

Table 2  CS and GWO 
optimization parameter 
settings

Optimization 
algorithm

The number of 
population

The number 
of iterations

Variable 
dimension

Invariant 
probability

Crossover 
probability

Extraneous 
discovery 
rate

CS 20 100 – 0.7 0.5 0.25
GWO 20 100 2 – – –
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