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Abstract
The main contribution of this study is to present a unique new mathematical model of photo-thermoelastic interactions 
with Hall current effect in an infinite semiconducting solid sphere due to high magnetic field acting along its axis. A 
variable heat flux is applied to the boundary surface of a solid semiconductor sphere. A generalized modified Moore-
Gibson-Thompson-Photo-Thermal (MGTPT) theory is used to express the governing equations. In the Green Nagdhi (GN 
III) model, a thermal relaxation parameter and carrier density parameter is introduced to obtain the new modified Moore-
Gibson-Thompson equation (MGT). This mathematical model is solved using Laplace’s transforms. Various components of 
displacement, thermodynamic temperature, conductive temperature, carrier density and axial stress as well as couple stress 
are obtained in the transformed domain. To get the solution in physical domain, numerical inversion techniques have been 
employed. The effect various thermoelasticity theories and Hall current is shown graphically on the physical quantities.

Article highlights

•	 A novel mathematical model of semiconducting solid 
sphere under a high magnetic field is presented.

•	 The medium is exposed to variable heat flux at its 
boundary surface.

•	 Dynamic response of Moore-Gibson-Thompson-Photo-
Thermal theory and Hall Effect is investigated.

•	 The effects of Hall Effect and various model of thermoe-
lasticity on all physical fields are studied and illustrated 
graphically.

Keywords  Hall current · Semiconducting sphere · Modified Moore Gibson Thompson heat transfer · Laplace’s 
transforms
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�n	� Electronic deformation coefficient
Kij	� Coefficient of Thermal conductivity
dn	� Coefficient of electronic deformation
�ijk	� Permutation symbol
H(t)	� Heaviside function
�0	� Electrical conductivity
ne	� Electron number density
me	� Electron mass
�0	� Magnetic permeability
�,�	� Lame’s elastic constants
�	� Photo-generated carrier lifetime
N	� Carrier density
�	� Medium density (kg m−3)
ekk	� Cubical dilatation
Ji	� Conduction current density tensor
Eg	� Energy gap of the semiconductor parameter
t 	� Time
Ω	� Angular frequency
Fi	� The body force
K∗
ij

	� Material constant
m	� Hall Effect parameter
eij	� Strain tensors (mm−1)
�	� Coupling parameter for thermal activation
H0	� Magnetic field
ui	� Components of displacement (m)
sv	� Surface recombination velocity
ce	� Electron charge
te	� Electron collision time
Ei	� Intensity tensor of the electric field
Ce	� Specific heat at constant strain
�ij	� Stress tensors (N m−2)

1  Introduction

With the advancement of the technology, the size of the 
components of Microelectronic devices is continuously 
reducing. More and more components are fabricated on 
the small semiconducting crystal chip. By using a sphere-
shaped semiconductor integrated circuit, it is possible to 
utilize the semiconductor material (SM) more efficiently. 
A semiconductor with a spherical shape provides more 
surface area for a circuit to be fabricated. Semiconductor 
spheres could reduce the cost of manufacturing integrated 
circuits by 90% by replacing clean rooms with hermetically 
sealed tubes and by reducing the processing cycle time 
from months to days. Microprocessor manufacturers have 
invested on large scale in the production of large silicon 
crystals. When a semiconductor crystal is irradiated with an 
excitation laser, standard approaches can be used to deter-
mine the amount of light it emits. SM contribution to tech-
nological advancement was recently demonstrated when 

they were used to generate electrical energy from sun-
light, even when irradiated to laser light. SM are used to 
fabricate the solar cell to generate the alternative energy 
sources. Moreover, in the field of electronics and electrical 
engineering, SM have been used for nanomaterials. In the 
current industry, they can be used for a variety of things, 
such as VLSI, solar cells, etc. The resemblance between 
thermoelasticity and photothermal equations has been 
described using numerous mathematical models.

A growing interest in semiconductor nanostructures 
has been observed among researchers working in nano-
technology. Further, it is impossible to fully investigate 
semiconducting micro/nano-devices without studying the 
thermoelasticity, as according to thermoelasticity, the SM 
can be classified as elastic materials. A number of theoreti-
cal models have been examined to determine how pho-
tothermal equations relate to thermoelasticity. The clas-
sical uncoupled thermoelasticity theory was introduced 
by Duhamel [1]. Two limitations are associated with this 
theory. Firstly, the state of elastic materials is independ-
ent of temperature. Furthermore, as a consequence of 
the parabolic heat equation, it expects that temperature 
travels at an infinite speed, again in conflict with physical 
experimentation. Biot [2] gave coupled thermoelasticity as 
a solution to these problems. This theory relates equations 
of heat conduction to elasticity equations. Despite this, 
this theory only predicts heat waves propagating at an 
unlimited speed. When a temperature gradient is abruptly 
imposed on a homogeneous and isotropic medium, Cat-
taneo [3] and Vernotte [4, 5] propose a broader form of 
Fourier law that incorporates a relaxation time to define a 
steady state, as follows:

Lord and Shulman [6] then presented a generalized 
theory of thermoelasticity with one relaxation time for an 
isotropic body. The heat equation is hyperbolic in this the-
ory, therefore, temperature propagates at a finite speed. 
Subsequent, Green and Lindsay [7] gave a more accurate 
interpretation of thermoelasticity that demonstrated the 
linear heat conduction tensor symmetry. Dhaliwal and 
Sherief [8] gave the comprehensive thermoelasticity equa-
tions for an anisotropic medium, Conversely, Green and 
Naghdi [9–11] introduced “the linear and the nonlinear 
thermoelastic theories with and without energy dissipa-
tion” and expanded the Fourier law as

Based on entropy equality, they proposed three new 
thermoelastic theories. Their theories are known as 

(1)
(
1 + �0

�

�t

)
q = −Kij∇�,

(2)q = −Kij∇T − K∗
ij
∇𝜗, 𝜗̇ = T .
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the thermoelasticity theory of type I, the thermoelas-
ticity theory of type II (i.e., thermoelasticity without 
energy dissipation), and the thermoelasticity theory 
of type III (i.e., thermoelasticity with energy dissipa-
tion). On linearization, type I becomes the classical 
heat equation whereas on linearization type-II, as 
well as type-III theories, give the finite speed of ther-
mal wave propagation.

In recent years, numerous academic works has been 
carried out to analyze and explain the MGT equation. A 
3rd-order differential equation that is vital to several fluid 
dynamics is the basis of Lasiecka and Wang [12] theory. 
Quintanilla [13, 14] created a unique heat conduction 
model using the MGT equation with 2 T. The MGT theory 
states that the modified Fourier law as

Linear thermoelastic deformations of dielectrics were 
explored by Fernandez and Quintanilla [15]. Assume that 
a SM is irradiated to an external laser beam, which causes 
excited free electrons with semiconductor gap energy Eg 
to form a carrier-free charge density. Electronic distortion 
and elastic vibration change as a result of optical energy 
absorption. In this occurrence, thermal-elastic-plasma 
waves will have an impact on heat conductivity equations. 
The expanded definition of the modified Fourier law for 
SM with plasma impact is as follows:

By differentiating the Eq. (4) w.r.t. �⃗x  , yields

Kaur et al. [16] examined the semi-conducting solid 
cylinder exposed to exponential laser pulse with MGTPT 
and Hall current effect. In addition to these, Gupta et al. 
[17–19], Craciun et al. [20, 21], Kaur and Singh [22, 23], 
Kaur et al. [24], Tiwari and Mukhopadhyay [25], Kaur et al. 
[26], Tiwari et al. [27, 28], Marin et al. [29], Gupta et al. [30, 
31], Kumar et al. [32] also done studies on the Hall current 
effect and other theories of thermoelasticity. The literature 
survey revealed, however, that no research had been done 
on the transient examination of a semiconductor sphere 
exposed to ultrashort pulsed laser heating and photogen-
erated plasma under the Hall Effect.

In this research, we have undertaken transient exami-
nation of a semiconductor sphere exposed to ultrashort 

(3)
(
1 + 𝜏0

𝜕

𝜕t

)
q = −Kij∇T − K∗

ij
∇𝜗, where 𝜗̇ = T .

(4)

(
1 + 𝜏0

𝜕

𝜕t

)
q = −Kij∇T − K∗

ij
∇𝜗 − ∫

EgN

𝜏
dx, where 𝜗̇ = T .

(5)

(
1 + 𝜏0

𝜕

𝜕t

)
∇.q = −∇.

(
Kij∇T + K∗

ij
∇𝜗

)
−

EgN

𝜏
, where 𝜗̇ = T .

pulsed laser heating and photogenerated plasma under 
the Hall Effect. The basic equations of semiconducting 
solid sphere are expressed with MGTPT heat transfer theory 
using GN III model. The Sect. 1 illustrated the evolution of 
the Fourier’s Law and the heat conduction equation. The 
Sect. 2 focuses on the basic equation for semiconducting 
medium viz equation of motion, equation of the plasma 
diffusion and MGTPT. Section 3 describe the mathematical 
formulation of the study of semiconductor solid sphere with 
MGTPT heat transfer equation to obtain the dimensionless 
expressions for Various components of displacement, ther-
modynamic temperature, conductive temperature, carrier 
density and axial stress as well as couple stress are found in 
the transformed domain using Laplace Transforms. Bound-
ary conditions for sphere’s exterior surface constrained by 
time dependent variable heat has been discussed in the 
Sect. 4. The Sects. 5 and 6 provide the solution to problem 
and method for the Laplace Transform inversion. The Sect. 7 
presents the numerical results and shows the effect of vari-
ous thermoelasticity theories and Hall current on the physi-
cal quantities graphically with MATLAB software. The Sect. 8 
deals with the conclusions of the paper.

2 � Basic equations

Following Mahdy et al. [33], Abouelregal and Atta [34], the 
governing equations for a photo-magneto-thermoelastic 
with new modified green Nagdhi model is given by.

Constitutive relations

Equation of motion

Plasma diffusion equation

where � =
T

�

�N0

�T
.

Modified Moore Gibson Thompson photo thermal 
equation

where Kij = Ki�ij , K
∗
ij
= K∗

i
�ij , i is not summed.

(6)�ij =
(
�uk,k − �T − �nN

)
�ij + �

(
ui,j + uj,i

)
,

� = (3� + 2�)�t , �n = (3� + 2�)dn.

(7)𝜎ij,j + Fi = 𝜌üi ,

(8)
�N

�t
= DE∇

2N −
N

�
+ �T ,

(9)
(
Kij Ṫ,j

)
,i
+
(
K∗
ij
T,j

)
,i
+

EgṄ

𝜏
=
(
1 + 𝜏0

𝜕

𝜕t

)[
𝜌CE T̈ + 𝛽ijT0ëij − 𝜌Q̇

]
,



Vol:.(1234567890)

Research Article	 SN Applied Sciences            (2023) 5:16  | https://doi.org/10.1007/s42452-022-05229-z

Improved Ohm’s law with Hall effect

where �0 =
nee

2te

me

,m = �ete =
�0�0H0

ene
,�e =

e�0H0

me

.

Vector form of Eq. (8) is

Lorentz force

Here, the subscript followed by ‘,’ comma denotes par-
tial derivative w.r.t. respective space variable and a super-
posed dot represents derivative w.r.t. time variable t .

3 � Mathematical model of the problem

Consider a thermally homogenous, infinitesimal semi-
conductor solid sphere of radius R (Fig.  1) where the 
outer surface is traction-free and a time-dependent 

(10)Ji = �0

(
Ei + �0�ijr

(
uj,t −

�0

ene
Jj

)
Hr

)
.

J = 𝜎0

{
E + 𝜇0(u̇ × H) −

𝜇0

ene
(J × H)

}
.

(11)Fi = �0�ijkJjHk ,

where �ijk= �jki = �kij= −�jik = −�kji = −�ikj ,

�ijk =

⎧⎪⎨⎪⎩

+1, if (i, j, k)is even permutation of (1, 2, 3),

−1, if (i, j, k)is odd permutation of (1, 2, 3),

0, if two ormore indices are equal.

(
i.e.�123 = +1, �132 = −1, �122 = 0

)
.

variable heat flux is applied to it. No heat sources exist 
inside the sphere. The spherical coordinate system 
(r, �,�) are considered to model the problem with 
(0 ≤ r ≤ R), (0 ≤ � ≤ 2�), (0 ≤ � ≤ 2�). Initially, the sphere 
is kept at constant and uniform temperature ( T0).

For 1D problem, displacement components and the 
displacement–strain relations which depends on radial 
distance r and the time t  due to symmetry are given by

The dilatation term e is given by

The Eq. (6) using (12) and (13) yields

The dynamic equation of motion using the Lorentz 
force, turn into

Assume that the sphere is under a constant and 
extremely strong magnetic field H0 = (0, 0,H0) , in addi-
tion, assume that E = 0 . Under these conventions from 
the generalized Ohm’s law (8) we have.

Accordingly the components of current density Jr and 
J� are given as

Fr induced by H0 is given by

Using Eqs. (15, 16 and 18–21) in Eqs. (17) and also from 
(8, 9) in spherical coordinates, the governing equations for 
the semiconducting solid sphere are:

(12)u =
(
u�, u� , u�

)
= (u, 0, 0)(r, t),

(13)err =
�u

�r
, e�� = e�� =

u

r
, er� = er� = e�� = 0.

(14)e =
1

r2

�
(
r2u

)
�r

.

(15)�rr = (� + 2�) + 2�
u

r
−
(
�T + �nN

)
,

(16)��� = ��� = �
�u

�r
+ 2(� + �)

u

r
−
(
�T + �nN

)
,

(17)
��rr
�r

+
1

r

(
2�rr − ��� − ���

)
+ Fr = �

�2u

�t2
.

(18)J� = 0.

(19)Jr =
�0�0H0

1 +m2

(
m
�u

�t

)
,

(20)J� =
�0�0H0

1 +m2

(
−
�u

�t

)
.

(21)Fr = �0(J × H)r .

 

z

x 

y
rR 

H0

Fig. 1   Schematic diagram of semiconducting solid sphere
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In the spherical coordinate system, the Laplacian opera-
tor ∇2 , is given by.

Pre-operating both sides of Eq. (22) by 
(

2

r
+

�

�r

)
, yields

The following dimensionless quantities are used to find 
the dimensionless form of above equations:

M is the Hartmann number or magnetic parameter 
in semiconductor elastic medium and it measures the 
magnetic field strength. Using the dimensionless quanti-
ties (27) in Eqs. (24, 25 and 26), and after suppressing the 
primes, yields

where

By using (27) in Eqs. (15, 16) and after suppressing the 
primes, yields

(22)(� + 2�)
�e

�r
− �

�T

�r
− �n

�N

�r
−

�0�
2
0
H2
0

1 +m2

(
�u

�t

)
= �

�2u

�t2
,

(23)
�N

�t
= DE

(
∇2N

)
−

N

�
+ �T ,

(24)

K
𝜕

𝜕t
∇2T + K∗∇2T +

EgṄ

𝜏
=
(
1 + 𝜏0

𝜕

𝜕t

)[
𝜌CE

𝜕2T

𝜕t2
+ 𝛽T0

𝜕2e

𝜕t2

]
.

(25)∇2 =
�2

�r2
+

2

r

�

�r
=

1

r2
�

�r

(
r2

�

�r

)
.

(26)

(� + 2�)∇2e − �∇2T − �n∇
2N −

�0�
2
0
H2
0

1 +m2

(
�e

�t

)
=

(
�2e

�t2

)
.

(27)(r
�

, u
�

) = v0�(r, u),
(
T

�

,N
�

, �
�

ij

)
=

1

�v2
0

(
�T , �nN, �ij

)
, (�

�

0
, �

�

, t
�

) = v2
0
�(�0, � , t), � =

�CE
K

, �v2
0
= � + 2�,M =

�0�
2

0
H2

0

��v2
0

, � =

√
2�

� + 2�
.

(28)∇2e − ∇2T − ∇2N −
M

1 +m2

(
�e

�t

)
=

(
�2e

�t2

)
,

(29)
�N

�t
= �1

(
∇2N

)
− �2N + �3T ,

(30)

�

�t
∇2T + �4∇

2T + �5N =
(
1 + �0

�

�t

)[
�2T

�t2
+ �6

�2e

�t2

]
,

�1 = DE�, �2 =
1

�
, �3 =

��n
�

, �4 =
K∗

(� + 2�)CE
, �5 =

Eg

�nCE(� + 2�)��
, �6 =

�2T0
�CE(� + 2�)

.

The preliminary conditions of this model are

The Laplace transform of a function f  w.r.t. time variable 
t, is defined as

where s as a Laplace Transform variable. Applying trans-

form defined by (36) to Eqs. (28–32) yields

When Eqs. (37) to (39) are decoupled, we obtain

(31)�rr = �2
�u

�r
+
(
1 − �2

)
e − (T + N),

(32)��� = ��� = �2
u

r
+
(
1 − �2

)
e − (T + N),

(33)u(r, 0) = 0 =
�u

�r
(r, 0),

(34)T (r, 0) = 0 =
�T

�r
(r, 0),

(35)N(r, 0) = 0 =
�N

�r
(r, 0).

(36)L(f (t)) = f (s) =

∞

∫
0

f (t)e−stdt,

(37)
(
∇2 +

(
−s2

)
−

Ms

1 +m2

)
e − ∇2T − ∇2N = 0,

(38)
(
�1∇

2 −
(
�2 + s

))
N + �3T = 0,

(39)

(
1 + �0s

)
�6s

2e +
(
−
(
s + �4

)
∇2 +

(
1 + �0s

)
s2
)
T − �5sN = 0,

(40)�rr = �2
�u

�r
+
(
1 − �2

)
e −

(
T + N

)
,

(41)��� = �2
u

r
+
(
1 − �2

)
e −

(
T + N

)
,

(42)
(
∇6 − B∇4 + C∇2 − D

)(
e, T ,N

)
= 0,
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where A = −�1�11, B = −
(
A�7 − �1�10 − �1�9 + �8�11

)
∕A,

Presenting �i , i = 1,2,3, in Eqs. (42), we obtain

where �2
i
, i = 1, 2, 3, are the roots of the equation

Which are given by

With

The common solution of (43) can be expressed as 
follows:

where In () indicates the second types of modified Bessel 
functions of order n. We get the following relations by 
inserting Eq. (45) into Eqs. (37–39)

We have the Bessel function relation

C =
(
−�3�5s + �3�9 − �1�7�10 + �8�7�11 + �8�10

+�8�9
)
∕A,D =

(
�3�7�5s − �8�7�10

)
∕A,

�7 =
(
−s2

)
−

Ms

1 +m2
, �8 = �2 + s, �9 =

(
1 + �0s

)
�6s

2,

�10 =
(
1 + �0s

)
s2, �11 = −

(
s + �4

)
.

(43)
(
∇2 − �2

1

)(
∇2 − �2

2

)(
∇2 − �2

3

)(
e, T ,N

)
= 0,

(44)
(
�6 − Bλ4 + Cλ2 − D

)
= 0,

�2
1
=

1

3
(2dsin� + B),

�2
2
=

1

3

�
−d

�
sin� +

√
3cos�

�
+

B

3

�
,

�2
3
=

1

3

�
d
�
sin� −

√
3cos�

�
+

B

3

�
,

d =
√
B2 − 3C ,� =

1

3
sin−1

�
−
2B3 − 9BC + 27D

2d3

�
.

(45)
�
e, T ,N

�
=

1√
r

3�
i=1

�
1, �i , �i

�
giI1∕2

�
�i r

�
,

(46)�i =
−
(
�2
i
+ �7

)(
�9�

2
i
− �5

)

�3�5 +
(
�11�

2
i
+ �10

)(
�1�

2
i
− �8

) ,

(47)�i =
−
(
�2
i
+ �7

)(
�3
)

�3�5 +
(
�11�

2
i
+ �10

)(
�1�

2
i
− �8

) .

In the domain of the Laplace transform, displacement 
u can be expressed as:

The modified Bessel In follows the following relation-
ships for any positive number x.

Introducing Eq. (50) into Eqs. (45), we obtain

Using (51) in Eq. (49) the displacement u may be repre-
sented as follows in the Laplace transform domain:

Differentiating Eq. (53) in terms of r yields

Thus, using (52)–(54) in Eqs. (40) and (41), the expres-
sions for thermal stresses are derived as

(48)∫ x3∕2I1∕2(x)dx = x3∕2I3∕2(x).

(49)u =
1√
r

3�
i=1

gi
I3∕2

�
�i r

�
�i

,

(50)I1∕2(x) =

√
2

�x
sinhx ,

(51)I3∕2(x) =

√
2

�x

(
coshx −

sinhx

x

)
.

(52)
�
e, T ,N

�
=

�
2

�

3�
i=1

�
1, �i , �i

� gi√
r�i

sinh
�
�i r

�
,

(53)u =

√
2

�

3∑
i=1

gi

r�
3∕2

i

(
cosh

(
�i r

)
−

sinh
(
�i r

)
(
�i r

)
)
,

(54)
�u

�r
=

√
2

�

3∑
i=1

gi
{
lisinh

(
�i r

)
− nicosh

(
�i r

)}
.

li =

(
2 + �2

i
r2

r3�
5∕2

i

)
, ni =

2

r2�
3∕2

i

.

(55)�rr =

√
2

�

3∑
i=1

gi
{
l1isinh

(
�i r

)
− n1icosh

(
�i r

)}
,

(56)��� =

√
2

�

3∑
i=1

gi
{
picosh

(
�i r

)
+misinh

(
�i r

)}
,

(57)pi =
�2

r2�
3∕2

i

,mi =

(
−�2

r5∕2�2
i

)
+

1 − �2 −
(
�i + �i

)

r1∕2�
1∕2

i
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4 � Boundary conditions

Assume that the sphere’s exterior surface is traction 
free and is constrained by time dependent variable 
heat. Hence, the mechanical boundary condition can be 
expressed as

During the diffusion phase, carriers can reach the sam-
ple surface, with a finite probability of recombination. 
Thus, the carrier density boundary condition is:

By applying the Laplace transform on (58–60) yields

Equations (52) and (55) are substituted into Eq. (61–63), 
giving

l1i =

(
�2li +

1 − �2 −
(
�i + �i

)

r1∕2�
1∕2

i

)
, n1i = �2ni .

(58)T (R, t) = T1H(t), t > 0

(59)�rr(R, t) = 0,

(60)De

�N

�r
= svN, at r = R.

(61)T (R, s) =
T0

s
,

(62)𝜎̃rr(R, s) = 0,

(63)De

�N

�r

|||||r=r0
= svN

(
r0, s

)
.

(64)

�
2

�

3�
i=1

gi

�
�i√
�iR

sinh
�
�iR

��
=

T0

s
,

(65)
3∑
i=1

gi
{
l1isinh

(
�iR

)
− n1icosh

(
�iR

)}
= 0,

(66)
3∑
i=1

gi�i
{
aicosh

(
�iR

)
+ bisinh

(
�iR

)}
= 0,

ai =
DE�

1∕2

i

R1∕2
, bi =

−DE

2R3∕2�
3∕2

i

−
sv√
�iR

,

The values of gi , i = 1, 2, 3 can be obtained by solving 
Eqs. (64–66) by Cramer’s rule

And using the values of gi(s) from Eq. (67) in eqs. (52, 53, 
55–56) the different constituents of displacement, tem-
perature distribution, carrier density and stresses are

n1i =

(
�2l1i +

1 − �2 −
(
�i + �i

)

R�
1∕2

i

)
, l1i =

(
2 + �2

i
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i

)
.

(67)gi(s) =
Δi

Δ
,
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[
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]
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, i = 1, 2, 3
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where

5 � Inversion of the transforms

The results in the physical domain problem are obtained 
by inverting the transforms in Eqs. (68–72) using:

Finally evaluate the integral in Eq. (73) using Romberg’s 
integration (Press et al. [35]) with adaptive step size.

6 � Particular cases

	 i.	 If K∗ ≠ 0, K ≠ 0 and �0 ≠ 0 in Eqs. (68–72) the results 
for the MGTPT can be obtained with Hall Effect.

	 ii.	 If K∗ ≠ 0, K ≠ 0 and �0 = 0 in Eqs. (68–72) the results 
for the photothermal Green-Naghdi (PGN) III model 
can be obtained with Hall Effect

	 iii.	 If K ≠ 0 and �0 = 0  in Eqs. (68–72) the results for the 
PGN-II can be obtained with Hall Effect.

	 iv.	 If �0 = 0, K∗ = 0, in Eqs. (68–72), we get the results 
corresponding to the coupled photo-thermoelastic-
ity theory (CPTE) with Hall Effect.

	 v.	 If K∗ = 0 , in Eqs. (68–72) we get the results corre-
sponding to the generalized Lord and Shulman 
photo-thermoelasticity model (PLS) with Hall Effect.

7 � Numerical results and discussion

With the MATLAB software the theoretical results are 
obtained by utilising the following physical data of the 
silicon (Si) material and the effect of Hall current, and the 
MGTPT heat equation are illustrated graphically.
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{
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,�i

=

√
2

�

{
picosh

(
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)
+misinh

(
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i = 1, 2, 3.

(73)f (x, t) =
1

2�i

e+i∞

∫
e−i∞

f̃ (x, s)e−stds.

� = 3.64 × 1010 Nm−2 T0 = 300 K

� = 5.46 × 1010Nm−2 H0 = 1 Jm−1nb−1

� = 7.04 × 106 Nm−2deg−1 τ = 5 × 10−5 s

�
n
= −9 × 10−31 m−3 N0 = 1020 m−3,

� = 2.33 × 103 K gm−3 ε0 = 8.838 × 10−12 Fm−1

Ce = 695 J Kg−1K−1 Eg = 1.11 eV

K = 150Wm−1K−1 �
T
= 3 × 10−6 K−1

K∗ = 1.54 × 102 Ws s
v
= 2ms−1

De = 2.5 × 10−3 m2s−1 H0 = 108 Col.cm−1s−1

�0 = 4� × 10−7 Hm−1 �0 = 9.36 × 105 Col2C−1m−1s−1

A comparison of the dimensionless form of the field 
variables for a transversely isotropic plate with two tem-
perature and frequency is demonstrated graphically as:

The dimensionless form of the field variables viz. com-
ponents of displacement, thermodynamic temperature, 
conductive temperature, carrier density and axial stress 
as well as couple stress is visually represented as.

	 i.	 The black line relates to MGTPT with, m = 0,
	 ii.	 The red line relates to MGTPT with, m = 5,
	 iii.	 The purple line relates to MGTPT with, m = 7,
	 iv.	 The green line relates to MGTPT with, m = 10,

Figure 2 illustrates the deviation in the displacement 
component u of the semiconducting sphere for MGTPT 
theory with Hall Effect. It has been noticed that in absence 
of Hall Effect under MGTPT theory, there is maximum vari-
ation in u . Though, in presence of Hall Effect, variation in 
the displacement is sharply decreases. Moreover, in the 
centre of the sphere, there is no variation in the displace 
component, but as radial distance increases, deviation in 

Fig. 2   The displacement deviation with Hall Effect under MGTPT
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the u increases sharply. Figure 3 demonstrates the devia-
tion in the temperature distribution T  in the semiconduct-
ing sphere with Hall Effect. It has been noticed that T  is 
lesser in the inside core of the sphere as compared to the 
external core of the sphere. Additionally, presence of Hall 
Effect cause the higher variation in T .

Figure 4 shows the change in the carrier density in the 
semiconducting sphere for MGTPT theory with Hall Effect. 
It has been noticed that in absence of Hall Effect, the varia-
tion in carrier density is minimum. As soon as, Hall current 
increase, the carrier density sharply increases. In compari-
son to the sphere’s outer core, the inner core’s carrier den-
sity has been found to vary less. Figures 5, 6 shows the vari-
ation in the components of stress in the semiconducting 
sphere for MGTPT with Hall Effect. The radial stress in Fig. 5 

illustrates that without Hall Effect with MGTPT theory, the 
variation are minimum. There is sharp change in the hoop 
stress as the Hall current increases. Furthermore, as com-
pared to the outer core of the sphere, it has been observed 
that the inner core of the sphere experiences less variation 
in stress components.

Figure 7 illustrates the deviation in the displacement 
component u of the semiconducting sphere for various 
models. It has been observed that in absence of Hall 
Effect under PLS theory, there is maximum variation in 
u . Though, with MGTPT theory in presence of Hall Effect, 
variation in the displacement is sharply increases. Moreo-
ver, in the centre of the sphere, there is no variation in 
the displace component, but as radial distance increases, 
deviation in the u increases sharply. Figure 8 demonstrates 
the deviation in the temperature distribution T  in the 

Fig. 3   The temperature deviation with Hall Effect under MGTPT

Fig. 4   The change in carrier density with Hall Effect under MGTPT

Fig. 5   The variation in radial stress with Hall Effect under MGTPT

Fig. 6   The change in hoop stress with Hall Effect under MGTPT
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semiconducting sphere with various models. It has been 
noticed that T  is lesser in the inside core of the sphere as 
compared to the external core of the sphere. Additionally, 
presence of Hall Effect cause the higher variation in T .

Figure 9 shows the change in the carrier density in 
the semiconducting sphere for various models with Hall 
Effect. It has been noticed that with MGTPT, the variation 
in carrier density is maximum and PLS shows the mini-
mum variations in the carrier density. In comparison to 
the sphere’s outer core, the inner core’s carrier density has 
been found to vary less. Figures 10, 11 shows the variation 

in the components of stress in the semiconducting sphere 
for various models with Hall Effect. The radial stress in 
Fig.  10 illustrates that MGTPT theory, the variation in 
radial stress is maximum whereas, hoop stress is minimum. 
There is sharp change in the hoop stress as the Hall current 
increases. However, PGN-III shows the minimum variation 
in radial stress and MGTPT illustrate maximum variation. 
Additionally, MGTPT shows the minimum variation in hoop 
stress and PLS illustrate maximum variation. Furthermore, 
as compared to the outer core of the sphere, it has been 
observed that the inner core of the sphere experiences less 
variation in stress components.

Fig. 7   The change of displacement for various models with Hall 
effect

Fig. 8   The temperature change for different models

Fig. 9   The change in carrier density for different models

Fig. 10   The change in radial stress for different models
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8 � Conclusions

•	 The rotating infinite semiconducting solid sphere has 
been investigated in this study under the influence of 
high magnetic field along its axis with the exponen-
tially laser pulse applied on its boundary surface.

•	 The study is motivated not only by basic scientific 
interests, but also by the increasing need for faster 
interaction and information processing as well as the 
use of semiconductor optoelectronic and electronic 
devices. It is important to understand how semicon-
ductors operate dynamically under Hall current effect 
so that microelectronic semiconductor devices may be 
improved. Hall Effect have an incredibly strong effect 
on the behavior of different distributions. In evaluat-
ing semiconducting materials, this should be taken 
into consideration, as the duration of the Hall current 
increases the carrier density and decreases the devia-
tion in the displacement.

•	 It has been noticed that with MGTPT theory, the varia-
tion in radial stress is maximum whereas, hoop stress is 
minimum. However, PLS theory shows the higher vari-
ation in different components.

•	 The energy harvesting and generating the alternative 
energy sources is the need of the day. There is a signifi-
cance contribution of the semiconductor materials to 
generate electrical energy from sunlight, even when 
subjected to laser light. The study may be helpful in 
designing of semiconductor nano-devices, Hall Effect 
sensors, magnetic switch, and applications in transis-
tors, screens and solar cells as well as semiconductor 
nanostructure devices such as MEMS/NEMS.
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