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Abstract
This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy 
by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they 
can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. 
Multiple notch geometries with various crack lengths were investigated in this study to better understand the effec-
tiveness of the proposed method. By linearizing the average stresses in radial layers around the crack opening, stress 
intensity factors were found to have error ranging from −10.03 to 8.94% when compared to analytically exact solutions. 
This approach proved to be a robust and efficient method of accurately determining stress intensity factors.

Article highlights
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•	 An approach to determine stress intensity factors by 
linearizing a layered notch stress profile is presented.

•	 Stress intensity factors for multiple notch geometries 
are investigated and tested using the Linearized Layer-
ing Method.

•	 The Linearized Layering Method is a robust and effec-
tive method to determine stress intensity factors.
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1  Introduction

The stress intensity factor is one of the most fundamental 
and useful parameters in fracture mechanics and is used 
to describe the stress state near the tip of a crack caused 
by remote loading or residual stresses. Current methods 
can be limiting because they are overly conservative, 
require too many user parameters, or can be very com-
putationally intensive, such as the finite element-based 
techniques that can also produce divergent solutions. The 
purpose of this work is to establish a simple and robust 

method of determining stress intensity factors for linear 
elastic fracture mechanics analysis. This study is based on 
the understanding that a single maximum stress value 
approach cannot accurately explain fracture from stress 
concentration locations, but instead a critical volume in 
which the crack resides must be considered. Overall, this 
work aims to provide the practicing engineer a robust and 
accurate way to calculate stress intensity factors. In the 
next section, the literary background for the study is dis-
cussed, in Sect. 3 the proposed methodology is discussed 
in detail, Sect. 4 shows the case studies’ results, and in the 
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last section, final observations and conclusions about the 
method are made.

2 � Literature background

The approach derives from the following founding equa-
tion for stress intensity developed by Irwin [1],

where F is used to represent various correction factors 
indicated in studies and works like Murakami’s [2]. It has 
also been shown by Murakami [3] and Murakami and Endo 
[4, 5] that the stress intensity factor can be determined as 
a function of square root of crack area to a 10% degree 
of accuracy. Glinka [6] performed modifications to Eq. 1, 
replacing the crack length, a, with a term characterizing 
a notch-tip radius. Bloom and Van Der Sluys [7] utilized 
methods considering the stresses along the length of 
the crack to determine stress intensity factors. Chen [8] 
introduced the use of a body force method to find stress 
intensity factors for a strip plate with single or double edge 
notches under tension or in-plane bending. Furthermore, 
Liu et al. [9] implemented the use of numerical methods 
and the finite element method to determine multiple 
stress singularities and related stress intensity factors. 
Chell [10, 11] proposed that the stress-intensity factor for 
an arbitrarily loaded crack could be given as the product 
of a compliance function for the crack subjected to a uni-
form stress and a weighted integral involving the arbitrary 
stress. A weight function method for determining stress-
intensity factors was developed by Bueckner [12] and Rice 
[13]. Ju and Chung [14] used the finite element method 
and a least squares method to find 3D stress intensity fac-
tors of a sharp v-notch. Xu et al. [15] proposed a numeri-
cal method that doesn’t need the asymptotic solution of 
the singular stress field to determine the orders of the 
multiple stress singularities and related stress intensity 
factors. Courtin [16] showed the advantages of using the 
J-integral approach [17] in stress intensity factor determi-
nation. The J-integral technique has been expanded upon 
by those such as Gopichand [18], Nikolova [19], Azmi [20] 
and Han [21], proving it has good accuracy and effective-
ness. Alatawi [22] showed another alternative method, 
the extended dual boundary element method, providing 
the value for stress intensity factor directly in the solution 
vector and without the need for postprocessing. Gupta 
[23] investigated and compared three different methods 
for determining stress intensity factor: the Cutoff Function 
Method, the Contour Integral Method, and the Displace-
ment Correlation Method, showing the advantages of the 
Displacement Correlation Method in determining stress 

(1)K = F�
√

�a,

intensity factors when using domain integrals is not pos-
sible. Farahani [24] developed a radial point interpolation 
meshless method that calculated stress intensity factors 
with good accuracy. Determination of stress intensity fac-
tors through digital image correlation has also been stud-
ied by those such as Roux [25], Gonzales [26] and Tavares 
[27]. Berto [28] calculated mixed mode stress intensity 
factors of V-notches using refined FE meshes. This paper 
utilizes similar methods in using superposition and FEA to 
calculate stress intensity factors. Linearized stress distribu-
tions to find stress intensity factors were used by Dong 
[29] and compared to those determined by finite element 
method. A combination of a weighting function and radial 
layering were implemented by McKinley [30] and Abou-
Hanna [31] to determine stress intensity factors within 
a ± 10% error band. Use of the radial layering approach 
showed great promise and is expanded upon in this study.

3 � Proposed methodology

Utilizing FEA on a 2-D rectangular plate, crack free linear-
elastic specimens were used in determining Mode I stress 
intensity factors. The principal stress, �y , was used through-
out this study because it is the stress perpendicular to the 
crack. The cartesian coordinate system was used for all 2-D 
cases. The approach begins with dividing the area around 
the crack opening into radial layers emanating at the crack 
opening. This approach can also be applied to a 3-D case, 
using spherical layers instead. A representation of the 
radial stress layering for a notched component is shown in 

Fig. 1   Radial layering for a notched component
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Fig. 1. The stress values within each layer are averaged and 
used to create a 1-D stress profile that represents stress 
vs. radial distance from the component surface. This stress 
profile can be linearized, and the resulting membrane and 
bending stresses extracted. The membrane stress is the 
average of the linearized curve, and the bending stress 
is the difference between the maximum value of the lin-
earized curve and the average. Figure 2 shows how the 
nonlinear stress profile from Fig. 1 would look like and 
also what the linearization with membrane and bending 
stresses would look like.

Determination of how much of the stress profile to lin-
earize is governed by the consideration that a critical area 
of material exists where the crack resides. Deciding how 
much of the stress profile to linearize is one of the main 
investigations of this work. The distance at which the stress 
will be linearized from the crack opening will be referred 
to as the “linearization range” (LR). The LRs used in this 
investigation were dependent on the size of the crack, 
varying from 1× the crack length to 7× the crack length. 
The membrane stress and bending stress can be extracted 
from the linearized stress curve and used separately in 
stress intensity factor calculations. Dowling [32] showed 
that stress intensity solutions for combined loading can be 
obtained by summing each individual load components’ 
corresponding stress intensity factors. This linear superpo-
sition is the main assumption in this study hypothesizing 
that the total mode I stress intensity factor is the sum of 
the bending and membrane stress induced intensities. This 
is the basis of the hypothesis of this proposed approach:

(2)Kb = �b

√

�a

where Kb is the stress intensity factor from the bending 
stress �b , Km is the stress intensity factor from the mem-
brane stress �m , and a is the length of the crack. The total 
stress intensity factor can then be found by summing the 
stress intensity factors from the bending and membrane 
stresses:

The proposed method was investigated by comparing 
stress intensity factors of differing LRs with those read-
ily available in engineering handbooks. Three separate 
cases were explored to help determine effectiveness of 
the method. The finite element analysis of this study was 
conducted using ABAQUS FEA.

A state of plane strain was assumed for cases 4.1 and 4.2 
involving the 2-D plate.

4 � Case studies

4.1 � A crack emanating from a round center hole 
in a plate under uniaxial tension

Center holes of diameters 25% and 50% of the width of 
the plate were used, while the height of the plate was 
twice that of the width in order to ensure far field load 
conditions. A quarter symmetry mesh model with a notch 
0.25 that of the width is shown in Fig. 3. A 100 MPa pres-
sure was applied uniformly to the top edge of the model. 
The properties of the material represent alloy steel with 
a modulus of elasticity of 205 GPa and a Poisson’s ratio of 
0.29. Symmetrical boundary conditions were applied such 
that the nodes on the bottom and right edge of the model 
have their displacement components normal to their 
respective planes constrained. The radial layers within the 
model were created to have layers closer together near the 
crack opening where the stress gradient is the highest, and 
layers farther apart where the stress gradient is smaller. 
Figure 4 shows the radial layers created in the model. A 
thickness of at least 3 elements between each layer was 
used to ensure accuracy of the mesh.

A mesh sensitivity analysis was conducted to determine 
the optimum element size. Figure 5 compares the stress 
calculated when increasing the number of elements used 
as the thickness of the radial layer. As can be seen, using a 
very fine mesh with 20 elements between each layer pro-
duces results almost equivalent to using 3 elements. This 
is expected as the layers are very refined when compared 
to the width of the plate, making the mesh very fine even 
when using 1 element as the thickness of the layer. Thus, 

(3)Km = �m

√

�a

(4)K = Kb + Km.
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Fig. 2   Nonlinear stress profile and linearization
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using a layer thickness of at least 3 elements ensured that 
the mesh converged. The FEA model was validated by 
comparing the stress concentration factor of the model 
to the expected stress concentration from the literature. 

The stress concentration factor of the FEA model was cal-
culated from the following equation:

where the nominal stress is calculated by:

where platew is the width of the plate and notchd is the 
diameter of the notch. The load is calculated by:

And assuming that w is half the length of the plate, the 
equation for nominal stress simplifies to:

The max stress in the model was 323.51 MPa. Substi-
tuting values for max and nominal stress into Eq. 5 yields 
a stress concentration factor of 2.426. For a plate with a 
notch diameter 0.25 the width of the plate, Dowling [32] 
predicts a stress concentration factor of approximately 
2.42, showing good correlation when compared to the FEA 
model. Thus, the FEA results can be trusted because the 
stress concentration factor expected from the literature 
shows strong correlation to the stress concentration fac-
tor produced by the FEA model. Figure 6 shows the stress 
gradient for the principal stress, �y , and the radial layers 
created around the crack opening.

Using the stress at the centroid of the elements within 
each layer, the average stress of every layer was deter-
mined. The resulting 1-D stress curve was fit with a 6th 
order polynomial curve to account for the biased spacing 
of the layers. A 6th order polynomial line was found to 
model the 1-D stress curve the best as opposed to a 3rd, 

(5)Kt =
�max

�nom

(6)�nom =
Load

(

platew − notchd
)

thickness

(7)Load = 2wt × 100MPa

(8)�nom =
2wt × 100MPa

(2w −
1

2
w)t

= 133.33MPa

Fig. 3   Quarter symmetry mesh model for plate with hole diameter 
0.25 the plate width

Fig. 4   Radial layers emanating from crack opening
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4th or any other order polynomial. The best fit curve can 
be seen superimposed over the discrete data in Fig. 7.

The fit line was then linearized for LRs of 1×, 2×, 3×, 5×, 
and 7× the length of the crack. Figure 8 shows the 1-D 
stress profile created from the average stress in each layer, 
as well as the linearized sections of the curve for a crack 
length 0.15 the width of the plate.

After the stress profile was linearized, the membrane 
and bending stresses for each LR were determined. Stress 
intensity factors for both the membrane component and 
the bending component were then calculated using Eqs. 2 
and 3 and summed together to compute the total stress 
intensity factor for the component.

Stress intensity factors for various crack sizes ranging 
from 0.01 to 0.25 the width of the plate were computed in 
this way and compared to the handbook solutions given 
by Tada et al. [33]. This was repeated for a notch size of 
0.5 the plate width, with errors for both hole diameters 

Fig. 6   �y stress gradient and radial layering around crack opening
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displayed in Fig. 9 and 10. Tables 1 and 2 show the com-
puted 7× LR stress intensity factors for various defect sizes. 
Notch sizes of 0.25 and 0.5 the width were chosen to com-
pare to the handbook solutions more easily. Errors in both 
cases are seen to be minimized for a LR of 7×, ranging from 
−5.10 to 1.91% and −6.97 to −1.94%, respectively.   

4.2 � A crack emanating from a v‑notched plate 
under tension

Flat plates with v-notches of 60° and 120° were also inves-
tigated. A 100 MPa pressure was uniformly applied to the 
top edge of the half symmetry model shown in Fig. 11. 
Symmetrical boundary conditions were applied such 

that the nodes on the bottom edge of the model have 
their displacement components normal to the horizontal 
plane constrained. Figure 12 shows the radial layers cre-
ated around the crack opening and Fig. 13 displays the �y 
stress gradient and radial layers around the crack opening. 
Figure 14 shows the 1-D stress profile created from the 
average stress in each layer.

The same process used in case 4.1 was employed to 
determine the stress intensity factors for the v-notched 
plates. Figure 15 shows the error in the stress intensity 
factors for the 120-degree v-notch, displaying errors of 
−7.44% to 3.00% for a LR of 7× when compared to the 
closed form solution from Hasebe [34]. Figure 16 shows 
the error for the 60-degree v-notch, varying from −10.03 to 
8.24% for a LR of 5×. Tables 3 and 4 display the computed 
7× LR stress intensity factors for the 120-degree case and 

Table 1   7× LR stress intensity factors and errors for hole diameter 
0.25 width of the plate

Defect size K K, Tada [33] Error (%)

0.01 15.99 16.85 − 5.10
0.03 25.64 25.48 0.62
0.05 30.15 29.59 1.91

Table 2   7× LR stress intensity factors and errors for hole diameter 
0.5 width of the plate

Defect Size K K, Tada [33] Error (%)

0.01 21.74 23.37 − 6.97
0.03 36.45 37.65 − 3.18
0.05 44.85 45.73 − 1.94

Fig. 11   Half symmetry mesh model for plate with 120-degree 
v-notch

Fig. 12   Radial layers emanating from crack tip for plate with 
120-degree v-notch

Fig. 13   The �y stress gradient and radial layering around crack 
opening
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the 5× LR stress intensity factors for the 60-degree case. 
The 7× LR for the 60-degree v-notch showed greater 

error than the 5× LR. The steeper stress gradient of the 
60-degree case shows that a lesser LR should be used since 
the stress profile reaches a constant value in a shorter dis-
tance as compared to the 120-degree case.   

4.3 � Cylindrical pressure vessel with an external 
crack

The pressurized cylinder investigated has an external lon-
gitudinal crack on the outer surface. A closed-form stress 
solution from Dowling [32] was used to determine the 1-D 
stress profile:

where p is the pressure, r1 is the inner radii, r2 is the outer 
radii, and R is the radius at any point. Three different con-
figurations shown in Table 5 were studied, varying the 
inner and outer radii of the cylinder for each case. Using 
the process described in case 4.1, stress intensity factors 
were determined for each case. The results were compared 

(9)�t =
pr2

1

r2
2
− r2

1

(
r2
2

R2
+ 1),

Fig. 14   1-D stress profile for plate with 120-degree v-notch
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Table 3   7× LR stress intensity factors and errors 120-degree 
v-notch

Defect size K K, Hasebe [34] Error (%)

0.003 11.90 12.65 −5.90
0.032 15.06 14.63 3.00
0.032 17.04 17.10 −0.36
0.053 18.12 18.86 −3.89
0.107 20.98 22.66 −7.44%

Table 4   5× LR stress intensity factors and errors for 60-degree 
v-notch

Defect Size K K, Hasebe [34] Error (%)

0.012 15.83 14.63 8.24
0.032 16.32 17.10 −4.57
0.037 16.53 17.49 −5.46
0.053 17.41 18.86 −7.67
0.107 20.39 22.66 −10.03

Table 5   Pressure vessel case 
configurations

Configuration 1 2 3

P (MPa) 6 6 6
ri (mm) 14 30 36
ro (mm) 40 40 40
t (mm) 26 10 4
ri/ro 0.35 0.75 0.9



Vol:.(1234567890)

Research Article	 SN Applied Sciences             (2023) 5:5  | https://doi.org/10.1007/s42452-022-05225-3

to solutions given by Budynas [35]. The error results for 
each case are shown in Tables 6, 7 and 8 and Figs. 17, 18 
and 19. Configuration 1 produced errors ranging from 
−5.04 to 0.97% for a LR of 2x. For configurations 2 and 3 
where the thickness of the cylinder is smaller compared 
to the outer radius, the 2× LR errors were much higher, 
ranging from −10.77 to −45.11%.      

5 � Observations and conclusions

The method proved to be effective for center hole plates, 
v-notched plates, and thick pressure vessels, generat-
ing values within 10% error for many different relative 
crack lengths. For center hole plates a larger LR of 5× or 
7× showed results within 10% error when compared to 
handbook solutions. Inaccurate results for the LRs less 
than 5× demonstrate that not enough of the area around 
the crack is considered to properly capture the stress 
gradient affected zone around the crack. For larger crack 
lengths of more than 0.1 the length of the plate, a LR of 
5× or 7× can exceed the bounds of the plate, and so the 
largest LR within the domain of the plate should be used. 
When considering v-notched plates, a LR of 5× proved to 
be best for a 60-degree v-notch and a LR of 7× was best 
for a 120-degree v-notch.

For the thick pressure vessel in configuration 1, a LR 
of 2× gave the least error, unlike the other cases where 
a larger LR of 5× or 7× produced the best results. This is 

Table 6   2× LR stress intensity factors and errors for pressure vessel 
configuration 1

Defect Size K K, Budynas [35] Error (%)

0.1 0.16 0.17 −5.04
0.2 0.25 0.26 −4.39
0.3 0.34 0.35 −2.24
0.4 0.44 0.44 0.97

Table 7   2× LR stress intensity factors and errors for pressure vessel 
configuration 2

Defect Size K K, Budynas [35] Error (%)

0.1 0.89 0.99 −10.77
0.2 1.29 1.54 −16.30
0.3 1.63 2.14 −24.06
0.4 1.94 2.89 −32.92

Table 8   2× LR stress intensity factors and errors for pressure vessel 
configuration 3

Defect Size K K, Budynas [35] Error (%)

0.1 1.83 2.18 −15.82
0.2 2.62 3.44 −23.83
0.3 3.24 4.90 −33.87
0.4 3.78 6.89 −45.11
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because the stress field moving away from the crack shows 
an increase in stress. There is no far field stress region in 
this case where the stress would reach some constant 
value, as opposed to the cases of the center hole and 
v-notch plates.

For pressure vessel configurations 2 and 3 where wall 
thickness was thinner, the method produced larger errors 
in stress intensity factors. For these configurations the 
stress gradient is small, and therefore the stress profile is 
essentially constant. As a result, there is no need to employ 
a numerical scheme to predict the stress intensity for this 
simple, zero stress gradient case.

Previous work done by Abou-Hanna [31] is closely 
related to this work; it employs the radial layering tech-
nique and requires the use of a distance-based complex 
weighting scheme and computation of the relative stress 
gradient which resulted in higher errors in some cases 
treated in this study. The current method does not require 
such complex computations and is simpler while also 
maintaining results within ± 10% for all cases.

The technique showed the best success when using 
larger LRs of 5× or 7× when the area around the crack has 
a larger stress gradient and using a smaller LR of 2× when 
the stress gradient around the crack is smaller. This shows 
that when the crack is in an area of high stress gradient, 
more area around the crack is required to accurately deter-
mine stress intensity factor.

Since the technique can be employed for a 2-D FEA 
model, the computation time is very short. Practical use 
of this technique would likely require implementation of 
an automated method of calculating the average stresses 
within each layer. Implementing this method for a 3-D FEA 
would be a logical next step in exploring the prospects of 
this technique.
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