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Abstract 
One of the most important techniques for converting complex organic waste into renewable energy in the form of 
biogas and effluent is anaerobic digestion. Several issues have been raised related to the effectiveness of the anaerobic 
digestion process in recent years. Hence nanoparticles (NPs) have been used widely in anaerobic digestion process for 
converting organic wastes into useful biogas and effluent in an effective way. This review addresses the knowledge gaps 
and summarizes recent researchers’ findings concentrating on the stability and effluent quality of the cattle manure 
anaerobic digestion process using single and combinations nanoparticle. In summary, the utilization of NPs have ben-
eficial effects on CH4 production, process optimization, and effluent quality. Their function, as key nutrient providers, aid 
in the synthesis of key enzymes and co-enzymes, and thus stimulate anaerobic microorganism activities when present 
at an optimum concentration (e.g., Fe NPs 100 mg/L; Ni NPs 2 mg/L; Co NPs 1 mg/L). Furthermore, utilizing Fe NPs at 
concentrations higher than 100 mg/L is more effective at reducing H2S production than increasing CH4, whereas Ni NPs 
and Co NPs at concentrations greater than 2 mg/L and 1 mg/L, respectively, reduce CH4 production. Effluent with Fe and 
Ni NPs showed stronger fertilizer values more than Co NPs. Fe/Ni/Co NP combinations are more efficient in enhancing 
CH4 production than single NPs. Therefore, it is possible to utilize NPs combinations as additives to improve the effec-
tiveness of anaerobic digestion.

Article highlights

•	 Single NPs (e.g., Fe, Ni, and Co NPs) in low concentra-
tions are more effective in increasing CH4 production 
than reducing H2S production.

•	 Optimal Fe, Ni, and Co NP concentrations enhance 
anaerobic digestion process performance.

•	 Addition of Fe, Ni, and Co NPs above tolerated concen-
tration causes irreversible inhibition in anaerobic diges-
tion.

•	 Effluent with Fe, Ni, and Co NPs showed stronger ferti-
lizer values.

•	 Nanoparticle combinations are more effective for 
increasing the CH4 production than signal NPs.

Keywords  Anaerobic digestion · Metallic nanoparticles · Metal oxides nanomaterial · Nanoparticle combinations · 
Cattle manure treatment · Effluent
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CO2	� Carbon dioxide
TA	� Total alkalinity
P	� Phosphor
H2S	� Hydrogen sulfide
VS	� Volatile solids
K	� Potassium
CH4	� Methane
TS	� Total solids
WIPs	� Waste iron powder
nm	� Nanometer
TSS	� Total suspended solids
TN	� Total nitrogen
NPs	� Nanoparticles
H2O	� Water
TK	� Total potassium
Fe	� Iron
VFAs	� Volatile fatty acids
°C	� Degree celsius
Ni	� Nickel
H2	� Hydrogen
%	� Percentage
Co	� Cobalt
IEA	� International Energy Agency
NPK	� Nitrogen, phosphorus, potassium
BTOE	� Billion tons oil equivalents

1  Introduction

Energy "powers" the suitable light and temperatures in 
our homes and workplaces; it fuels manufacturing facili-
ties, urban infrastructure, and the numerous technologi-
cal aids we use on a daily basis; and it enables us to travel 
virtually endlessly [1, 2]. The shortage of fossil fuels such 
crude oil, coal, and natural gas, as well as the excessive 
gas emissions caused by the over use of fossil fuels, are 
the present global energy concerns that are causing tre-
mendous worry [3].

From 14,000 BTOE (billion tonnes of oil equivalent) now 
to more than 18,000 BTOE by 2030, the world’s energy 
consumption is rising quickly. It’s also important to note 
that global energy consumption increased for natural gas, 
oil, and coal by 5.3%, 1.5%, and 1.4%, respectively [4]. The 
International Energy Agency [3] estimates that by 2050, 
global energy consumption may increase by three times 
its level from the previous year.

Additionally, the use of fossil fuels has contributed to air 
pollution, global warming, and climate change [5–9]. Find-
ing a new clean and sustainable energy source is the only 
solution to the environmental crisis brought on by grow-
ing CO2 emissions and declining fossil fuel supply. There is 
a movement in support of renewable energy sources over 
fossil fuels [10–16].

About 17.8% of the world’s energy demand is fulfilled 
by renewable energy sources such biomass, hydropower, 
wind, sun, geothermal, and tide [17]. Biomass and organic 
wastes are better renewable energy sources than fossil 
fuels in terms of waste management and reducing envi-
ronmental impact [18].

Some of the wastes that can be used as feedstock 
include animal manure [19], agricultural residues [20], food 
wastes [21], sewage sludge [22], and other energy crops 
[23]. Livestock covers up around 40% of the worldwide 
value of agricultural products, including animal manure 
[24]. To fulfil the rising demand for dairy and meat prod-
ucts, traditional scattered family-scale livestock farms have 
been gradually transformed into centralized ones in recent 
years [25]. Cattle, swine, poultry, and sheep farms all create 
a significant amount of manure that needs to be properly 
managed [26].

More than half of all generated manure comes from cat-
tle, and that percentage is expected to increase to more 
than 75% during the next ten years [27, 28]. More than 
50% of the total solids in cattle manure are made up of 
undigested lignocellulosic materials such cellulose, hemi-
cellulose, and lignin [29–35].

In the absence of oxygen, anaerobic digestion utilizes 
the activity of bacteria to transform organic waste into 
sustainable energy in the form of methane (CH4)-enriched 
biogas and effluent [36–38]. With trace levels of additional 
impurities like H2O (5–10%) and H2S (1–10,000  ppm), 
biogas generally contains a ratio of 40–75% CH4 and 
25–60% CO2 [39].

Biogas with a high CH4 concentration has a heat value 
in the 20–25 MJ/m3 range. In addition to reducing the use 
of traditional energy sources, biogas also reduces green-
house gas emissions by around 80% [40]. This makes it an 
excellent substitute for fossil fuels. Additionally, substitut-
ing effluent for inorganic mineral fertilizer might reduce 
the need for fossil fuels and the risk of contamination [41, 
42].

There are numerous techniques to make cattle manure 
receptive to anaerobic microorganisms. Including co-
digestion with other wastes [43–47], pretreatments (chem-
ical, ultrasonic, and thermal) [46–49], and the design of 
bioreactors and the optimization of operation parameters. 
Careful material selection is necessary for chemical pre-
treatment in order to prevent hazardous processes [50, 
51]. Additionally, heat and ultrasonic treatments can cause 
considerable losses of carbohydrates, bringing down sugar 
levels. To achieve the optimum particle size reduction, 
physical pretreatment also requires a significant amount 
of energy [52].

Inorganic and organic additives [53–55], including 
green biomass and enzymes, are both used to increase 
CH4 production in anaerobic digestion processes. 
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Macronutrients and micronutrients are the two catego-
ries into which inorganic additions are divided [56]. The 
anaerobic digestion process substrate is supplemented 
with macronutrients (i.e., P, N, and S) in the form of salts to 
increase the system buffer capacity and sustain microor-
ganism activity [57]. But a large dosage of bulk materials 
can be hazardous to anaerobic microbes, and they might 
not biodegrade properly during digestion [58]. Salts, bulk 
materials, and more recently nanoparticles (NPs) are used 
to add micronutrients (Fe, Ni, and Co) to the anaerobic 
digestion feedstock [59, 60].

NPs are three-dimensional particles that have a size 
between 1 and 100 nm [61]. NPs are categorised using 
their chemical components, dimensions, appearance, 
condition, and place of origin [62–65]. Their size, which 
in at least one dimension ranges from 1 to 100 nm [66], is 
another factor used to classify them. In general, NPs con-
tain a large number of particles per unit weight, a high sur-
face-to-volume ratio, and confinement or quantum effects, 
which means fewer atoms per particle. These NPs specific 
traits lead to properties that are significantly different from 
those of the same material when it is in its bulk state [66].

In reality, the majority of NPs have the ability to bind to 
and maintain inhibitory elements such heavy metals on 
their surfaces [37, 67]. NPs (such as Fe, Ni, Co, and metal 
oxides) promote the activation of microorganisms and 
important enzymes, increasing the production of biogas 
and CH4, and decreasing the concentration of H2S [68–71].

Hence, this review aims to provide insights to the influ-
ences released by single NP (e.g. Fe, Ni, Co, metal oxides) 
and NP combinations on cattle manure anaerobic diges-
tion process in terms of gas yield (CH4, CO2, and H2S), their 

influences on fundamental mechanisms such as pH, vola-
tile fatty acids (VFAs) and total alkalinity (TA) concentra-
tion, total solids (TS) and volatile solids (VS) degradation, 
as well as their influences on fertility evaluation of the 
effluent. Finally, perspective on the required future trends 
and research on the application of NPs in the anaerobic 
digestion process are highlighted.

In this review, the first three sections [3–5] discuss the 
effects of single NPs (such as Fe, No, and Co) on gas yield 
and the stability of the anaerobic digestion process. For 
clarity of reading, the data from these sections were com-
piled into Tables 1, 2, and 3. The effects of NP combinations 
on the stability of the overall anaerobic digestion process 
and the effluent fertility evaluation are shown in Sect. 6. 
For clarity of reading, the data from Sect. 6 was summa-
rized into Table  4. The comparative research between 
single and combination NPs on average CH4 generation 
rate as well as effluent quality from anaerobic digestion 
of cattle manure was discussed in the reviews at the end.

2 � Iron nanoparticles

Iron (Fe) NPs are one of the most often used additives for 
enhancing anerobic digestion performance because of their 
conductive properties and low price. Fe NPs of various sorts 
have been demonstrated to stimulate anerobic digestion 
[25]. One of the many varieties of Fe NPs that contribute to 
accelerating the anerobic digestion process is zero-valent 
iron NPs. In general, it has the ability to serve as an elec-
tron donor, release Fe 2+ into the anaerobic system, assist 
in the creation of vital enzymes, enhance total hydrogen 

Table 1   Effects of iron nanoparticles on the performance of biogas production process and effluent quality

NPs type NPs Size, nm Concentrations of NPs Substrate type HRT, day Temper-
ature 
(°C)

Main effect Reference

Fe3O4 7 20 mg/L Cattle manure 40 37 667 ml Biogas production during the first 
6 days compared to same production 
over 40 days in control

[70]

Fe2O3 20–40 20 and 100 mg/L Cattle manure 30 38 Reduce the time required to achieve the 
highest biogas production compared 
with the control

[72]

40 1500 mg/L Cattle manure 200 h 30 Not inhibitory the methanogens bacteria [73]
Fe 9 5 mg/L Cattle manure 50 37 45% increase in biogas production, 59% 

increase in methane production
[58, 71]

10 mg/L
20 mg/L

Fe3O4 20–40 100 mg/L Cattle manure 30 38 CH4 formation rate increase by 19.74% [50]
Fe2O3 20–40 20 mg/L Cattle manure 12 38 CH4 formation rate increase by 22.40% [73]
Fe 435.1 15–60 Cattle manure 30 37 118.8% Increased in CH4 yield,

81–110% Decrease in H2S production 
rate, and improved the effluent quality 
compared with control

[74]



Vol:.(1234567890)

Review Paper	 SN Applied Sciences           (2022) 4:332  | https://doi.org/10.1007/s42452-022-05222-6

methanogen consumption, change the type of hydrolysis 
fermentation, and increase acetic acid content [75, 84–86].

To start, the mechanism of Fe NPs in anerobic digestion 
is that they release two electrons, Eq. (1), upon oxidation. 
The hydrogenation process is favored by the anaerobic cir-
cumstances created by the electron releases. Inorganic CO2 
Eq. (2) or acids Eq. (3) can also absorb it to boost CH4 produc-
tion. In addition, corrosion can convert Fe NPs to H2 (4). H2 is 
necessary for the conversion of CO2 during methanogenesis 
[87].

(1)Fe
0
→ Fe

2+
+ 2e

−

(2)4H
2
+ CO

2
→ CH

4
+ 2H

2
O

2.1 � Influences of iron nanoparticles on gas yield

Table 1 presents the effects of iron (Fe) nanoparticles on 
the performance of the biogas production process and 
effluent quality under different process conditions. It is 
clearly seen that the Fe NPs can be used in the form of Fe, 
Fe2O3, and Fe3O4 where their effect varies according to NPs 
concentration, size, process temperature, and substrate 
type. The possible reason for that is the difference in the 

(3)4CH
3
COOH → CH

4
+ CO

2

(4)Fe
0
+ H

2
0 → Fe

2+
+ H

2
+ 2OH

−

Table 2   Effects of nickel nanoparticles on the performance of biogas production process and effluent quality

NPs type NPs Size, nm Concentrations of NPs Substrate type HRT, day Temper-
ature 
(°C)

Main effect Reference

Ni 7–9 20 mg/L Cattle manure 50 37 Highest CH4 percent by 72% [71]
160 0.1 wW Sludge 30 37 25.2% Increased CH4 yield [75]
50–70 1500 mg/L Sludge 30 29.55% Increased biogas yield [34]
30–80 12 mg/L Poultry litter 69 – 10.7% Decreased H2S production [76]
17 2 mg/L Cattle manure 40 37 667 ml Biogas production during first 

5 days compared to same production 
over 40 days in control

[70]

20 2 mg/L Cattle manure 50 37 74.2% Increased in specific biogas pro-
duction

[70]

- 200 mg/g-TSS Sludge 12 35 96% Decreased CH4 volume [77]
100 5–10 mg/KgVS Sludge – 37 Increase methane production up to 10% [78]
65–114 1–4 mg/L Cattle manure 30 37 70.46% Increase CH4 production, 90.47% 

Decreased H2s yield, and stronger 
fertilizer values

[79]

Table 3   Effects of cobalt nanoparticles on the performance of biogas production process and effluent quality

NPs type NPs Size, nm Concentrations of NPs Substrate type HRT, day Temper-
ature 
(°C)

Main effect Reference

Co 20 2 mg/L Cattle manure 50 37 74.2% Increased in specific biogas pro-
duction

[71]

– 200 mg/g-TSS Sludge 12 35 96% Decreased CH4 volume [80]
30–80 5.7 mg/L Poultry litter 69 – 6.3% Decreased H2S production [76]
28 1 mg/L Cattle manure 40 37 667 ml Biogas production during first 

7 days compared to same production 
over 40 days in control

[70]

20 2 mg/L Cattle manure 50 37 14% Decreased in specific CH4 production [58]
70–104 1–3 mg/L Cattle manure 30 37 Improved the hydrolysis rate by 66.66–

144%, the effluent with Co NPs showed 
remarkable fertility

[81]
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chemical composition of the substrate and the mechanism 
of the NPs applied.

For evaluating anaerobic digestion efficacy, biogas and 
CH4 production are essential metrics [75, 88]. Abdelsalam 
et al. [71] examined the effect of Fe NPs on biogas produc-
tion and CH4 content using cattle manure at a mesophilic 
temperature (37 °C). By achieving a 44–45% higher biogas 
yield than the control (without additives) and a 37.6–59.5% 
higher CH4 yield than the control, they showed that Fe NPs, 
at the observed concentrations (5–30 mg Fe NPs/L), had 
a beneficial effect on control. The authors claims that Fe 
NP additions might enhance CH4 production in two dif-
ferent ways. Fe NPs initially helped with acetate synthesis. 
Second, in the conversion of CO2 to CH4, Fe NPs serve as 
electron donors.

When cattle manure was treated with 20  mg/L Fe 
NPs and 20 mg/L Fe3O4 NPs, biogas and CH4 production 
increased by 50, 67 and 70, 116%, respectively, compared 
to a control experiment [70]. In order to evaluate the 

addition of Fe2O3 NPs to cattle manure at concentrations 
of 20 and 100 mg/L, Farghali et al. [72] utilised batch test-
ing. The aforementioned changes enhanced the biogas 
and CH4 yield by 9.0, 11.1%, and 15.1% and 19.1%, respec-
tively, above the control condition.

Later, the same study examined various Fe (waste iron 
powder (WIPs) and Fe NPs) at various doses (100, 500, and 
1000 mg/L) in the anaerobic digestion of cattle manure. 
The results showed that Fe NPs enhanced CH4 produc-
tion by 18.4–56.9% in comparison to the control condi-
tion. They also showed that WIP had an edge over interim 
CH4 yields from Fe NPs [50]. According to another study 
by Juntupally et al. [89], the production of biogas was 
said to rise by 48.57% when Fe3O4 NPs were added. The 
biogas production from sludge and slurry was 30.4% and 
45.3%, respectively, with Fe NPs at 10 mg/L and 20 mg/L, 
according to Abdelwahab et al. [74]. This is greater than 
the biogas production from sludge and slurry with Fe NPs 
at 15 mg/L, which was enhanced by 64.10%. Additionally, 

Table 4   Effects of nanoparticle combinations on the performance of biogas production process and effluent quality

NPs type NPs Size, nm Concentration of NP 
combinations

Substrate type HRT, day Tem-
perature 
(°C)

Effect Reference

Fe2O3 and TiO2 25 100 mg/L 
Fe2O3 + 500 mg/L 
TiO2

Cattle manure 30 38 62% H2S reduction 
efficiency

[72]

20 mg/L 
Fe2O3 + 500 mg/L 
TiO2

54% H2S reduction 
efficiency

[72]

Fe, Ni, and Co 55 100 mg/L 
Fe + 12 mg/L 
Ni + 5.4 mg/L Co

Poultry litter 79 37 Not effect in CH4 
production

[76]

200 mg/L 
Fe + 24 mg/L 
Ni + 10.8 mg/L Co

8.6% Increase CH4 
production

[76]

400 mg/L 
Fe + 48 mg/L 
Ni + 21.6 mg/L Co

7.8% Increase CH4 
production

[76]

1000 mg/L 
Fe + 120 mg/L 
Ni + 54 mg/L Co

Not effect in CH4 
production

[76]

nZVI and zeolite 45 nZVI, 7 μm zeolite 500 mg/L 
nZVI + 4 g/L zeolite

Domestic sludge 14 37 74% CH4 content 
compared with 
22% in control 
experiment

[82]

iron oxide and 
zeolite

20 nm iron oxide 
NPs coated on 
0.5–1 mm zeolite

Provide (2 mM) 
1120 mg/L Fe ele-
ment

Cattle manure – 35 372.85% increase 
in cumulative CH4 
production

[83]

Fe, Ni, Co 103–116 Fe NPs, 
65–114 Ni NPs, 
70–104 Co NPs

30 mg/L Fe 
NPs + 2 mg/L Ni 
NPs + 1 mg/L Co 
NPs

Cattle manure 15 37 14.61% increase in 
biogas production, 
19.3% increase in 
CH4 production, 
and H2S produc-
tion decreased by 
35.01%

[69]
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the addition of 30 mg/L Fe NPs enhanced cumulative CH4 
production by 118.8%, exceeding the sludge production, 
which was 43.5%, 40.4%, and 30% with 20 g/L, 1 g/L, and 
11.6 g/L Fe NPs, respectively [77, 90, 91].

This showed that the addition of Fe NP additions 
increased the production of CH4 by releasing two elec-
trons as a result of oxidation to Fe + 2 under anaerobic 
conditions [92]. Inorganic CO2 or acids may consume the 
electrons that Fe releases, accelerating the hydrogenation 
process and resulting in the production of additional CH4 
[93].

Numerous issues are brought on by the presence of 
impurities in biogas, such as H2S and CO2 [94–96]. H2S 
concentrations in biogas range from 10 to 10,000 ppm, 
depending on the kind of substrate. Increased levels of 
H2S (200 ppm) in biogas [94] result in a variety of prob-
lems, including harm to people and animals [35, 95] and a 
decrease in the calorific value of the fuel [94–96].

Several well-known biological and chemical techniques 
as well as other tactics have been utilized to lower the H2S 
content in biogas [96, 97]. Post-H2S removal techniques, 
however, are pricy, need for chemical handling, and lack 
long-term stability [98]. Fe NPs additives are potential 
adsorbents because of their qualities including high reac-
tivity and adsorption capability [93, 99]. On the effect of 
Fe2O3 NPs on H2S production from cattle manure anaero-
bic digestion, Farghali et al. [72] concentrated their atten-
tion. By adding 20 and 100 mg/L of Fe2O3 NPs, H2S produc-
tion was decreased by 53.02 and 57.93%, respectively, in 
contrast to the control condition.

Farghali et al. [50], adding 100, 500, and 1000 mg/L 
Fe2O3 NPs to the anaerobic digestion of cattle manure 
decreased H2S production by 33.59%, 46.30%, and 
53.52%, respectively, in comparison to the control con-
dition. In a different investigation, the production of H2S 
was decreased by 93 and 99%, respectively, when 2000 
and 8000 mg/L iron powder were added to the anaero-
bic digestion of cattle manure [100]. Later research by 
Abdelwahab et al. [74] showed that the cumulative H2S 
production of 15, 30, and 60 mg/L Fe NPs was reduced by 
81.8%, 93%, and 110.5%, respectively, when compared to 
cattle manure alone. According to Su et al. [101], 0.1 wt.% 
Fe NPs (size, 20 nm) decreased H2S production by 98%. 
Additionally, H2S removal efficiency improved along with 
the rise in Fe NPs concentrations, peaking at 60 mg/L Fe 
NPs concentration (52.5%). In the concentration range of 
2–20 g/L waste iron powder, Andriamanohiarisoamanana 
et  al. [100] observed a 93.3–99% improvement in H2S 
removal efficacy. These findings showed that a decrease 
in H2S production during Sulfate-Reducing Bacteria sup-
pression throughout the anaerobic digestion process, 
along with an increase in H2S redaction, might be the 
cause [100].

2.2 � Influences of iron nanoparticles 
on fundamental mechanisms of anaerobic 
digestion process

Suanon et al. [75] state that VFAs, pH, TA, TS, and VS are 
all significant factors that affect the fermentation pro-
cess. VFAs with short carboxylic chains (C2-C6) are an 
important intermediate product in the development of 
anaerobic digestion, to start [102–104]. Farghali et al. 
[72] examined the impact of Fe2O3 NPs on VFA content at 
two concentrations of 20 mg/L and 100 mg/L during the 
anaerobic digestion of cattle manure. According to the 
findings, neither of the Fe2O3 NP concentrations treated 
the VFAs significantly differently from the control. The 
CH4 levels for the aforementioned additions were 55.97 
and 58.86% throughout the 30-day fermentation period, 
compared to 53.68% for the control, indicating that the 
Fe2O3 NPs may have sped up the use of VFAs, leading to 
increased CH4 production [50, 105].

The effect of Fe NPs on VFAs at three concentrations 
is investigated by Abdelwahab et al. [74]. The findings 
showed that there were three phases to the variation in 
VFAs. With the treatment with 60 mg/L Fe NPs and only 
cattle manure, the VFAs concentration initially exhibited 
a small rise trend over the first 10 days of the digestion 
period. This suggested that the application of Fe NPs at 
a concentration of 60 mg/L might modestly reduce the 
activity of hydrolyzed acidifying bacteria. In contrast to 
cattle manure alone, the presence of 15 and 30 mg/L of 
Fe NPs revealed a minor decreasing tendency. The VFAs 
content showed a fast downward trend in the second 
stage (days 10–20 of the digesting period) for all Fe 
NPs additions, with the maximum VFAs degradation of 
2850 mg/L with 30 mg/L of Fe NPs.

These findings concur with those of Jia et al. [106], 
who found that throughout the experimental period, 
500 mg/L Fe NPs temporarily reduce the concentration 
of VFAs for a period of time (35 days). This showed that i) 
the Fe NPs functioned as an efficient electron donor for 
microbial metabolism once microorganisms acclimated 
to the environment [90]; and (ii) the addition of trace 
elements like Fe may reduce the initial VFAs cumula-
tion during the anaerobic digestion [107, 108]. The VFAs 
concentration increased with all Fe NP concentrations in 
the final stage (during the last 10 days of the digestion 
period), reaching its maximum value of 4050 mg/L for 
15 mg/L Fe NPs. The reduction in total alkalinity may be 
the cause of the increase in VFAs in the final stage. The 
daily biogas production and pH value decreasing during 
the final stage may be related to the growth and accu-
mulation of VFAs. The production of biogas and pH both 
decreased when VFAs concentrations rose and accumu-
lated [83, 109].
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According to Ugwu and Enweremadu, [110] and 
Abdelwahab et al. [74], pH and TA are crucial elements 
throughout the anaerobic digestion process, and it is 
important to monitor their levels in order to maintain 
both the stability of the anaerobic digestion process and 
good metabolic condition. 6.8–7.2 is the suggested pH 
range for anaerobic digestion microbiological develop-
ment [111]. The availability of iron ions when Fe NPs are 
dissolved in an aqueous solution depends on pH [112, 
113]. Additionally, the substrate being digested and the 
size and concentration of Fe NPs affect the dynamic shift 
in pH during anaerobic digestion [75, 82, 88, 112–114]. The 
pH increased at the beginning of the anaerobic digestion 
and gradually decreased, but it didn’t drop below 7.0 until 
the process was finished [75, 88, 115]. The addition of Fe 
NPs, according to the authors, may have increased pH at 
the beginning of the anaerobic digestion in two different 
ways: first, according to Eq. (1), Fe NPs were oxidised to 
Fe+2; second, according to Eq. (2), the reaction between Fe 
NPs and organic substances, like CO2, may have increased 
pH [114].

On the other hand, the fluctuations in pH have a direct 
effect on the level of TA during anaerobic digestion. The 
average TA concentrations were 4643, 4756, 4581, and 
4518 mg CaCo3/L, respectively, according to Abdelwahab 
et al. [74], with Fe NPs added at 15, 30, and 60 mg/L and 
control. The substrate that had been treated with 30 mg/L 
Fe NPs showed an increase in TA concentration. Suanon 
et al. [75] observed that the TA content showed that meth-
anogen bacteria were consuming VFAs, which led to an 
increase in CH4 production [114].

The decomposition of organic materials by bacteria 
during anaerobic digestion leads to a decline in the solid. 
Either TS or VS removal is used to express it [115]. Three Fe 
NP doses (5, 10, and 20 mg/L) were examined by Abdel-
salam et al. [71] to see how they affected the effectiveness 
of removing TS and VS from cattle manure. The greatest TS 
and VS removal performance was seen with 25 and 20%, 
respectively, at the conclusion of the experiment when the 
substrate was treated with 20 mg/L Fe NPs. In a similar 
manner, Farghali et al. [72] investigated the impact of add-
ing Fe2O3 NPs on the effectiveness of removing TS and VS, 
and they found that the VS removal efficiency of 20 and 
100 mg/L Fe2O3 NPs was 49.0% and 54.5%, respectively. 
On the TS removal efficiency, there isn’t any information 
on a substantial difference. Additionally, a higher concen-
tration of Fe NPs enhanced the clearance effectiveness of 
TS and VS. While Abdelsalam et al. [70] found that add-
ing 20 mg/L of Fe3O4 NPs to the substrate (cattle manure) 
boosted the TS and VS removal effectiveness by 30% and 
23%, respectively.

When the substrate (cattle manure) was treated with 
500 mg/L Fe3O4 NPs, Farghali et al. observed that the TS 

and VS removal efficiency increased by 66 and 50.31%, 
respectively. The TS removal efficiencies of control, 15, 30, 
and 60 mg/L Fe NPs were 12.0%, 25.6%, 24.0%, and 20.7%, 
respectively [74]. These results are in agreement with 
those of Ali et al. [116], who showed that the TS removal 
effectiveness of the control (municipal solid waste-only), 
50, 75, 100, and 125 mg/L Fe3O4 was 19.2%, 38.2%, 50.3%, 
29.4%, and 27.4%, respectively. Additionally, for control, 
15, 30, and 60 mg/L Fe NPs, the VS removal efficiency 
was 7.2%, 10.5%, 9.9%, and 9.6%, respectively. The VS 
removal effectiveness of control, 20, and 100 mg/L Fe2O3 
was found to be 47.38%, 49.0%, and 54.5%, respectively. 
These results are in line with those of Farghali et al. [72], 
who also obtained similar results. Fe NPs improved the rate 
of decomposition of organic materials by enhancing the 
ability of methanogens bacteria to break down organic 
materials, as seen by changes in TS and VS levels with Fe 
NP usage.

2.3 � Fertility evaluation of effluent containing iron 
nanoparticles

The availability of nitrogen (N), phosphorous (P), and 
potassium (K) in organic material was increased by micro-
bial breakdown during digestion, enabling the effluent to 
be utilized as fertilizer alone or as a useful component of 
commercial fertilizers [117, 118]. NPK organic compound 
fertilizers have the potential to greatly enhance the 
physio-chemical properties of soil, enhancing the devel-
opment of soil aggregate structure and raising the level 
of nutrient activation [119]. To determine the viability of 
using effluent containing Fe NPs as fertilizers, the effluent 
NPK content was assessed for various Fe NPs concentra-
tions. With 15, 30, and 60 mg/L Fe NPs, the effluent NPK 
level was 5.84%, 5.70%, and 5.90%, respectively [120]. 
These effluents can be used as effective and promising 
organic fertilizer components since the NPK level of all Fe 
NPs effluents was close to the NPK content of bioorganic 
fertilizers.

3 � Nickel nanoparticles

The bacteria use Ni as a track element throughout the 
anaerobic digestion process [121]. Ni is essential for the 
functioning of several hydrogenases, making it essential 
for both methanogenic and acidogenic bacteria [122]. 
CO dehydrogenase/acetyl-CoA synthase (Methanogens/
Homoacetogens) and Methyl-CoM-reducates (Methano-
gens) are two instances of enzymes whose expression is 
influenced by Ni [55, 123, 124]. The cofactor F430, which 
is required for the methyl reductases complex to operate 



Vol:.(1234567890)

Review Paper	 SN Applied Sciences           (2022) 4:332  | https://doi.org/10.1007/s42452-022-05222-6

and catalyse the last stage of the CH4 production process, 
also contains Ni [125].

3.1 � Impacts of nickel nanoparticles on gas yield

Table 2 presents the effects of Ni NPs on the performance 
of the biogas production process and effluent quality 
under different process conditions. It is clearly seen that 
the effect Ni NPs is vary according to NPs concentration, 
size, process temperature, and substrate type.

Cattle manure was used in Abdelsalam et al. [58] inves-
tigation of the effect of Ni NPs on the production of biogas 
and CH4 at a mesophilic temperature (37 °C). By achieving 
a 46.4–74.2% higher biogas production in anaerobic diges-
tion and a 49.0–100% higher CH4 yield compared to the 
control, they demonstrated that Ni NPs had a beneficial 
impact on cattle manure at the investigated concentra-
tion (0.5–2 mg/L). Furthermore, when the cattle manure 
was exposed to 0.5, 1, and 2 mg/L Ni NPs, respectively, the 
biogas production enhanced with the equivalent dosage 
of Ni NPs, reaching 486.7, 503.3, and 520 mL biogas on 
the first day. In the control experiment, which simply used 
cattle manure, the lag period lasted 11 days and produced 
just 416.7 mL of biogas. These results are in line with those 
of Abdelsalam et al. [70], who found that cattle manure 
exposed to 2 mg/L Ni NPs resulted in the highest biogas 
startup, producing 658 mL biogas (on average over the 
first five days of digestion), while 1 mg/L Co NPs, 20 mg/L 
Fe NPs, and 20 mg/L Fe3O4 NPs produced 596, 580, and 
633.3 mL biogas,

The concentration of Ni NPs present, and the kind of 
substrate are important factors in the anaerobic digestion 
process [70, 71]. At three dosages of 3, 6, and 12 mg/L Ni 
NPs, Hassanein et al. [76] examined the effect of Ni NPs 
on CH4 production from poultry litter. In comparison to 
the control experiment, the addition of 12 mg/L Ni NPs 
increased CH4 production by 38.48%, resulting in 261 mL 
CH4/g VS over the first 10 days as opposed to the same 
CH4/g VS production over 69 days. In addition, within 
the first 29 days, 95.1% of the CH4 produced by Ni NPs 
(12 mg/L) was produced. Similar results were found by 
Abdelwahab et al. [79], who found that adding 1, 2, and 
4 mg/L of Ni NPs to cattle manure increased CH4 produc-
tion by 17.32%, 70.46%, and 53.79%, respectively, in com-
parison to using cattle manure only. He et al. [80] looked 
at how Ni NPs affected the production of CH4 from sludge. 
Four different doses of Ni NPs were used: 1, 50, 200, and 
600 mg/g-TSS (total suspended solids). The results showed 
that the CH4 production was unaffected by the addition 
of 1 mg/g-TSS Ni NPs. As the dosage of Ni NPs was raised 
to 50 mg/g-TSS and above, there were adverse impacts 
on the CH4 yield. The CH4 yield was decreased by 89.3%, 

84.33%, and 56.43%, respectively, when the substrates 
were treated with 50, 200, and 600 mg/g-TSS.

The bioavailability of methanogens was increased as 
a result of the majority of Ni potentially forming soluble 
organic complexes with specific amino acids [35]; addi-
tionally, Ni is a necessary component of the low molecu-
lar weight coenzyme F430, which uses two coenzymes-
methyl thioether methyl coenzyme M and thiol coenzyme 
B-as substrates for the production of CH4 in all methano-
gens [15, 126].

To examine the effect of Ni NPs on impurities like H2S 
and CO2 in the biogas, Hassanein et al. [76] studied the 
effect of three concentrations of Ni NPs (3, 6, and 12 Ni 
NPs) on the cumulative H2S production of poultry lit-
ter. There was no discernible change in H2S production 
between the substrate treated with 6 mg/L Ni NPs and the 
control condition (poultry litter only). The yield of H2S was 
shown to be negatively impacted (10.7% increase) when 
the substrate was treated with 12 mg/L of Ni NPs. The pro-
duction of H2S improved when the substrate was exposed 
to 3 mg/L Ni NPs (5.9% decrease). In a different investiga-
tion, Abdelwahab et al. [79] showed that adding 2 mg/L Ni 
NPs to the cattle manure increased H2S removal efficiency 
by 47.5%. Ni NPs had a 14.16% and a 34.16% removal effi-
ciency at 1 and 4 mg/L, respectively.

These findings showed that all treated bio-digesters’ 
H2S production were successfully reduced by Ni NPs. The 
precipitation of metal sulfides, such as nickel sulfide (NiS) 
[78, 127, 128], may have reduced the amount of H2S yield.

3.2 � Impacts of nickel nanoparticles on fundamental 
mechanisms of anaerobic digestion process

With a focus on the impact of Ni NPs on the stability of the 
anaerobic digestion process, Tsapekos et al. [78] investi-
gated the effects of Ni NPs on pH, TA, and VFAs during the 
anaerobic digestion of sewage sludge at two concentra-
tions (5 and 10 mg/Kg VS). To begin with, neither the pH 
nor the TA values of the treatment significantly deviated 
from those of the control. The author posits that the use 
of a significant amount of anaerobic inoculum may be the 
cause of the absence of significant changes [78].

Abdelwahab et al. [78], there are two phases to the pH 
shifts that occur at three concentrations of Ni NPs (1, 2, and 
4 mg/L). The pH increased during the first stage, which lasted 
from the beginning of the experiment to day 20. Addition-
ally, the greatest pH value of 7.3 was observed on Day 20 
with 2 and 4 mg/L Ni NPs. The widespread usage of VFAs 
in anaerobic digestion systems, the oxidation of Ni to Ni+2, 
and an interaction between Ni and organic molecules in the 
medium are all possible causes of the pH rise. The substrate 
under anaerobic digestion will lose hydrogen ions (H+) as 
a result of the aforementioned reaction, raising the pH of 
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the substrate. Additionally, CO2 capture will prevent (H2CO3) 
from forming inside the substrate, which will raise the pH 
[88]. The pH drops throughout the second stage (from days 
20 until shut down), mostly due to the accumulation of VFAs 
[114].

Additionally, the accumulation of VFAs showed a marked 
difference. VFAs in the form of acetate in (mg/L) were 
degraded by 1.39 and 1.38 times, respectively, when the 
substrates were treated with 5 and 10 mg Ni NPs/Kg VS and 
compared to an untreated substrate (control).

The effects of three different Ni NP concentrations (0.5, 
1, and 2 mg/L) on the redaction of the TS and VS during the 
anaerobic digestion of cattle manure were investigated 
by Abdelsalam et al. [58]. The greatest TS and VS removal 
efficiency was achieved when the substrate was exposed 
to 2 mg/L Ni NPs, with final removal efficiencies of 33.3% 
and 26.3%, respectively. When the substrate (cattle manure) 
was treated with 2 mg/L Ni NPs, Abdelsalam et al. [70] found 
that the greatest TS and VS removal efficiency was achieved, 
with 28.0% and 20.4%, respectively. The removal efficiency 
of 1 mg/L Co NPs and 20 mg/L Fe NPs in TS and VS was 
10.3% and 14.2%, respectively, but it was 23% and 20.4% 
for those two substances in VS. These results support those 
of Abdelwahab et al. [79] which reported that cattle manure 
alone, 1, 2, and 4 mg/L Ni NPs had TS removal efficiencies of 
12.0%, 17.7%, 19.2%, and 16.2%, respectively. Additionally, 
for 1, 2, and 4 mg/L Ni NPs, the VS removal efficiencies were 
7.2, 11.5, 12.1, and 10.6%, respectively.

3.3 � Fertility evaluation of effluent containing nickel 
nanoparticles

For Ni NPs at 1, 2, and 4 mg/L, respectively, the digestates 
included 5.94%, 5.88%, and 5.86% NPK [79]. Bioorganic fer-
tilizers should contain an NPK content of more than 5%, per 
the Indian Institute of Soil Science and the Indian Council of 
Agricultural Research. As a result, these digestates have excel-
lent organic fertilizer components. Additionally, digestates 
had a greater TN (total nitrogen) than commercial bioorganic 
fertilizers and nutritional qualities that were equivalent to 
those of such fertilizers. The evidence points to the suitability 
of these digestates for soils with low nitrogen levels. Con-
versely, the TK (total potassium) content of these digestates 
was lower than that of commercial bio-organic fertilizer, a 
finding that was in line with the findings of fertility tests con-
ducted on other cattle manure digestates [129, 130].

4 � Cobalt nanoparticles

Cobalt has been shown to be an important trace mineral 
for the growth of methanogenic bacteria throughout 
the anaerobic digestion process [121]. Because cobalt 

is a protein cofactor of vitamin [131], it is necessary for 
methanogenic bacteria to break down methanol. Fur-
thermore, it is considered that the use of Co is a key com-
ponent in the oxidation of acetate to CO2 and H2, which 
leads to the hydrogenotrophic methanogenic process 
[55, 132].

4.1 � Effects of cobalt nanoparticles on gas yield

Table 3 presents the effects of Co NPs on the perfor-
mance of the biogas production process and effluent 
quality under different process conditions. It is clearly 
seen that the difference in the chemical composition of 
substrate and process condition makes the effect of Co 
NPs vary on biogas production.

Using a batch anaerobic digestion system, Abdelsalam 
et al. [70] investigated the effects of Co NPs (20 nm) on 
the production of biogas and CH4 from cattle manure. 
When compared to the control, cumulative biogas pro-
duction increased by 36.5 and 64.12%, respectively, 
when the substrate was treated with 0.5 and 1 mg/L Co 
NPs. These results are in line with those of Zaidi et al. 
[133], who found that adding Co NPs at a concentration 
of 1 mg/L during the anaerobic digestion of green micro-
algae increased biogas production by 9% in comparison 
to the control trial. The previously described decrease 
the amount of time needed to obtain maximal biogas 
and CH4 production.

However, the addition of 2 mg/L Co NPs decreased the 
production of both biogas and CH4 by 5.2 and 14.54%, 
respectively, in comparison to the control condition. 
Poultry litter with 1, 4, or 5.4 mg/L of Co NPs increased 
CH4 production by 29, 26, and 30%, respectively [76]. 
Another research examined the effects of 1 mg/L Co 
NPs on anaerobic digestion using cattle manure as the 
substrate. In comparison to the control, biogas and CH4 
production have increased by 71.2 and 45.9%, respec-
tively [70].

Abdelwhab et al. [81] found that the presence of 1 
and 2 mg/L Co NPs enhanced cumulative biogas yield 
by 6.83% and 14.81%, respectively, when compared 
to control. When compared to cattle manure only, the 
cumulative biogas production did not significantly dif-
fer with 3 mg/L Co NPs. The addition of 1, 2, and 3 mg/L 
of Co NPs enhanced CH4 production by 79.12%, 56.37%, 
and 54.65%, respectively, as compared to cattle manure 
alone. Additionally, when 2 mg/L and 3 mg/L of Co NPs 
were added to the substrate, no noticeable variations 
in CH4 production were found. These results back up 
those made public by Zandvoort et al. [134], who found 
that the optimal dosage of Co is 0.8 mg/L. Additionally, 
the greatest CH4 yield was attained when the substrate 
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was exposed to 1 mg/L Co NPs, which is line with the 
observations of Abdelsalam et al. [70], who found that 
the presence of 1 mg/L Co NPs increased CH4 production 
by 86% in comparison to the control condition (manure 
without NP additives). Additionally, the increase in CH4 
generated by 1 mg/L Co was in line with the results of 
Qiang et al. [135], Demirel and Scherer [130], and Feng 
et al. [136], all of whom reached the conclusion that Co is 
a crucial metal for methanogenesis because it functions 
as a metallic enzyme activator.

Hassanein et al. [76] investigation of the effects of Co 
NPs on H2S production in biogas and anaerobic diges-
tion process stability employed poultry litter in a meso-
philic condition. They found that Co NPs have a benefi-
cial effect on H2S production in the tested concentration 
range (2.7–5.4 mg/L Co NPs), with H2S production being 
5.93–8.19% higher than in the control condition. How-
ever, when the substrate was treated with 1.4 mg/L Co 
NPs compared to the control setup, no significant varia-
tion in H2S production was detected. When compared to 
cattle manure alone, cumulative H2S production of 1, 2, 
and 3 mg/L Co NPs was shown to be reduced by 15.38%, 
13.20%, and 57.89%, respectively Abdelwahab et al. [81] 
The greatest H2S removal effectiveness of 57.89% was 
attained with the addition of 3 mg/L Co NPs. At 1 mg/L 
and 2 mg/L, Co NPs showed clearance efficiencies of 15.38 
and 13.20%, respectively.

The formation of metal sulfide is one potential explana-
tion for the reduction in H2S production in this investiga-
tion [127, 128].

4.2 � Effects of cobalt nanoparticles on fundamental 
mechanisms of anaerobic digestion process

Focusing on VFA formation, TS and VS degradation 
throughout the fermentation process, Zaidi et al. [133] 
investigated the influence of 1 mg/L Co NPs on VFAs pro-
duction during the anaerobic digestion of microalgal bio-
mass after a 170 h fermentation period. The formation of 
VFA was significantly increased by the addition of 1 mg/L 
Co NPs.

Abdelsalam et al. [71] examined the impact of Co NPs in 
the concentration range of 0.5–2 mg/L on the efficiency of 
TS and VS removal in cattle manure. The maximum TS and 
VS removal efficiencies were achieved when the substrate 
was treated with 1 mg/L Co NPs, and they were 12.9% and 
17.0%, respectively.

These results are in line with those of Abdelsalam 
et al. [70], who stated that the addition of 1 mg/L Co NPs 
increased the removal efficiency of TS and VS by 10.3% and 
14.2%, respectively. As shown by the changes in TS and VS 
content following the addition of Co NPs, Co NPs acceler-
ated the degradation of organic matter by increasing the 

ability of methanogens bacteria to break down organ-
ics. The TS removal effectiveness of cattle manure, 1, 2, 
and 3 mg/L Co NPs is determined to be 12.04%, 14.81%, 
16.25%, and 14.81%, respectively, according to Abdelwhab 
et al. [81]. Additionally, 1, 2, and 3 mg/L Co NPs from cattle 
manure exhibit relative VS removal efficiencies of 11.55, 
12.16, 11.85, and 10.66%.

4.3 � Fertility evaluation of effluent containing 
cobalt nanoparticles

The total nitrogen, phosphorous, and potassium content 
of the digestate containing 1, 2, and 3 mg/L Co NPs is 
5.32%, 4.68%, and 4.63%, respectively [81]. They can be 
used in combination with an artificial compound fertilizer 
since the total nutritional content of all Co NPs concentra-
tions was close to 5%. In order to produce a high-quality 
organic compound fertilizer, the digestates were dewa-
tered and dried. With NPK organic compound fertilizer, 
which promotes the formation of soil aggregate structure 
and raises the activation of soil nutrients, the physical and 
chemical characteristics of soil may be enhanced. It is clear 
that using NPK organic compound fertilizer reduces the 
amount of water that crops use, potentially resolving the 
region’s ongoing water crisis issue. In order to produce 
an NPK organic compound fertilizer that enhances plant 
height, root length, root diameter, and dry weight, the 
anaerobic digestion digestate can be mixed with the three 
Co NPs [119].

5 � Nanoparticle combinations

A recent development in the anaerobic digestion process 
is the combination of NPs to benefit from their distinctive 
features. This section of the review focuses on how a com-
bination of NPs affects anaerobic digestion performance, 
particularly the level of H2S in the resulting biogas and 
effluent quality.

5.1 � Effects of nanoparticle combinations on gas 
yield

Table 4 presents the effects of nanoparticle combinations 
on the performance of the biogas production process 
and effluent quality under different process conditions. It 
is clearly seen that the combinations of nanoparticle can 
be used in different forms which makes the effect more 
attractive on the biogas production.

Iron, nickle, and cobalt NPs combinations have been 
shown to improve the start-up of biogas production by 
Abdelwahab et al. [69] In particular, the average biogas 
production of 30 mg/L Fe NPs + 2 mg/L Ni NPs + 1 mg/L 
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Co NPs, 30  mg/L Fe NPs + 2  mg/L Ni NPs, 30  mg/L Fe 
NPs + 1 mg/L Co NPs, and 2 mg/L Ni NPs + 1 mg/L Co NPs 
during the first five days of digestion was 41.82 mL/g 
VS (7.5% increase), 43.24  mL/g VS (12.67% increase), 
42.18 mL/g VS (8.43% increase), and 40.0 mL/g VS (2.8% 
increase), compared to 38.90 mL/g VS.

Additionally, after 30  days, there was a significant 
increase in biogas yield (25.34%) when a combination of 
30 mg/L Fe + 2 mg/L Ni + 1 mg/L Co NPs was used. There 
was also a significant increase in biogas yield (29.64%) 
when a combination of 30 mg/L Fe + 2 mg/L Ni NPs was 
used. Significant increase in biogas yield (19.68%) when a 
combination of 2 mg/L Ni + 1 mg/L Co NPs has been also 
achieved.

In a similar investigation, NP combinations of 500 mg/L 
nZVI + 4  g/L zeolite improve biogas production by 
130.87% in compared to the control [82]. Similar results 
were obtained by Abdallah et al. [137], who found that 
utilising Ni-Ferrite NPs at concentrations of 20, 70, and 
130 mg/L enhanced biogas production by 30.8%, 28.5%, 
and 17.9%, respectively, in comparison to using only cat-
tle manure. Additionally, Karlsson et al. [138] reported 
that adding a combination of the chloride salts of Fe, 
Co, and Ni to a semi-continuous biogas reactor at con-
centrations of 500 Fe mg/L + 0.5 Co mg/L + 0.25 Ni mg/L, 
respectively, enhanced the biogas production by 23.91% 
in comparison to the control. According to Farghali et al. 
[72], the addition of NP combinations including 20 mg/L 
Fe2O3 NPs + 500  mg/L TiO2 NPs and 100  mg/L Fe2O3 
NPs + 500 mg/L TiO2 NPs respectively increases biogas pro-
duction by 10.07% and 13.08% when compared to control.

Additionally, Abdelwahab et  al. [69]. found that 
the combination of 30  mg/L of Fe NPs + 2  mg/L of Ni 
NPs + 1 mg/L of Co NPs produced the highest daily CH4 
production (25.76 mL/g VS on day 10), whereas every 
other NP combination produced less CH4 on a daily basis.

Morever, the cumulative CH4 production of 30 mg/L 
Fe NPs + 2  mg/L Ni NPs + 1  mg/L Co NPs, 30  mg/L Fe 
NPs + 2 mg/L Ni NPs, 30 mg/L Fe NPs + 1 mg/L Co NPs, 
and 2 mg/L Ni NPs + 1 mg/L Co NPs were 329.37 mL/g 
VS (26.96%, increase), 318.78 mL/g VS (22.88, increase), 
297.83  mL/g VS (14.81, increase), and 311.74  mL/g VS 
(20.17%, increase), respectively, while that of the cattle 
manure-only was (259.41 mL/g VS).

In a different research, Farghali et  al. [72] found 
that the addition of NP combinations of 20  mg/L 
Fe2O3 NPs + 500  mg/L TiO2 NPs and 100  mg/L Fe2O3 
NPs + 500 mg/L TiO2 NPs raised the cumulative CH4 pro-
duction from cattle manure by 13.32% (179.68 mL/g VS) 
and 14.96% (182.29 mL/g VS), respectively. Zitomer et al. 
[139] found that the presence of the salt mixture of Fe, Ni, 
and Co to propionate-substrate and acetate-substrate at 

a concentration of 25 mg/L each enhanced CH4 produc-
tion by 12 and 17%, respectively, in comparison to control.

Hassanein et al. [76] observed a negligible difference 
between poultry litter alone (305 mL/g VS) and a low NP 
combination (321 mL/g VS), which contained a combina-
tion of 400 mg/L of Fe NPs + 12 mg/L of Ni NPs + 5.4 mg/L 
of Co NPs. According to Abdelwahab et al. [69] the pro-
duction of CH4 may be efficiently increased by adding 
NP combinations. Furthermore, Fe, Ni, and Co NPs, which 
were able to combine the properties of each element to 
increase CH4 yield, may be to responsible for the prefer-
ence of the Fe/Ni/Co NP combinations over other NP com-
bination additions and cattle manure alone. Namely, Fe 
oxidises to Fe2 + under anaerobic digestion, releasing two 
electrons. The hydrogenation pathway can be accelerated 
by the electrons released by Fe, increasing the production 
of CH4 as inorganic CO2 or acids consume them. Li et al. 
[93]. The methyl reductases complex, which catalyses the 
final stage of the CH4 producing pathway, needs cofactor 
F430, a component of Ni, in order to function Thauer et al. 
[132]. While Co is a cofactor of carbon monoxide dehy-
drogenase and methyltransferases [140] (CODH). Both 
acetogenins and methanogens contain CODH, a crucial 
enzyme for the synthesis and consumption of acetate 
Zandvoort et al. [134].

In comparison to cattle manure alone, Abdelwa-
hab et al. [69] found that NP combinations of 30 mg/L 
Fe NPs + 2  mg/L Ni NPs + 1  mg/L Co NPs, 30  mg/L Fe 
NPs + 2 mg/L Ni NPs, and 30 mg/L Fe NPs + 1 mg/L Co 
NPs considerably decreased cumulative H2S production. 
Particularly, the total H2S production was 794, 791, and 
902 ppm correspondingly, compared to 926 ppm for the 
cattle manure only. However, compared to using only 
cattle manure, the cumulative H2S production increased 
by 3.9% when the substrate was treated with NPs com-
binations of 2 mg/L Ni NPs + 1 mg/L Co NPs. In another 
study, Farghali et al. [72] found that the addition of NP 
combiations of 20 mg/L Fe2O3 NPs + 500 mg/L TiO2 NPs 
and 100 mg/L Fe2O3 NPs + 500 mg/L TiO2 NPs reduced 
the formation of H2S by 163.66% and 117.13%, respec-
tively, compared to the control. Similar to this, Hassanein 
et al. [76] found that adding NP combinations containing 
1000 mg/L of Fe NPs + 120 mg/L of Ni NPs + 54 mg/L of Co 
NPs completely eliminated H2S production. However, there 
was no discernible difference between the control and the 
lower concentration of NP combination, which contained 
100 mg/L of Fe NPs + 12 mg/L of Ni NPs + 5.4 mg/L of Co 
NPs.

According to Abdelwahab et al. [69] all NP combina-
tions showed evidence of H2S redaction. Furthermore, 
the superiority of NP combinations containing Fe NPs, 
such as 30 mg/L Fe NPs + 2 mg/L Ni NPs + 1 mg/L Co 
NPs (28.72% increase), 30 mg/L Fe NPs + 2 mg/L Ni NPs 
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(28.90% increase), and Fe NPs + 1 mg/L Co NPs (14.47% 
increase), over NP combinations containing 2 mg/L Ni 
NPs + 1 mg (3.94% decrease). These findings suggested 
that a decrease in H2S production may be caused by 
the Fe 2 + released from Fe combining with S2- during 
the anaerobic digestion process, which inhibits sulfate-
reducing bacteria [50, 70, 72, 74, 76].

5.2 � Effects of nanoparticle combinations 
on fundamental mechanisms of anaerobic 
digestion process

To start, pH values did not change from the cattle 
manure-only condition following exposure to all NP 
combinations [69]. Due to the large volume of anaero-
bic inoculum employed and the high buffer capacity of 
the biodigesters, there may not have been a discernible 
change. Tsapekos et al. [141]. According to Abdelwahab 
et al. [69] the VFAs degradation increased by 52.34%, 
47.72%, 54.76%, 47.72 and 57.25% in the control, 
30 mg/L Fe NPs + 2 mg/L Ni NPs + 1 mg/L Co NPs, 30 mg/L 
Fe NPs + 2 mg/L Ni NPs, 30 mg/L Fe NPs + 1 mg/L Co NPs. 
The TA improved by 11.90%, 9.52%, 14.28%, 20.23%, 
and 14.28% for the control, 30 mg/L Fe NPs + 2 mg/L 
Ni NPs + 1  mg/L Co NPs, 30  mg/L Fe NPs + 2  mg/L Ni 
NPs, 30 mg/L Fe NPs + 1 mg/L Co NPs, and 2 mg/L Ni 
NPs + 1 mg/L Co NPs, respectively. This suggested that 
NP combinations had a beneficial effect on digesting the 
VFAs as seen by the increase in TA of the substrate.

After a 30-day incubation period, Abdelwahab et al. [69] 
reported that the TS decrease was the same for all NP com-
binations of Fe, Ni, and Co. Along with the VS decrease in 
the control, the concentrations of 30 mg/L Fe NPs + 2 mg/L 
Ni NPs + 1  mg/L Co NPs, 30  mg/L Fe NPs + 2  mg/L Ni 
NPs, 30  mg/L Fe NPs + 1  mg/L Co NPs, and 2  mg/L Ni 
NPs + 1  mg/L Co NPs decreased by 10.95%, 16.11%, 
15.14%, 19.62%. The changes in VS content caused by the 
addition of NP combinations showed that the NP combi-
nations improved the ability of methanogenic bacteria 
to digest organics, which promoted the decomposition 
of the organic matter. These results were subordinate to 
those of Farghail et al. [72], who discovered that adding NP 
combinations of 20 mg/L Fe2O3 NPs + 500 mg/L TiO2 NPs 
and 100 mg/L Fe2O3 NPs + 500 mg/L TiO2 NPs increased the 
VS decomposition by 54.16% and 54.26%, respectively, in 
comparison to the control condition.

5.3 � Fertility evaluation of effluent containing 
nanoparticle combinations

The nitrogen, phosphorous, and potassium concentra-
tions of the digestates was 5.75%, 5.72%, and 5.95%, 

respectively, when the components Fe + Co, Fe + Ni and 
Fe + Co + Ni were combined. The Indian Institute of Soil 
Science recommends that bioorganic fertilizers have an 
NPK content that is more than 5%. As a consequence of 
this, the digestates in question are components of organic 
fertilizer that are both beneficial and potentially beneficial 
[142]. Abdelwahab et al. [120] found that the NPK con-
tent of the effluent was 5.20%, 5.36%, 5.16%, and 5.32 for 
30 mg/L Fe NPs + 2 mg/L Ni NPs + 1 mg/L Co NPs, 30 mg/L 
Fe NPs + 2 mg/L Ni NPs, 30 mg/L Fe NPs + 1 mg/L Co NPs, 
and 2 mg/L Ni NPs + 1 mg/L Co NPs combinations, respec-
tively. According to Indian Institute of Soil Science, bioor-
ganic fertilizers should have an NPK concentration greater 
than 5%. As a result, these digestates are useful and prom-
ising organic fertilizer components.

6 � Comparison of nanoparticles effects 
on average methane generation rate 
and effluent quality from anaerobic 
digestion of cattle manure

On the basis of the findings presented in above mentioned 
sections the most effective doses of NPs on average CH4 
production rate were explored and compared to others in 
Fig. 1. These dosages take the form of single NPs as well as 
its combinations. When compared to 30 mg/L of Fe NPs, 
2 mg/L of Ni NPs, and 1 mg/L of Co NPs, respectively, the 
CH4 production rate is increased by NP combinations of 
30 mg/L of Fe + 2 mg/L of Ni + 1 mg/L of Co by 25.42%, 
66.28%, and 59.29% [68, 69, 74, 79, 81, 120]. In order to 
explain these findings, it was determined that Fe, Ni, and 
Co NPs each performed a unique role in the promotion 
effects.

For particular, Fe NPs can function as an electron donor, 
release Fe 2+ into anaerobic systems, take part in the pro-
duction of important enzymes, raise total hydrogen and 
methanogen consumption, change the modes of hydroly-
sis fermentation, and increase acetic acid content [75, 84, 
85]. Because Ni is necessary for the operation of a large 
number of hydrogenases, it is required for acidogenic 
bacteria as well as methanogenic bacteria [122]). Specifi-
cally, Ni is involved in the development of enzymes such as 
CO dehydrogenase/acetyl-CoA synthase (Methanogens/
Homoacetogens) and Methyl-CoM-reeducates (Methano-
gens). These enzymes are both required for the production 
of CH4 [123, 124]. Ni is also found in the cofactor F430, 
which, according to Prakash et al. [125], is necessary for 
the proper functioning of the methyl reductases complex. 
This complex is responsible for catalysing the last step in 
the CH4 production process [126, 132]. Additionally, Co is 
required (as a protein cofactor of vitamin) for the metha-
nogenic bacteria to be able to break down methanol [131]. 
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In addition, the use of Co is regarded to be an essential 
component in the transformation of acetate into carbon 
dioxide and hydrogen gas, which ultimately results in the 
hydrogenotrophic methanogenic process [55, 132]. Take 
advantage of the one-of-a-kind characteristics that Fe, Ni, 
and Co NPs possess, which result in a greater CH4 yield 
production rate. Based on these findings, it appeared as 
though the efficiency of a bio-digester to which Fe, Ni, and 
Co had been added may benefit from the use of a combi-
nation addition method.

Additionally, the most effective dosages of NPs on fertil-
ity evaluation of the effluent were investigated and com-
pared to each other in Fig. 2. These dosages come in the 
form of single NPs as well as its combinations. In general, 
the utilization of various elements such as Fe, Ni, and Co 
at the same time led to an increase in the NPK content of 
the effluent [69, 142].

7 � Challenges and future studies

The addition of various dosages of NPs promotes anaerobic 
bacteria and Archaea activity, as well as the degradation of 
organic matter. However, accumulative residual toxicity in 
soils, such an application method may cause some environ-
mental concern due to their toxicity to bacteria in manure, 
soil, and neighbouring ecosystems. A lot more research is 
needed to be sure there aren’t any negative effects on the 
environment when using additives like Fe, Ni, and Co NPs 
in large-scale AD systems. This includes looking into how 
the NPs might affect their environment, the field where the 
digester effluent is applied, and the crops that are grown 
for humans and animals. In order to study the possibility of 
their reuse and decrease their environmental impact, Hass-
inen et al. [76, 143] studied various methods of tracking 

Fig. 1   Effect of different nano-
particle additives on average 
methane generation rate
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nanoparticles inside the digester as well as the impact of 
using effluent that contains nanoparticles on the plant. 
However, their research did not sufficiently apply to the 
large size, so more study is required to address this issue.

8 � Conclusions

The performance of anaerobic digestion with regard to 
gas production, process stability, and effluent quality can 
be affected by the addition of NPs to the anaerobic diges-
tion of cattle manure in both positive and negative ways. 
Selected significant studies from several studies utilizing 
NP additives have been reviewed and presented in order 
to better understand recent activity in this field, according 
to a state-of-the-art literature review. The following find-
ings can be taken from this review:

1.	 Single Fe, Ni, Co NPs is utilized in anaerobic diges-
tion of cattle manure at concentration of 5–100 mg/L, 
1–4 mg/L, and 1–3 mg/L to increase CH4 production.

2.	 At concentrations more than 100 mg/L, Fe NPs can be 
used to reduce H2S instead of enhancing CH4 during 
the anaerobic digestion of cattle manure.

3.	 In the case of H2S reduction, the use of single Ni and 
Co NPs in the anaerobic digestion of cattle manure is 
not recommended.

4.	 Among the single NPs, Ni NPs is preferred for stabiliz-
ing the anaerobic digestion process and improving the 
quality of the effluent.

5.	 The addition of NPs in the form of combination 
increased CH4 production, further research is required 
to determine how it effects on the quality of effluent.

6.	 Nanoparticle combinations produce better results for 
improving CH4 production when compared to adding 
NPs singly.
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