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Abstract
After the first successful large-scale demonstration of eleven self-driving vehicles at the DARPA Urban Challenge in 2007, 
research results from the competing teams found their way into advanced driver systems (ADAS) that support typical 
driving tasks like adaptive cruise control and semi-automated parking. However, as of today, SAE Level 4 vehicles are 
not commercially available yet, which would allow the driver to be inattentive for longer periods. Hence, SAE Level 3, 
which represents partial automation yet continuously monitored by a human operator, may provide a step towards a 
viable SAE Level 4 product especially for commercial freight logistics. However, large amounts of data from such freight 
operations is needed to study the unique challenges in such use cases. In this paper, we present the system and software 
architecture of an end-to-end data logging solution, which is capable of recording large volumes of high-quality data. 
The system is installed in a commercial truck that is in daily operation by a logistics company and hence, the recorded 
data is only accessible remotely (i.e., over-the-air). We report about the fail-safe system design, initial findings from over 
one year of operation, as well as our lessons learned. During its first year of operation, the truck was used for 210 days by 
the logistics company, out of which 193 days were logged resulting in more than 4.5 TB of data from five cameras, two 
GNSS–IMU sensors, and six on-board vehicle controller area networks (CAN) busses. We demonstrate the value of the 
proposed end-to-end approach for traffic and driver behavior research by analyzing the uploaded data in the cloud to 
spot critical events such as unexpected harsh braking maneuvers caused by lane merging operations.
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1 Introduction

The automotive industry is focusing enormous amounts 
of resources in the areas of autonomous driving, external 
vehicular communication, and remote monitoring and 
deployment of software. These recent developments dem-
onstrate the growing need of a better understanding of 
how products are being used in the field; not only retroac-
tively during regular workshop visits where relevant data 

logs can be downloaded and handed back to the manu-
facturer, but rather in real-time allowing a closer tracking 
of the performance and system health.

1.1  Background

The self-driving vehicles that competed in the 2007 
DARPA Urban Challenge were very tailored to that com-
petition and could only succeed in a few, very specialized 
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and selected demonstration scenarios. Even though, the 
potential of the technology for improving safety on public 
roads by aiming at taking out the human driver was clearly 
visible. Nevertheless, the majority of the teams as outlined 
by Buehler et al. and Berger and Rumpe (cf. [1, 2]) realized 
their technical approach by a three stages, pipes-and-fil-
ters data processing architecture: (A) perception layer that 
is interfacing with all sensors and the vehicle network 
to fuse the data into objects, (B) decision making that is 
receiving the aforementioned objects for safe path plan-
ning, and (C) low-level control that is selecting the most 
suitable trajectory from the previous layer to actuate the 
vehicle according to criteria such as safety and comfort.

One advantage of the aforementioned architectural 
design resides in the clear separation-of-concerns of the 
various aspects for coming up with a driving decision that, 
back in those days, was primarily motivated by analytical 
decisions codified into software. While the three stages 
design enabled the teams to more easily debug and fine-
tune their systems to better meet the expectations from 
the competition with its simplifications, none of the con-
testants’ robot vehicles would be able to manage traffic 
on public roads anywhere on the world to meet SAE Level 
5 requirements. However, a different architectural design 
was emerging enabled by a paradigm shift in hardware-
accelerated mass data computation by using GPUs com-
plementary to CPUs. Thereby, a different approach to bet-
ter cope with the sheer unboundedness of the variability 
and unstructuredness of sensor data from real-world 
traffic situations was enabled and approached by letting 
the computer figure out an appropriate algorithm by pro-
viding partially annotated input data and expected out-
put behaviour. This trend of using AI/ML to significantly 
improve the performance of the perception layer has 
shown remarkable success both, in scientific publications 
such as Bojarski et al. (cf. [3]), and in demonstrations on 
public roads.

The main driver, though, for a primarily data-ori-
ented architectural design is the access to sufficient, 
high-quality data to systematically evaluate the qual-
ity of the automatically generated AI/ML algorithms. 
However, determining the aforementioned attributes 
for the data set in use to train and test such algorithms 
is so far academically hard and economically challeng-
ing. Nevertheless, start-ups and long-term, established 
vehicle OEMs are equipping prototypical vehicles to col-
lect large amounts of data to fuel the engineering pipe-
lines for such AI/ML algorithms. However, commercially 
available data logging solutions mainly specialize in 
high-frequency, low-volume signals as found on typical 

vehicle controller area networks (CAN) to collect data 
such as acceleration, temperature, velocities, or pressure. 
In addition, customized data loggers for high-volume 
data from cameras or lidars typically require additional 
logistical procedures for data ingress to a cloud-enabled 
data analytics environment such as swapping physical 
data disks or downloading data using wired connections.

1.2  Problem domain and motivation

As outlined in the previous section, commercially viable 
solutions for logging high-frequency and high-volume 
data by using only cellular connections are missing. 
Therefore, we are aiming at providing a design for a 
data logger that is especially addressing the aforemen-
tioned use case. The solution presented in this paper was 
designed in the project Highly Automated Freight Trans-
ports (AutoFreight), a research and technology transfer 
project between Chalmers University of Technology 
(Chalmers), Kerry Logistics Sweden AB, Volvo Group, 
Trafikverket, Ellos Group AB, Combitech, Borås stad, 
Speed Group AB, and GDL Transport AB in Sweden. The 
motivation for the research project “AutoFreight” is to 
better understand prerequisites and constraints towards 
highly automated driving (SAE Level 4) on public roads 
(for example: highways). The project is based on two 
trucks, where one is used for experimentation on con-
fined test sites, while the other truck is primarily used for 
collecting data for an a posteriori data analysis. Chalmers 
led the design and installation of the logging system for 
the second truck that was handed back to the logistics 
company for daily operations since October 2019.

1.3  Research goal and research questions

The research goal for this paper was to design and 
evaluate a data logging solution that is able to reliably 
provide services to collect data from multiple cameras, 
GNSS–IMU, and vehicular on-board networks. A specific 
requirement for this solution was that the data exchange 
for post-processing needed to be realized solely via cel-
lular connections as the truck was inaccessible to the 
research team due to its daily operation by a logistics 
company. Hence, the following research questions are 
addressed: 

RQ-1  How does a reliable system design meet the afore-
mentioned research goal?
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RQ-2  What experiences and lessons learned can be 
reported from one full year of operation?

1.4  Contributions

This paper presents and discusses design drivers and 
resulting decisions behind the system setup and config-
uration. As the project benefitted extensively from pre-
vious research results obtained at the Chalmers vehicle 
laboratory Revere,1 we provide links to the software that 
we made available as open source. Next to the system 
design, we also reflect upon our experiences and lessons 
learned from the system design as a second generation 
of the logging system was designed and implemented 
for a research collaboration between Sweden and India.2

1.5  Limitations

Due to project agreements as well as GDPR regulations, 
the collected data is currently not accessible and so far, 
only the core software to realize the system is available 
as open source. However, discussions around providing 
access to the data are initiated to also let the research com-
munity benefit from the effort made in this project.

1.6  Structure of the article

The rest of this article is structured as follows: Sect. 2 pre-
sents and briefly discusses related works. Our methodol-
ogy is described in Sect. 3 followed by a detailed system 
description in Sect. 4 to address RQ-1. We present initial 
results in Sect. 5 and discuss our reflections in Sect. 6 to 
address RQ-2. The paper concludes with Sect. 7.

2  Related works

Data sets fostering research and development in aspects 
of autonomous driving such as reliable perception, robust 
path planning with real-time adaption, and safe and com-
fortable vehicle control have been created and presented 
in multiple contexts. Yin and Berger [4] as well as Kang 
et  al. [5] presented an extensive overview of publicly 
accessible data sets and their respective properties in 
recent surveys.

Prominent examples for such data sets, which have 
been extensively used for research, include the first of its 
kind named Kitti as reported by Geiger et al. [6]. This data 
set was created by one of the teams from the 2007 DARPA 
Urban Challenge (Team AnnieWay from KIT, Germany).

More recent examples include a data set from UK as 
reported by Maddern et al. [7] who describe their design of 
a logging system used to capture 1000 km over one year. 
While their data set is pushing academically driven data 
sets to a new level with respect to covered distances, our 
project is pushing these limits even further by capturing 
nearly 60,000 km during one year.

Commercially supported data sets include Nuscenes 
from Caesar et al. [8], which covers Boston and Singapore, 
provide seven times more annotations and 100 times more 
images than the pioneering data set Kitti. Another com-
mercially supported data set is provided by Waymo as 
reported by Sun et al. [9], which is providing more cities 
from the US.

While the aforementioned presentation and discussion 
of available data sets provide only a subset of many avail-
able data sets as covered by Kang et al. [5], our project is 
the first of its kind to the best knowledge of the authors 
that is creating a data set using a truck in daily operations. 
Hence, we are pioneering a unique system design, as most 
other data sets have been created using car-like platforms, 
to which the involved researchers had access to on a regu-
lar basis. In contrast, our team had to design and install 
a platform in a truck but could not physically access the 
truck regularly once the truck was back in daily operation 
as the logistics company.

3  Methodology

In order to achieve the goals of the work, the adopted 
research methodology was design science [10], which 
concerns artifacts in context and their design and inves-
tigation. In the case of this work, the artifact is a solution 
for a reliable high-volume data logger using cellular con-
nectivity for the automotive context.

The artifact was designed, implemented, and evaluated 
to measure its effectiveness in achieving the research goal. 
In the design phase, the architecture of the system and its 
components, its power infrastructure, and even the soft-
ware stack were devised so they would meet a number of 
functional and non-functional requirements as described 
in Sect.4. The resulting architecture was then implemented 
at Chalmers’ vehicle laboratory Revere. Once the resulting 
system was tested successfully and handed over to the 
logistics company for daily operations, the continuous 
evaluation phase began by analyzing the performance of 
the data logger and the quality of the recorded data, in 

1 https:// chalm ers. se/ en/ resea rchin frast ructu re/ revere/ Pages/ 
defau lt. aspx.
2 https:// volvo group. com/ en- en/ news/ 2020/ nov/ sitis- conne cted- 
safety- bus- platf orm. html.

https://chalmers.se/en/researchinfrastructure/revere/Pages/default.aspx
https://chalmers.se/en/researchinfrastructure/revere/Pages/default.aspx
https://volvogroup.com/en-en/news/2020/nov/sitis-connected-safety-bus-platform.html
https://volvogroup.com/en-en/news/2020/nov/sitis-connected-safety-bus-platform.html
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order to assess how closely the designed artifacts were 
fulfilling the research goal. Results and especially reflec-
tions therefrom are reported in Sect. 6.

4  Design of the system architecture

The project had to meet the following functional require-
ments that emerged during discussions with the project 
stakeholders: 

FR-1  Accessing the system as well as the data during and 
after a data logging run must be possible only via 
secure remote wireless connections, as the truck 
is either parked in a fenced location or simply not 
close enough to Gothenburg to economically and 
timely swap disks.

FR-2  Visual forward facing camera footage, vehicle loca-
tion, and vehicular network data must be captured 
on all trips in case of individually failing system 
components.

FR-3  The system must not interfere with the truck driver’s 
usual routine and driving behavior.

FR-4  The system must only record data outside pro-
tected areas like Gothenburg harbour.

FR-5  The system must do a self power-off when not in 
use or when the state-of-charge of the battery is 
low.

 The following non-functional requirements had to be met: 

NFR-1   The system design shall not exhibit a single-point-
of-failure (SPOF) compromising on the aforemen-
tioned functional requirements.

NFR-2   The system design shall allow for lossless data 
handling to not compromise on a posteriori data 
analysis.

4.1  System architecture and network design

These requirements were realized using the system 
architecture as depicted in Fig. 1 and listed in Table 1. To 
spot potential SPOFs in the system design, we created a 
directed, acyclic graph (DAG) for the network architecture 
of all involved hardware components to visualize the data, 
which is flowing from sensors at the bottom nodes of the 
DAG to the root nodes that represent the cellular modems 

(a) (b)

Fig. 1  Architecture of the system to meet the functional and non-
functional requirements: The computing nodes are able to access 
the vehicular networks independently from each other as well as 
the GNSS–IMU system. Furthermore, at least one camera facing for-
ward is always accessible in case of failure in the network connec-

tion or due to one failing computing node. The system is accessible 
only via an encrypted maintenance channel; in addition, a separate 
encrypted channel is used to upload the collected data for data 
analytics in the cloud
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at its top. Then, we analyzed whether a single node or an 
edge between two nodes would break the data flow to 
meet FR-2 so that we could identify where to add redun-
dancy along the data flows by adding an additional cam-
era, computing node, or network link.

FR-1 requires an approach to only access the system 
securely using a cellular connection over 3G/4G as it could 
not be guaranteed that the truck may be in close proximity 
to a wifi access point or an Ethernet cable that is in reach 
overnight. In combination with NFR-1, a single cellular 
router was also deemed as a potential SPOF and hence, 
two independent 3G/4G routers with individual SIM cards 
were installed. The installation of two separate computing 
nodes to reduce the risk of a SPOF for a failing combina-
tion of computer and camera was also influential to the 
design decision of installing two separate cellular rout-
ers to meet NFR-1: The upper computing node (named 
Eagle) in Fig. 1 has a dedicated connection to an IP-camera 
(named Axis0); the same design was also chosen for the 
lower computing node (named Apollo) that has dedicated 
access to two cameras (labelled PtGrey0 and PtGrey1).

Each computing node is reachable from both cellular 
modems to mitigate a potential modem failure. Finally, 
both nodes have access to the truck’s on-board vehicle 
networks via CAN as well as to a GNSS–IMU system that 
is also accessible via CAN. The possibility of a failing GNSS 
was compensated by adding a separate GNSS-receiver 
to Apollo that also enabled this node to act as IEEE1588 
PTP grand master clock for the network to synchronize 
all clocks in the computing nodes and camera sensors. 

Furthermore, both cellular modems allow for low-sam-
pling GNSS location tracking as well. NFR-2 was met by 
installing a GPU into Apollo to enable hardware-acceler-
ated lossless video compression for the PtGrey cameras. 
Details about the system components as well as sensors 
are presented in the Table 1.

4.2  Design of the power architecture

As the system needs energy to complete its tasks and 
facilitate data transfer not only when the truck is pow-
ered by its engine but also when it is powered off, the 
truck was equipped with an auxiliary power supply using 
a lithium-ion battery to meet FR-3. This battery provides 
stable voltage to compensate for voltage drops that may 
occur when the engine is cranked, and hence, protecting 
sensitive electronic equipment from power fluctuations. 
The auxiliary power supply enables to operate the system 
even for several hours after the truck’s engine has been 
shut off to provide operational time for uploading data 
without depleting the vehicle’s batteries. While driving, the 
stock alternator in the vehicle provides enough current to 
charge the auxiliary battery.

Since lithium-ion batteries are sensitive to excessive 
depletion, it needs to be carefully monitored and pro-
tected. Therefore, the battery has been equipped with 
a battery shunt that keeps track of the state-of-charge. 
Approximately 80% of the battery capacity can be used 
before there is a risk of battery damage so, if the bat-
tery charge reaches 20% charge level, a safety relay will 

Table 1  System components for the data logging system

Component Eagle Apollo Sensors and Connectivity

Manufacturer PCengines custom-made Cameras (forward facing)
Mainboard APU2D4 Supermicro X11SCZ-F 1x Axis M1124 1280x720 at 25FPS
CPU AMD GX-412TC (4 cores) Intel Core i9-9900K (8 cores) 2x PtGrey BFS-PGE-31S4C-C 2,048x1,536 at 17FPS
RAM 4GB 2x 8GB Samsung 

(M378A1K43CB2-CTD)
Cameras (rearward facing)

Main OS disk 64GB m-SATA SSD 500GB Toshiba (KXG-
50ZNV512G) NVMe M.2

2x Axis F1005-E 1280x720 at 25FPS

Fail-over OS disk 32GB SD-card 16GB USB pen-drive Location & Vehicle State
Data HDDs 1x 8TB HGST Ultrastar He10 

(HUH721008ALE604)
2x 8TB HGST Ultrastar He10 

(HUH721008ALE604) as 
RAID-1

PEAK-PCAN position at 10Hz

GPU – Nvidia GeForce GTX 1050 Ti GNSS–IMU accelerations at 10Hz
rotations at 10Hz

LAN 3x Intel I210AT 1GBit 2x Intel I210AT 1GBit onboard 
and 4-port Intel I350-T4 1GBit

Garmin 18LVC position at 1Hz

CAN 2x PEAK 4-channel miniPCIe PEAK 4-channel PCI CAN 6x truck channels
Clock synchronicity PTP client to Apollo, NTP PTP Grand Master Clock using 

Garmin 18LVC
Connectivity

Power supply 12V M4-ATX 12V, 250W 2x Teltonika RUT955 3G/4G modem
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disconnect the battery to protect it. The state of charge 
is additionally provided to the software via a CAN-open 
interface to safely shut down the computing systems. The 
entire system operation does not require any interaction 
from the truck driver.

4.3  Design of the software environment

The systems are powered by Arch Linux using Linux ker-
nels 4.19.31-rt18-1-rt-lts on Eagle and 5.2.0-rt1-1-rt on 
Apollo. The Nvidia GPU is using the proprietary driver 
430.40. Our software stack3 is maintained and deployed 
as Docker services using Docker 19.03.1-ce on both sys-
tems. On Eagle, we are using 17 separate microservices to 
interface with the forward facing Axis camera and the two 
rearward facing Axis cameras, to record the data to disk, 
and to monitor the system health. On Apollo, 25 micros-
ervices are used to interface with the PtGrey cameras, to 
losslessly convert their video streams into compressed 
h264 NAL units using hardware-acceleration through the 
Nvidia GPU, to additionally compress their video feeds 
using Intel QuickSync into a lossy VP9 format, and to 
record the forward facing Axis camera. The Apollo system 
is also computationally powerful enough to allow for run-
ning ML-models to perform object detection (cf. Sect. 5) 
on the platform, which can be used to spot interesting 
events around the truck.

The recorded data is continuously uploaded whenever 
the system is connected to the Internet using an encrypted 
data link to an encrypted storage system for automatic 
data analysis to spot interesting events as described in 
Sect. 5. The system is continuously monitored using a 
dashboard as depicted in Fig. 1b, which is realized with 
Grafana, InfluxDB, and collectd to observe critical system 
diagnostics such as system temperatures, CPU and disk 
consumption, state-of-charge, vehicle speed and location, 
as well as number of satellites in sight. Manual over-the-air 
maintenance of the system is realized using an encrypted 
channel into the system.

5  Initial results

For one trip of approximately 80 mins between Gothen-
burg and Viared (close to Borås), the sensors and vehi-
cle networks generate approximately 203 GB data per 
hour on the system, broken down as follows: Each of the 
two PtGrey cameras create 96 GB/h after lossless com-
pression and each of the three Axis cameras generate 

approximately 3.2 GB/h. The six CAN channels from the 
truck generate approx. 1.4 GB/h. The two 3G/4G modems 
manage to upload approximately 6  GB/h each in the 
region where the truck is usually operated. Even if the sys-
tem would have enough power for 24 h of operation time, 
it would approximately take more than 60 h to upload all 
data from one single day via 4G. Despite the fact that log 
files are buffered on the system, the lossless video feeds 
are only kept for interesting events to be identified on the 
truck, such as unexpectedly harsh braking maneuvers as 
explained in the following as this data is most valuable 
for training neural networks that require the best possible 
image quality. Longer stretches of a trip with a low event 
density like highway driving are primarily captured using 
lossy video compression as it was deemed sufficient for 
documentation and research purposes.

The signals to be logged were divided into different sets 
depending on data source, data grouping, and offload-
ing priority. To consolidate our findings, a period between 
January 15, 2020 until January 15, 2021 was selected and 
an overview of the data is provided in Table 2.

In order to conduct plausibility checks, each log file was 
automatically converted to CSV, PNG, and PDF for data 
analysis after uploading to the secure storage system. 
These checks include time synchronicity, offload rate, sig-
nal validity, and ground truth. Once the checks confirmed 
data validity, an analysis to spot events for harsh braking 
scenarios in the recorded data was conducted to demon-
strate the value of the data set and the data processing 
chain.4

For our purposes, we chose to focus on longitudinal 
acceleration data and classified a harsh braking event as 
a data point less than or equal to −0.5 G (i.e., 4.9 m

s2
 ) [11]. 

While there are related metrics applicable to further clas-
sify such an event, we considered this threshold-based 
event as suitable and identified 23 events in total with only 
eight false positives. The following steps were conducted 
to detect, extract, and confirm a harsh braking event: 

1. A script was written, which analyzed the acceleration 
data and extracted excerpts of 20s-30s of the data set 
satisfying the event condition.

2. The extracted data was plotted to identify relevant 
cases and to discard erroneous ones.

3. The start and end timestamps from the extracted data 
were used to trim the corresponding video data to 
visualize the identified event.

4. Using the video excerpts, a reported event was clas-
sified into three categories: (a) harsh braking (satis-

4 From the total driven distance, 59,699.5 km were captured in the 
analysis period January 15, 2020–January 15, 2021.

3 Our software OpenDLV can be found on GitHub: https:// github. 
com/ chalm ers- revere/ opend lv.

https://github.com/chalmers-revere/opendlv
https://github.com/chalmers-revere/opendlv
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fies event condition with video correlation) (b) data 
incomplete (signal error or video log not available), 
(c) false–positive (satisfies event condition, video evi-
dence provides different perspective).

The threshold-based approach resulted in 18 days during 
the 193 days of logging, where 23 events satisfying the 
event condition were identified. From these events, five 
were classified as harsh braking, eight were classified as 

false–positive events, and ten had incomplete log data. 
An anonymized example of such an identified event is 
depicted in Fig. 2 showing a car merging from a right entry 
road forcing the truck to conduct a harsh braking maneu-
ver to prevent an accident.

6  Analysis and reflections

In the following, we provide an analysis of the system 
design as well as report about our reflections. Table 3 
summarizes the information from basic system health 
monitoring.

It can be stated that the system design can manage 
the computational demands from the software stack in a 
stable manner and the median system load is not exceed-
ing the number of available CPU cores needed to run a 
process ready for execution. The passively cooled Eagle 
unit is typically much warmer than the Apollo unit that has 
active cooling. However, the climate conditions of the geo-
graphical region, where the system is in operation, have 
not caused in any operational errors so far. The median 
visibility of satellites when the truck is in service is around 
ten, allowing for good localization5

In Table 4, we list problems identified during opera-
tion, and upgrades to address them. Two unexpected 
software problems were identified: The problem regard-
ing the SI-conversion could be corrected by a software 
upgrade to the platform and a software filter for the 

(a) (b)

Fig. 2  Event where the truck was forced to conduct an unintended deceleration maneuver; no collision happened

Table 2  Information about the log files

Number of days when data was logged 193
Total system uptime 9493 h
Total number of log files 18,340
Total size of uploaded data 4.5 TB
Total number of captured video frames 106,356,613
Average travelled distance/day 309.3 km
Total travelled distance 62,819.2 km4

Table 3  System health values during the operation

Component Measurement Values

Eagle CPU temp. ( ◦C) min: 28, med.: 60, max: 88

Apollo CPU temp. ( ◦C) min: 12, med.: 37, max: 61

Apollo GPU temp. ( ◦C) min: 8, med.: 35, max: 59

Eagle system load5 min: 0.08, med.: 2.91, max: 35.3

Apollo system load min: 0, med.: 0.58, max: 8.37
Power state-of-charge (%) min: 0, med.: 94, max: 100
Power battery temp. ( ◦C) min: 0, med.: 19, max: 30

GNSS visible satellites min: 0, med.: 10, max: 12

5 Cf.  http:// www. brend angre gg. com/ blog/ 2017- 08- 08/ linux- load- 
avera ges. html.

http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
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post-processing; the problem with the offline 3G/4G 
router could be traced to a software fault (root cause in 
external proprietary software) as the modem still replied 
to an SMS requesting its system status. So, it could be 
set into operation again by triggering a reboot of the 
modem via a special maintenance SMS.

The broken GNSS antenna needed to be replaced. 
However, the software stack could conduct a fail-over 
to one of the other GNSS sources until the scheduled 
workshop visit. Furthermore, as the IMU functionality of 
the preferred GNSS–IMU sensor was unaffected, only the 
update rate of the GNSS location data was temporarily 
reduced. The power-supply issues affecting the data disk 
resulted in the data being temporarily written to the OS 
disk until a power cycle of the logging system. The con-
nectivity and power supply issues for the cameras tem-
porarily resulted in missing log files for that particular 
camera. Overall, the MTTR was approximately one day 
for the majority of issues.

While the system already shows a decent performance, 
the ability to remotely power cycle any hardware compo-
nent along the paths of the DAG is very valuable in case 
of an unexpected system behavior. Also, low-level system 
monitoring such as BIOS console over serial connection, 
Intel IPMI, or DMTF Redfish accessible wirelessly is essen-
tial for fault investigation. Both aspects have been incor-
porated in the second generation of the logging system 

that is implemented through the research collaboration 
in India.

7  Conclusions and future works

Data-driven engineering to realize, improve, and maintain 
AI/ML-enabled software systems require growing amounts 
of high-quality data from diverse traffic situations. Com-
mercially available data loggers primarily focus on high-
frequency, low-volume signals as typically found on vehi-
cle CAN busses to capture velocities or accelerations for 
example. However, the AI/ML-enabled systems to improve 
the perception layer for upcoming generations of ADAS 
and highly automated systems require also large amounts 
of high-volume data from cameras and lidars. As no com-
mercially available end-to-end solutions were available to 
address this task for collecting data from a logistics truck, 
which is in daily operations making swapping physical 
disks not an option, this paper presents the design of a 
fail-safe data logging solution, motivates the underlying 
design decisions based on functional and non-functional 
requirements, and discusses lessons learned after being in 
operation for more than one year. To the best knowledge 
of the authors, the collected data set is the first of its kind 
to cover nearly 60,000 km of inter-urban traffic situations 
from a truck’s perspective.

The approach presented in this paper is filling a 
gap concerning the design of scalable data logging 
approaches for high-volume, high-frequency, high-quality 
data that is only accessible remotely due to operational 
constraints. Our future work is addressing the identified 
lessons learned primarily concerning fail-safety along 
the nodes and connections of the directed-acyclic graph, 
which is representing the data flow from the individual 
sensors to the wireless data transfer points in a research 
collaboration between Sweden and India, where a com-
mercial bus is commuting daily between Bengaluru and 
Mysore. This 142  km route with an anticipated travel 
amount of 100,000 km during the planned operation will 
push the system design to even higher levels in terms of 
stability and endurance with respect to temperature and 
humidity, along with challenging cellular connectivity. 
Furthermore, new concepts to enable a swift data analy-
sis within an academic context are also required in the 
back-end system to store, index, and post-process these 
amounts of incoming data.
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Table 4  Changes and issues about the system

Type Date Description

fault/HW 2021-02-01 Power supply failure to Eagle HDD
info/HW 2021-01-28 Wear and tear NVMe disk: 4.92 TB written
fault/HW 2020-11-30 Power supply failure to Eagle HDD
fault/HW 2020-11-02 Power supply failure to Eagle HDD
fault/HW 2020-09-28 Power supply failure to Eagle HDD
fault/HW 2020-08-31 Power supply failure to PtGrey cameras
fault/HW 2020-08-17 Power supply failure to Eagle HDD
fault/SW 2020-07-06 Router 1 went offline but replied to SMS
fault/HW 2020-05-22 Power supply failure to Eagle HDD
fault/SW 2020-05-04 SI-conversion error for acceleration and 

rotation
fault/HW 2020-02-17 Connection failure to PtGrey cameras
fault/HW 2020-02-05 GNSS antenna of main GNSS unit broke 

down
fault/HW 2020-01-23 - 

2020-01-31
Connection failure to Axis cameras

upgrade 2019-08-14 Increasing CPU frequency on Apollo to 
1.1 GHz

upgrade 2019-09-27 Integration rear cameras
upgrade 2019-08-12 Upgrading to Nvidia 430.40
upgrade 2019-08-12 Upgrading to Linux kernel 5.2.0-rt
fault/HW 2019-04-24 CRC error reading data from disk
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