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Abstract 
In this paper, a risk sensitive estimator based on cubature quadrature Kalman filter is formulated and applied for tracking 
a ballistic object during its re-entry phase. The formulated algorithm is named here as risk sensitive cubature quadrature 
Kalman filter. The process model and measurement model for two dimensional ballistic target motion is described. The 
expression for measurement noise covariance is derived for Cartesian coordinate from polar coordinate. Also expression 
for initial error covariance is derived. The performance of the risk sensitive cubature quadrature Kalman filter is compared 
with the cubature quadrature Kalman Filter in terms of root mean square error. The simulation results reveal that for 
wrongly modeled process noise parameter, the risk sensitive filter performs better than their risk neutral counterpart. 
Moreover, risk sensitive cubature quadrature Kalman filter performs better than risk sensitive cubature Kalman filter. 
Since expression for measurement noise covariance as well as initial error covariance for two dimensional ballistic target 
motion is derived, other Gaussian filters may also be applied for tracking of ballistic objects.

Article Highlights 

• The process model for two dimensional ballistic target 
motion is described comprehensively.

• The expression for measurement noise covariance 
matrix for linear measurement model is derived for 
Cartesian coordinate from polar coordinate.

• The expression for initial error covariance matrix for 
the filter initialized from the first two measurements is 
derived.

• Risk sensitive filter based on cubature quadrature 
Kalman filter is applied for tracking of two dimensional 
ballistic target motion and improvement in perfor-
mance over its risk neutral counterpart is found.

• Improvement in performance of risk sensitive filter 
based on cubature quadrature Kalman filter over risk 
sensitive filter based on cubature Kalman filter is found.
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1 Introduction

The estimation of states of a physical system using a 
sequence of noisy measurements has been required in 
many problems in real life and in science and technology. 
For example, it may be required in industrial control and 
automation [1], target tracking [2], navigation [3], financial 
forecasting [4], video surveillance [5] and weather forecast-
ing [6] etc.

The state equation representing process model and 
measurement model in discrete time could be given by,

where xk ∈ ℝ
n denotes the state vector of a process, and 

yk ∈ ℝ
p denotes the measurement at any instant k, where 

k = 1, 2, 3,⋯ ,N . �k and �k are known nonlinear function. 
�k and vk are process and measurement noise respectively.

The necessity of robust estimation is required when 
deviation of the process model from the assumed model 
is encountered. The model uncertainty may be due to state 
model error, unmodeled bias or noise modeling error in 
system. When the physical system is completely and accu-
rately described by an assumed model, the non-robust 
filter can estimate the states with desired accuracy but 
when it deviates from the assumed model, the robust fil-
tering approach should be applied to achieve the desired 
accuracy.

A common approach to robust estimation is based 
on optimization techniques. Inspired from control 
theory, H∞ criterion [7, 8] is applied in estimation prob-
lem. In the context of robust control theory, robustness 
has close connection with H∞ criterion [9, 10]. To use 
H∞ methods, a control designer expresses the control 
problem as a mathematical optimization problem and 
then finds the controller that solves this optimization. 
The resulting controller is only optimal with respect to 
the prescribed cost function. The risk sensitive estima-
tor is closely linked with H∞ estimator [11]. In risk sensi-
tive estimation approach the mean value of exponential 
of the square of the error of estimation scaled by risk 
sensitive parameter is minimized rather than minimiz-
ing only mean of the square of error of estimation. The 
development of risk sensitive estimator has been moti-
vated for the estimation of the states with more accu-
racy whenever physical system deviates from assumed 
model by tuning the risk sensitive parameter, which is its 
advantage over other filters. In earlier literature several 
risk sensitive estimator has been found [11–14] for linear 
and nonlinear system. It has been based upon Kalman 
filtering approach for linear system [12, 15] whereas for 

(1)xk+1 = �k(xk) + �k ,

(2)yk = �k(xk) + vk ,

nonliner system conventionaly it has been based upon 
extended Kalman filter approach [15]. But the drawback 
of extended Kalman filter has also found in that due to 
which it gives poor result for severe nonlinear system. 
Several other risk sensitive estimators have been found 
in earlier literature which overcome this disadvantage 
such as based upon unscented Kalman filter (UKF) [16] as 
in [17] and many others [18–23]. Apart from that, other 
approaches can also be found in recent literature to hin-
der the kinematic model error [24] or to tackle dynamic 
model uncertainty [25] based upon cubature Kalman 
filter (CKF) [26] .

In this paper, risk sensitive estimator based upon 
cubature quadrature Kalman filter (CQKF) [27–29] named 
as risk sensitive cubature quadrature Kalman filter (RSC-
QKF) [22, 23] is applied for tracking of a ballistic target 
during its re-entry phase. The risk sensitive filter based 
on cubature quadrature Kalman filter is different from 
previous risk sensitive nonlinear filters found in earlier 
literature as it is based upon cubature rule of integra-
tion and multiple Gauss-Laguerre quadrature points [28]. 
Under single Gauss-Laguerre quadrature point, it merge 
with earlier advanced cubature Kalman filter (CKF). 
Due to increase in Gauss-Laguerre quadrature points, 
it is more accurate than earlier advanced risk sensitive 
cubature Kalman filter and other previous risk sensitive 
nonlinear filters.

The paper is organized as follows. The next section 
discuss the recursive solution of risk sensitive estimator. 
The risk sensitive filter based upon cubature quadrature 
Kalman filter algorithm is given in Sect. 3. In Sect. 4, simu-
lation results are presented. In Sect. 5, discussion on the 
results are given and finally conclusion is given in Sect. 6.

2  Risk sensitive estimation

The risk sensitive criteria had been used during estimation 
to achieve robustness in earlier literature [11–13, 15]. The 
recursive solution of risk sensitive estimator is discussed 
below.

2.1  Recursive solution of risk sensitive estimator 
(RSE)

Consider a nonlinear system as in (1) and (2). The process 
noise is considered with normal distribution with zero 
mean and known covariance Qk . The measurement noise 
is also normally distributed with zero mean and known 
covariance Rk . Both the noises are assumed to be mutually 
uncorrelated.
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For risk sensitive estimation, the cost function is defined 
as

where E(.) represents the mean. g1(.) and g2(.) represents 
error covariance function as given in Eq. (5). Here the error 
cost function is scaled by two risk sensitive parameters 
represented by �1 ≥ 0 and 𝜇2 > 0 . Considering only x̂k to 
be unknown and x̂i(0≤i≤k−1) for all times 0, 1,⋯ , k − 1 to be 
known as x̂∗

i
 , (3) can be written as only function of x̂k as:

Taking

(4) is given as

The risk sensitive estimate can be given as

It should be noted that when �1 = 0 , 𝜇2 > 0 , the cost func-
tion has only instantaneous error (It does not include the 
stored error over past time) and it merges with the mini-
mum mean square error Kalman filter.

The solution to the minimum risk sensitive estimate can 
be given by the following recursive relation:

The risk sensitive prior probability density function (PDF) 
for state is given by time update equation as given below.

Here zk|k−1 represents risk sensitive prior PDF for state vari-
able x and f(.) is likelihood function.

The risk sensitive posterior PDF for state is given by meas-
urement update equation as given below.

Here zk|k represents risk sensitive posterior PDF for state 
variable x and f(.) is likelihood function.

The risk sensitive prior estimate is given by

Here ẑk|k−1 represents risk sensitive prior estimate of x.

(3)F(x̂1, x̂2,⋯ , x̂k) = E

�
e

�
𝜇1

∑k−1

i=1
g1(xi−x̂i )+𝜇2g2(xk−x̂k )

��
,

(4)F(x̂k) = E

�
e

�
𝜇1

∑k−1

i=1
g1(xi−x̂

∗
i
)+𝜇2g2(xk−x̂k )

��
.

(5)g1(x − x̂) = g2(x − x̂) = [x − x̂]T [x − x̂]

(6)F(x̂k) = E

�
e

�
𝜇1

∑k−1

i=1
[xi−x̂i

∗]T [xi−x̂i
∗]+𝜇2[xk−x̂k ]

T [xk−x̂k ]
��
,

(7)x̂∗
k
= argminF(x̂k).

(8)

zk|k−1 = ∫
+∞

−∞

f (xk|xk−1)e(𝜇1[xk−x̂k|k−1]T [xk−x̂k|k−1])zk−1|k−1dxk−1

(9)zk|k = f (yk|xk)zk|k−1

(10)ẑk|k−1 = argmin
���
𝛿∈ℝn

∫
+∞

−∞

e(𝜇2[xk−𝛿]
T [xk−𝛿])zk|k−1dxk ,

The risk sensitive posterior estimate is given by

Here ẑk|k represents risk sensitive posterior estimate of x.
Here, it can be seen that the risk sensitive probabil-

ity density function for state is obtained by exponential 
of square function of error of x scaled by a risk sensitive 
parameter �1 . Further the risk sensitive estimate of x 
i.e. ẑ (posterior and prior) is obtained by exponential of 
square function of error of x scaled by another risk sen-
sitive parameter �2 . The risk sensitive parameters can be 
normalized by replacing �2 by unity and �1 by ratio �1∕�2 . 
These risk rensitive parameters can be tuned to obtain the 
robust estimate and could improve the performance in 
comparison to original mean square error criterion when 
process model is deviated from assumed model. Therefore 
the risk sensitive formulation is better than the original 
mean square error criterion.

The risk sensitive filter algorithm has been developed 
with cubature quadrature Kalman filtering framework in 
this paper. The detail algorithm for cubature quadrature 
Kalman filter (CQKF) can be found in [27, 28] with advan-
tage of CQKF to CKF and other traditional nonlinear filter. 
The risk sensitive estimation has been incorporated here 
to CQKF algorithm by introducing risk sensitive parameter 
in error covariance update equation. Here the risk sensi-
tive parameter �1 is introduced in prior error covariance 
update equation (18) in time update step to obtain the risk 
sensitive estimate.

The risk sensitive filter based upon cubature quadrature 
Kalman filter algorithm is given in next section named as 
risk sensitive cubature quadrature Kalman filter algorithm.

3  Risk sensitive cubature quadrature 
Kalman filter algorithm

The detail of risk sensitive cubature quadrature Kalman 
filter algorithm is given as follows.

• Take initial posterior estimate as x̂0|0 and initial poste-
rior covariance as Σ0|0.

• Find cubature quadrature points, �j , and their corre-
sponding weights, �j(j=1,2,...,n).

Time update step

• Find the Cholesky decomposition for posterior covari-
ance 

(11)ẑk|k = argmin
���
𝛿∈ℝn

∫
+∞

−∞

e(𝜇2[xk−𝛿]
T [xk−𝛿])zk|kdxk .
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• Calculate cubature quadrature points after Cholesky 
decomposition of posterior covariance as 

• Transform cubature quadrature points as 

• Calculate prior estimate and prior covariance as 

• The risk sensitive prior estimate remains same 

• The risk sensitive prior covariance is updated with 

(Note: The condition (Σ−1
k+1|k − 2𝜇1I)

−1 > 0 need to be sat-
isfied at each step for risk sensitive covariance to be posi-
tive definite. The condition limits upper value of �1.)

Measurement update step

• Find Cholesky decomposition for prior covariance as 

• Calculate cubature quadrature points after Cholesky 
decomposition of prior covariance 

• Compute predicted measurements for each cubature 
quadrature points 

• Compute the estimate of predicted measurement as 
weighted sum of predicted measurements for each 
cubature quadrature points 

• Find the covariance of predicted measurement 

(12)Σk|k = Ck|kCT
k|k .

(13)𝜁j,k|k = Ck|k𝜅j + x̂k|k .

(14)�j,k+1|k = �(�j,k|k).

(15)x̂k+1|k =
n∑
j=1

�j𝜁j,k+1|k ,

(16)

Σk+1|k =
n∑
j=1

�j[𝜁j,k+1|k − x̂k+1|k][𝜁j,k+1|k − x̂k+1|k]T + Qk .

(17)ẑk+1|k = x̂k+1|k

(18)Σ+
k+1|k = (Σ−1

k+1|k − 2�1I)
−1.

(19)Σ+
k+1|k = Ck+1|kCT

k+1|k .

(20)𝜁j,k+1|k = Ck+1|k𝜅j + x̂k+1|k .

(21)Yj,k+1|k = �(�j,k+1|k).

(22)ŷk+1|k =
n∑
j=1

�jYj,k+1|k .

• Find the cross covariance of predicted measurement 
and prior estimate 

• Compute Kalman gain from covariance of predicted 
measurement and cross covariance as 

• Calculate posterior estimate as 

• The risk sensitive posterior estimate remain same as 

• The risk sensitive posterior covariance is given by 

4  Simulation result

The above described algorithm is used to track the 
motion of a ballistic object in its re-entry phase. The 
ballistic object motion forms a complex dynamic phe-
nomenon in presence of lift force and drag force. Similar 
problem has also been formulated in earlier literature 
[30–32].

The process model for two dimensional ballistic target 
motion is described by the following nonlinear discrete 
time dynamic state equation

where the state vector is given by

The state vector provides the positions and velocities of 
target in � and � Cartesian coordinates at kth time instant. 
The nonlinear function �(xk) is given by

where

(23)

Σyk+1|k =

n∑
j=1

�j[Yj,k+1|k − ŷk+1|k][Yj,k+1|k − ŷk+1|k]T + Rk ,

(24)

Σxk+1yk+1
=

n∑
j=1

�j[𝜁j,k+1|k − x̂k+1|k][Yj,k+1|k − ŷk+1|k]T .

(25)Gk+1 = Σxk+1yk+1
Σ−1
yk+1|k

.

(26)x̂k+1|k+1 = x̂k+1|k + Gk+1(yk+1|k − ŷk+1|k).

(27)ẑk+1|k+1 = x̂k+1|k+1.

(28)Σ+
k+1|k+1 = Σ+

k+1|k − Gk+1Σyk+1yk+1
GT
k+1

.

xk+1 = �(xk) + �

[
0

−g

]
+ �k ,

xk =
[
�k �̇k �k �̇k

]T
.

�(xk) = �xk + �fk(xk),
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Here, T is the time interval between two consecutive radar 
measurements. The drag force fk(xk) is directed opposite 
to the target speed � and its magnitude is given by 
0.5

g

�
��2 . The expression for the drag force is given by

where g is the acceleration due to gravity and � is the bal-
listic coefficient. The ballistic coefficient � varies with mass, 
shape and cross sectional area of the target perpendicular 
to its direction of motion. However, it remains constant if 
the speed of target becomes supersonic due to formation 
of shock waves. The shock waves vanish when speed of a 
target decreases to the speed of sound. Here, we assume 
� to be a constant as the speed of the target is more than 
the speed of the sound throughout. The air density � is 
given by

where
c1 = 1.227 and c2 = 1.093 × 10−4 ; for � < 9144 m,
c1 = 1.754 and c2 = 1.49 × 10−4 ; for � ≥ 9144 m.
The process noise �k is taken as zero mean white Gauss-

ian with covariance Q given by

with

Here, q is a parameter which accounts for the possible 
deviation of the process model from the real situation. 
The truth is simulated for the target trajectory in the 
MATLAB as shown in Figs. 1, 2, and 3 with g = 9.8 ms−2 , 
� = 40000 Kgm−1s−2 ,  q = 1m2s−3 ,  and T = 2 s with 
number of path samples N = 60 . Truth is initialized with 
�0 = 232000 m, �0 = 88000 m, �0 = 2290 ms−1 , �0 = 190◦ 
where � is the angle between horizontal axis and the direc-
tion of motion.

The measurement equation is given as

� =

⎡⎢⎢⎢⎣

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎤⎥⎥⎥⎦
,� =

⎡⎢⎢⎢⎣

T 2∕2 0

T 0

0 T 2∕2

0 T

⎤⎥⎥⎥⎦
.

fk(xk) = −0.5
g

𝛽
𝜌(�̇k

2 + �̇k
2) ×

[
cos(tan−1(

�̇k

�̇k

)

sin(tan−1(
�̇k

�̇k

)

]

= −0.5
g

𝛽
𝜌

√
�̇k

2 + �̇k
2

[
�̇k

�̇k

]
,

� = c1e
−c2� ,

Q = q

[
0

0

]
,

� =

[
T 3∕3 T 2∕2

T 2∕2 T

]
.

yk = Hxk + vk ,

where H =

[
1 0 0 0

0 0 1 0

]
 , yk =

[
dk hk

]T
 is the radar measure-

ment in Cartesian coordinate. Considering radar to be 
located at the origin and measurements collected are the 
range r, and elevation � ; d = rcos� and h = rsin� are meas-
urement of the positions along � and � Cartesian coordi-
nates respectively. vk is the measurement noise which is 
white Gaussian with zero mean and covariance Rk , given 
by

where

Rk =

[
�2
d

�dh
�dh �2

h

]
,

Fig. 1  Target trajectory of ballistic target

Fig. 2  Speed of ballistic target versus time
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Here, �r and �� are the standard deviations of radar meas-
urement for range and elevetion. The above expression 
for Rk is derived by measurement conversion from polar to 
Cartesian coordinate and is good approximation for linear 
measurement. The detail derivation of measurement noise 
covariance Rk is shown at the end of this section.

The above described problem of tracking a ballistic 
object is solved using the risk sensitive cubature quadra-
ture Kalman filter (RSCQKF) with fourth order Gauss-
Laguerre approximation and its performance is compared 
with the cubature quadrature Kalman filter (CQKF) in terms 
of root mean square error (RMSE). During simulation the 
radar parameters used are �r = 100 m, �� = 0.017 rad. 
From the first two measurements, filters are initialized as 

x̂0|0 =
[
d1

d2−d1

T
h1

h2−h1

T

]T
 . The Initial error covariance 

matrix is derived as

The derivation of P0|0 is given at the end of this section.
The process noise covariance for filter is mismatched 

with that for truth value. The parameter q of process noise 
covariance for truth remains unity whereas q for filter is 

�2
d
= �2

r
cos2(�k) + r2

k
�2
�
sin2(�k),

�2
h
= �2

r
sin2(�k) + r2

k
�2
�
cos2(�k),

�dh = (�2
r
− r2

k
�2
�
)sin(�k)cos(�k).

P0�0 =

⎡⎢⎢⎢⎢⎢⎣

�2
d

−
�2
d

T
�dh −

�dh

T

−
�2
d

T
2
�2
d

T 2
−

�dh

T
2
�dh

T 2

�dh −
�dh

T
�2
h

−
�2
h

T

−
�dh

T
2
�dh

T 2
−

�2
h

T
2
�2
h

T 2

⎤⎥⎥⎥⎥⎥⎦

.

taken as 0.01. The risk sensitive parameter �1 is chosen as 
7 × 10−9 . The value of �1 is obtained here such that it pro-
vide the best achievable performance in terms of RMSE 
and satisfy the positive definiteness condition of error 
covariance matrix.

Figures 4 and 5 show the plot of truth and estimated 
values obtained from RSCQKF for position and velocity 
respectively.

Figures 6, 7, 8 and 9, show root mean square error plot 
(out of 100 Monte Carlo runs) of position and velocity esti-
mation obtained from RSCQKF, RSCKF, CQKF and CKF. The 
RMSE values averaged over time span for position and 

Fig. 3  Acceleration of ballistic target versus time
Fig. 4  Truth and estimate of RSCQKF for target position

Fig. 5  Truth and estimate of RSCQKF for target velocity



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:328  | https://doi.org/10.1007/s42452-022-05154-1 Research Article

velocity estimation are tabulated in Table 1. The following 
points can be concluded from the simulation results:

• From the Figs. 6, 7, 8 and 9 it can be concluded that CQKF 
provides results similar with CKF. It is also observed that 
performance improvement occurs with RSCKF/RSCQKF 
with respect to risk neutral filters in presence of process 
model uncertainty.

• From the Table 1, it can also be claimed that the CQKF 
is slightly better than CKF. Risk sensitive filters are bet-
ter than risk neutral filter for wrongly modelled process 
noise parameter.

4.1  Derivation of measurement noise covariance R
k
 

in Cartesian coordinate

As per earlier discussion, the expression for measurement 
noise covariance, Rk , in Cartesian coordinate is derived here. 
Let us consider

(29)dk = �k + v
�k ,

where �k and �k are truth value and v
�k and v

�k are meas-
urement noise at kth time instant associated with � and � 
positions in Cartesian coordinates respectively and

where r′
k
 and �′

k
 are truth value and vrk and v�k are measure-

ment noise at kth time instant associated with radar range 
and elevation respectively. Now, putting dk = rkcos�k and 
hk = rksin�k in Eqs. (29) and (30), we get

From Eqs. (31) and (32), putting the value of rk and �k in Eqs. 
(33) and (34), we get

(30)hk = �k + v
�k ,

(31)rk = r�
k
+ vrk ,

(32)�k = ��
k
+ v�k ,

(33)rkcos�k = �k + v
�k ,

(34)rksin�k = �k + v
�k .

(35)(r�
k
+ vrk)cos(�

�
k
+ v�k) = �k + v

�k ,

Table 1  Average root mean square error of RSCQKF, RSCKF, CQKF and CKF

Filter x-position (in km) y-position (in km) x-velocity (in km/s) y-velocity (in km/s)

RSCQKF 1423.4 3185.7 414.1 809.0
RSCKF 1447.1 3211.3 416.7 781.5
CQKF 1715.4 3922.0 417.1 814.0
CKF 1736.7 3936.9 419.3 784.5

Fig. 6  RMSE plot of RSCQKF, RSCKF, CQKF and CKF for �-position (in 
km) of the target

Fig. 7  RMSE plot of RSCQKF, RSCKF, CQKF and CKF for �-position (in 
km) of the target
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From Eq. (35)

Since vrk ∼ ℵ(0, 𝜎2
r
) and v𝜖k ∼ ℵ(0, 𝜎2

𝜖
) , hence assuming 

v�k → 0 we have cosv�k → 1 and sinv�k → v�k . Equation (37) 
can be written as

(36)(��
k
+ v�k)sin(�

�
k
+ v�k) = �k + v

�k .

(37)

r�
k
cos��

k
cosv�k − r�

k
sin��

k
sinv�k + vrkcos�

�
k
cosv�k

− vrksin�
�
k
sinv�k = �k + v

�k

Since, �k = r�
k
cos��

k
 , we get

Assuming

we get

Now from Eq. (36)

Since vrk ∼ ℵ(0, 𝜎2
r
) and v𝜖k ∼ ℵ(0, 𝜎2

𝜖
) , hence assum-

ing v�k → 0 , we have cosv�k → 1 and sinv�k → v�k . Equa-
tion (42) can be given as

Since, �k = r�
k
sin��

k
 , we get

Assuming

we get

From Eqs. (41) and (46), the measurement noise vector in 
Cartesian coordinate is given as

The measurement noise covariance Rk in Cartesian coor-
dinate is given by

Since, vrk ∼ ℵ(0, 𝜎2
r
) and v𝜖k ∼ ℵ(0, 𝜎2

𝜖
) are white noise 

and zero mean Gaussian independent from each other, 

(38)
r�
k
cos��

k
− r�

k
sin��

k
(v�k) + vrkcos�

�
k
− vrksin�

�
k
(v�k)

= �k + v
�k .

(39)v
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Fig. 8  RMSE plot of RSCQKF, RSCKF, CQKF and CKF for �-velocity (in 
km/s) of the target

Fig. 9  RMSE plot of RSCQKF, RSCKF, CQKF and CKF for �-velocity (in 
km/s) of the target
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so putting E[vrkvrk] = �2
r
 , E[v�kv�k] = �2

�
 and E[vrkv�k] = 0 

we get the expression for Rk as

where

4.2  Derivation of initial error covariance P
0|0

The filter is initialized from first two measurements as

The initial value of truth is given as

The initial error is given as (from Eqs. (29) and (30))

The initial error covariance P0|0 is given as
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) are white noise 

and zero mean Gaussian, so putting E[v
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E[v
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h
�ij and E[v

�iv�j] = �dh�ij (where �ij is Kronecker 
delta function), we get the expression for P0|0 as
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5  Discussion

In this paper, a risk sensitive filter based on cubature 
quadrature Kalman filter has been applied for tracking 
of ballistic object during its re-entry phase for wrongly 
modeled process noise parameter and its improvement 
in performance over its risk neutral counterpart has been 
shown. The process model for two dimensional ballistic 
target motion has been comprehensively described. The 
expression for measurement noise covariance matrix for 
measurement model has been derived for Cartesian coor-
dinate from polar coordinate which is a good approxima-
tion of linear measurement model. Also the expression for 
initial error covariance matrix for the filter initialized from 
the first two measurements has been derived. Moreover, 
risk sensitive cubature quadrature Kalman filter has been 
shown to perform better than risk sensitive cubature 
Kalman filter [21] and hence can be shown to perform bet-
ter than the risk sensitive filter based on other Gaussian 
filter found in literature [17–20], because cubature Kalman 
filter is more advance than those Gaussian filters.

6  Conclusion

The risk sensitive filter based on cubature quadrature 
Kalman filter is applied to track the two dimensional bal-
listic target motion. Since measurement noise covariance 
matrix for linear measurement model and initial error 
covariance matrix have been derived, more advanced 
Gaussian filters with risk sensitive counterpart may also 
be applied for tracking of two dimensional ballistic tar-
get motion. Also application of Gaussian filters with risk 
sensitive counterpart for three dimensional ballistic tar-
get motion will remain under the scope of future research 
work.
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