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Abstract
This paper presents a new modification of the second order turbulence closure that removes the critical gradient Rich-
ardson number limitation typically found in Mellor-Yamada style models. The mean wind speed and potential tempera-
ture profiles are derived for the newly modified model in terms of similarity and structure functions depending on the 
gradient Richardson number. The derivation is based on a second order boundary layer approximation in neutral to very 
stable stratification conditions. Some recent closure assumptions for pressure-temperature and heat flux are considered. 
Variances and covariances of the turbulent fluctuations are also investigated with respect to the gradient Richardson 
number. The new model predictions are confronted with some well known models.
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Article highlights

•	 Second-order scheme in the framework of Mellor-Yam-
ada type models employing new heat flux equations.

•	 The model does not exhibit a threshold for the gradient 
Richardson number.

•	 Mean wind and temperature profiles, and turbulent 
fluctuations equations as functions of the gradient 
Richardson number.

Keywords  Atmospheric boundary layer · Second-order closure model · Turbulence parameterizations · strong 
stratification · Critical Richardson number

1  Introduction

Atmospheric turbulence is one of the key factors affecting 
the weather, climate, air quality as well as many engineer-
ing applications like wind turbines (farms) design, wind 

effects on buildings and structures, etc. Its understanding 
and modeling is thus a crucial issue in climate, weather 
and local environmental processes predictions. The low 
resolution models based on first-order closures served 
well for many years, at the beginning of computer based 
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numerical prediction models. The increased computa-
tional power becoming available in past decades made 
possible to develop and use many high resolution models 
that also brought higher standards and requirements to 
parametrizations used within the underlying mathemati-
cal models. At that stage, the first-order turbulence clo-
sures became largely insufficient and obsolete, giving the 
rise to second and even higher order closures.

The problem of higher order turbulence closures is a 
subject of intensive investigation since at least the begin-
ning of 1970’s (see e.g. Mellor [24]; Launder et al. [19]; 
Lumley [22]; André et al. [1]). This effort led soon to a hier-
archy of turbulence closures proposed and summarized by 
Mellor and Yamada [25]. These parametrizations offered a 
deeper insight into the problem and became a basis for a 
number of usable strategies for numerical simulations of 
atmospheric flows. One of the most popular models was 
presented in Mellor and Yamada [26]; hereafter MY82. This 
approach was widely adopted and further developed in 
the following decades (Galperin et al. [10]; Canuto [5]; Shih 
and Shabbir [31]). Since the very beginning it was clear 
that this model, as any closure model, includes number of 
compromises and simplifications leading to various limi-
tations. One of the most frequently discussed limitations 
of this kind of turbulence closure schemes is the predic-
tion of stably stratified flows. The Mellor Yamada model 
implies the existence of a finite critical gradient Richardson 
number, beyond which the turbulence ceases and can not 
exist anymore (Kantha and Clayson [15, 16]; Nakanishi [28]; 
Cheng et al. [7]; Sukoriansky et al. [33]; Galperin et al. [11]; 
Canuto et al. [6]; Kantha and Carniel [17]; Bretherton and 
Park [2]; Zilitinkevich et al. [37]). The existence of a critical 
value of gradient Richardson number ( Ricr ≈ 0.19 for the 
MY82 model) contradicts the observations of stably strati-
fied flows where turbulence persists even at stratifications 
with Ri > Ricr , i.e. turbulence survives at Ri ≫ 1.

The problem of critical Richardson number was dis-
cussed and addressed by a number of authors (among 
others Cheng et al. [7], Canuto et al. [6], Kantha and Carniel 
[17], Zilitinkevich et al. [37], Li et al. [20]). All these efforts 
were focused either on the increase of the Ricr to an accept-
able level (e.g. model of Cheng et al. [7] increases Ricr to 
O(1), which is a fair estimation in geophysical flows) or 
even into complete removal of this barrier (e.g. models by 
Canuto et al. [6], Zilitinkevich et al. [37]).

The work presented in this paper aims to propose a kind 
of modified second-order closure (in the sense of MY82 
model), that does not have any critical Richardson num-
ber limitations. The modification is based on variation of 
the length scale associated with the return-to-isotropy, 
following the ideas from Cheng et al. [8], Canuto et al. [6], 
incorporating an asymptotic limit to the dynamic length 
scale according to Nakanishi [28]. The dimensionless mean 

wind and temperature gradient profiles in the surface-
layer as well as the normalized variances and covariances 
of the turbulent fluctuations are derived using the simi-
larity functions in the framework of the Monin-Obukhov 
Similarity Theory [27]. The results are put into context and 
direct comparison with some previous relevant works in 
this area. The present analysis extends the previous work 
by Caggio et al. [4] (see also Caggio and Bodnár [3]) mainly 
in terms of the investigation of second-order quantitites.

The paper is organized as follows. In Sect. 2 we intro-
duce the second-order scheme for the turbulent vari-
ables, together with the parameterizations of the third-
order terms, in the boundary layer approximations. Next, 
we discuss the new heat flux equations. Then, we recover 
the framework of the MY82 model and we compute the 
appropriate quantities in order to derive the mean wind 
speed and potential temperature profiles in terms of simi-
larity functions and the variances and covariances of the 
turbulent fluctuations. Section 3 and 4 are devoted to 
the presentation and discussion of our results, and to the 
conclusions.

2 � Second‑order scheme

In the following, we introduce the general second-order 
scheme for the turbulent variables (see e.g. Garrat [12], 
Tampieri [34], Wyngaard [36])
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Here and hereafter, capital and tiny letters denote the 
mean physical quantity and its turbulent fluctuation 
respectively in the sense of Reynolds decomposition. The 
ensemble averages are marked by overbar. In this sense 
we split the wind speed in U + u and the potential tem-
perature in Θ + � . Quantities like uw  , w� or analogous, 
are interpreted as turbulent stress and heat fluxes, respec-
tively. Pressure fluctuations and base state profile for the 
density are denoted by p and �0 , respectively. The quantity 
gj = (0, 0,−g) is the gravity acceleration, � is the thermal 
expansion coefficient, � is the kinematic viscosity and � 
the thermal diffusivity. The Coriolis parameter has been 
neglected as a standard simplification in the surface-layer.

2.1 � Closure assumptions

In order to close the system (1) – (3), we need to express 
the third-order terms as functions of second-order quan-
tities. In the following, l1, l2 , �1, �2, �3 and Λ1,Λ2 will be 
length scales, C1,C2,C3 and C4 positive coefficients and the 
quantity q will represents the square-root of two-times the 
turbulent kinetic energy.

2.1.1 � Pressure terms

The pressure terms are closed in the sense of “return-to-
isotropy” proposed by Rotta [30], namely an anisotropic 
flow tends to isotropy in absence of external forcings. We 
have,

and

More precisely, Rotta [30] suggested a closure for the terms 
(4) and (5) with C2 = C3 = C4 = 0 . The extension that con-
cerns the presence of the heat fluxes and the temperature 
variance is possible to find in Yamada [35] and Nakanishi 
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[28] (see also Denby [9]) with different values for C2 , C3 and 
C4 . In the following analysis we will keep this extension.

2.1.2 � Third‑order covariances

The third-order covariances of velocity components and 
temperature are expressed in terms of the flux-gradient 
approximation (see also relation (27) below), namely

and

2.1.3 � Dissipative terms

The dissipative terms are expressed according to the Kol-
mogorov hypothesis of small-scale isotropy (see Kolmogo-
rov [18]) as

2.1.4 � Remaining terms

Since there is no isotropic first-order tensor, we have (see 
e.g. Mellor [24])

and pressure diffusional terms are small (see e.g. Mellor 
[24])

2.2 � Boundary layer approximation

We consider the second-order turbulent scheme (1) 
– (3) with the closure assumptions (4) – (10). We assume 
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horizontally homogeneous conditions in the steady state 
and, for high Reynolds’ number, we neglect diffusion 
terms. The system of equations reads as follows1

where we oriented our coordinate system so that 
vw = 0 and uw  is aligned with the mean wind vector 
U. Moreover, it could be shown (see Mellor [24]) that 
�V∕�z = uv = v� = 0.

Note that the second equation in (14) is the budget for 
the turbulent kinetic energy under equilibrium conditions. 
Accordingly, the production of turbulent kinetic energy by 
shear and buoyancy is totally balanced by the dissipation 
of turbulence. This is consistent with the approximation 
previously discussed.

In the system above,

and

where A1 , A2 , B1 and B2 are positive coefficients and l repre-
sents a length scale such that l → �z as z → 0 , where � is 
the von Kármán constant and can be prescribed or solved 
from a prognostic equation. Physical considerations about 
l will be, in the following, the key point of our analysis.
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2.3 � Length scale and new heat flux equations

Under the boundary layer approximation discussed in the 
previous section, the system (11) – (14) is presented in the 
framework of the MY82 scheme. In a very recent paper, 
Cheng et al. [8] focused in a modification of the heat flux 
equations proposing a new closure for the return-to-isot-
ropy term of the pressure-temperature correlation (5). This 
closure was previously proposed by Canuto et al. [6] when 
they examined the wavenumber spectra of the pressure-
temperature relaxation time scale [see Eq. (9c) in Canuto 
et al. [6]]. More precisely, they considered (13)

with

where �t is the turbulent Prandtl number defined as

with �t0 its neutral value (the constant A′

2
 is determined so 

that in the neutral conditions l2∕l = A2 ) and

are the production terms due to shear and buoyancy, 
respectively. Here, Ri is the gradient Richardson number 
defined as

where N is the Brunt-Väisälä frequency. With the modifi-
cation given by (15), the equations for u� and w� change 
as follows (see Appendix A in Cheng et al. [8] for a more 
detailed derivation of the new heat flux equations)

Consequently, in the following analysis we will consider 
the system (11), (12), (14), (19) with values of the coeffi-
cients from Cheng et al. [8], namely
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1  More precisely, we assume horizontally homogeneous conditions 
for the mean field U. Indeed, for the turbulent fluctuations terms 
vertical homogeneity is also assumed. In other words, we assume 
that the second-order moments are constant with respect to the 
vertical coordinate in the surface-layer. This translates into the fact 
that the third-order moments (6) and (7) expressed through the 
flux-gradient approximations are neglected.
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2.3.1 � Physical considerations on l
2
∕l

In order to give a physical insight into the relation (15), we 
consider the closure assumption (5)

where, for simplicity, C3 = C4 = 0 . Relation (21) could be 
rewritten as follows

where �p� is a time scale. Many second-order closure mod-
els assume �p� = �∕cp� for stably stratified flows, with, for 
example, � = l2∕q and cp� positive constant such that 
l2 = cp� l (in order to be consistent with the above discus-
sion, cp� should be equal to A2 ). Canuto et al. [6] suggested 
the use of a buoyancy damping factor in the time scale 
�p� in order to reduce the effect of eddies that, working 
against the gravity, lose kinetic energy that is converted to 
potential energy. This translates in the following formula-
tion for �p�:

with c� positive constant. Moreover, Canuto et al. [6] (see 
Section 5, relation (14e)) also showed that, including shear 
and buoyancy, for high gradient Richardson number, 
Ri ≫ 1 , the above relation can be generalized as

Now, introducing the flux Richardson number

the Prandtl number from (16) is expressed as follows

For Ri ≫ 1 , Rf  tends to a constant value that we denote 
Rfc (see, for example, [8], Fig. 2b) and, consequently, the 
Prandtl number increases linearly with Ri (see, for example, 
[8], Fig.2a), namely
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Relation (24), together with (26), is consistent with (15).

2.4 � Stability functions

Back to the framework of MY82, we express the turbulent 
stress uw and the heat flux w� in terms of the well-known 
flux-gradient approximation2

Here, Km and Kh are the eddy diffusivities, functions of l, q 
and non-dimensional stability functions Sm and Sh . Moreo-
ver, we define the non-dimensional gradients (see Mellor 
and Yamada [26])

Note that, from (27) and (28), we can rewrite the turbulent 
kinetic energy budget equation (second equation in (14)) 
as follows

where � = q3∕Λ1 is the turbulent kinetic energy dissipa-
tion. Equilibrium conditions require (Ps + Pb)∕� = 1 and we 
end up with

Relation (29) will play a role in the subsequent analysis.

2.4.1 � Derivation of S
m

 and S
h

In order to derive the dimensionless mean wind and tem-
perature gradient profiles (see (33) in Section 2.5 below), 
we need to express the stability functions Sm and Sh , as well 
as the non-dimensional gradient Gm and Gh in terms of the 
gradient Richardson number. A first step is to derive the 
stability functions Sm and Sh in terms of the non-dimen-
sional gradient Gh . From (11), (12) , (14), (19), (27) and (28), 
we have (for a detailed derivation see Appendix A below)
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2  Note that the flux-gradient approximation has been already 
introduced before in the definition of the turbulent Prandtl num-
ber; see relation (16).
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where

Now, an expression for the non-dimensional gradient Gh as 
a function of the gradient Richardson number (see (18)1 ) is 
obtained from the turbulent kinetic energy balance (29). 
Indeed, from (29), we have

and using the definition of the gradient Richardson num-
ber in (18), we have

Now, setting

from the definition (30) and (31), we can derive

and, after some algebra, we end up with

with c0 = −Ri  , c1 = (B1s0 + d1)Ri − B1s2 and c2 = B1s3. 
Given Gh from (32), we derive Gm in terms of the gradient 
Richardson number from (29).

2.5 � Similarity functions

In the framework of the Monin-Obukhov Similarity Theory 
we define the non-dimensional vertical gradients of the 
mean wind speed U and mean potential temperature Θ 
as follows
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flux determines the sign of L, negative for unstable cases 
( w𝜃 > 0 , H < 0 ), positive for stable cases ( w𝜃 < 0 , H > 0 ) 
(see for example Garratt [12], Tampieri [34] and Wyngaard 
[36]). In the following, we are interested in the behavior of 
�m and �h . From the definition (33), we can compute
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neutral conditions it can be assumed to be proportional 
to the distance from the surface z. A common extension 
to stable conditions is
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=

�̃(1 + ��
z

L
)

�̃ + ��
z

L

=

�̃(1 + ���mRi
Sh

Sm
)

�̃ + ���mRi
Sh

Sm

,

⎛

⎜

⎜

⎝

�� =
�̃

1 −
1

�̃

, �̃ = 2.7, �̃ = 3.7

⎞

⎟

⎟

⎠

.

(37)b2�
2

m
+ b1�m + b0 = 0,

3  The relation (36) could be derived introducing the flux Richard-
son number Rf ∶=

g

�0
w�∕uw

�U

�z
=

z

L
�−1
m

 , and noticing that, using 
relations (27), we can express Rf  in terms of Ri and the stability func-
tions Sm and Sh as follows: Rf = Ri(Sh∕Sm) . The empirical values of 
the coefficients �̃, �̃  are from Nakanishi [28].
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Given the profile of �m , from (34)2 we can compute �h.

2.6 � Variances and covariances of the turbulent 
fluctuations

Given the profile of �m and �h , from (11), (12) , (14), (19) 
and (33), it is possible to derive the normalized variances 
and covariances of the turbulent fluctuations in terms 
of the gradient Richardson number. In particular, we are 
interested in the three-components of the velocity vari-
ances, u2∕u2

∗
 , v2∕u2

∗
 and w2∕u2

∗
 ; in the horizontal heat flux, 

b2 = ��
Ri

S
h

S
m

, b1 = �̃

(

1 − ��
Ri

S
h

S
m

G
1∕4

m

S
1∕2

m

)

, b0 = −�̃
G
1∕4

m

S
1∕2

m

.
u�∕u

∗
�
∗
 ; in the temperature variance, �2∕�2

∗
 ; and in the 

kinetic energy q2∕u2
∗
 . A derivation of these quantities is dis-

cussed in the Appendix B below. Here, we list the obtained 
results:

(38)

u2

u2
∗

=

�

G
1∕4

m

S
1∕2

m

�2∕3
�

B1

�

1 − Ri
Sh

Sm

��2∕3

⎡

⎢

⎢

⎢

⎣

�1 + 2A1

�

3 − C2Ri
Sh

Sm

�

B1

�

1 − Ri
Sh

Sm

�

⎤

⎥

⎥

⎥

⎦

,

Fig. 1   Blue squares: similarity 
function from Eq. (34) as func-
tion of Ri with the scale length 
parameterized as in Eq. (36). 
Open dots: the same, with the 
scale length from Eq. (35). Col-
oured continuous lines: expres-
sion from various authors

Fig. 2   Blue squares: similarity 
function from Eq. (34) as func-
tion of Ri with the scale length 
parameterized as in Eq. (36). 
Open dots: the same, with the 
scale length from Eq. (35). Col-
oured continuous lines: expres-
sion from various authors
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3 � Results

The similarity function �m computed from Eq. (34)1 with 
parameterization (35) and (36) is reported in Fig. 1 (open 
circles and full squares, respectively) and compared with 
results from literature. It results that in the near neutral 
and weak stability range ( Ri < 0.1 ) all the similarity func-
tions are equivalent, while they become quite different as 
stability increases. In particular, �m with (35) exhibits a criti-
cal Richardson number ( Ri ≈ 0.2 ) like the commonly used 
log-linear similarity function from Högström [14] (violet). 
Instead, when (36) is considered, �m exists for all Ri > 0 , so 
there is no threshold, and levels off for Ri > 0.5 . This is con-
sistent with the similarity functions suggested by Sorbjan 
[32] (green) and by Gryanik et al. [13] (red), that are based 
on observations and thus are limited in the observed Ri 
range, and with the theoretical curve by Zilitinkevich et al. 
[37] (yellow), that is based on a different closure and also 
does not exhibit a critical Richardson number. The similar-
ity function �h computed from Eq. (34)2 with parameteriza-
tion (35) and (36) is reported in Fig. 2 and compared with 
other functions from the literature. Similarly to �m , when 

(39)
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G
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(
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Sh

Sm

)

]2∕3

.

(35) is used, a critical Ri is observed as in the log-linear rela-
tion from Högström [14], whilst no threshold for Ri occurs 
when (36) is considered, in agreement with Gryanik et al. 
[13] and, in particular, with the theoretical curve by Zil-
itinkevich et al. [37].

In Figs. 4 – 7 we report some of the similarity relations 
presented above concerning the variances and covari-
ances of the turbulent fluctuations, namely the vertical 
velocity variance, the temperature variance and the tur-
bulent kinetic energy from the relations (40), (42) and (43), 
respectively, and compared with some literature results; 
in particular, with the MY82 model, the Energy- and Flux-
Budget model (EFB) developed by Zilitinkevich et al. [37] 
and the Cospectral Budget (CSB) model presented in Li 
et al. [20]. The EFB approach solves the budgets of tur-
bulent momentum and heat fluxes and turbulent kinetic 
and potential energies, while the Cospectral Budget (CSB) 
approach is formulated in wavenumber space and inte-
grated across all turbulent scales to obtain flow variables 
in physical space. Both approaches are recent advances in 
the study of stably stratified atmospheric flows and unlike 
the MY82 model allow turbulence to exist at any gradient 
Richardson number. However, as we will discuss below, a 
revision of the MY82 model allows also to avoid the thresh-
old value for the gradient Richardson number.4 The empiri-
cal curve suggested by Mauritsen and Svensson [23] is also 
presented in Fig. 6 and 7. This curve was obtained by iden-
tifying the weakly and very stable regimes and interpolat-
ing between them, from six different data sets, and can 
thus be interpreted as a summary of the field observations.

Figure 4 shows the ratio w2∕u2
∗
 . In the neutral and weak 

stability conditions, our result shows a good agreement 
with the MY82 model and the EFB model, and increasing 
slightly as stability increases. Similar increase is visible in 
the MY82 model with bigger values of the ratio w2∕u2

∗
 . For 

very stable conditions, our curve shows similar behavior 
as the MY82 model and the CSB model stabilizing on a 
constant value. Note that the MY82 behaves differently 
depending on the choice of the coefficient C2 . While for 
C2 = 0.3 the model presents a divergent behavior, for 
C2 = 1 can encompass arbitrary large gradient Richard-
son numbers. The rational behind this choice will be bet-
ter clarified in the next section. Note also that, while our 
result, together with the result of MY82, shows an increase 
of the ratio w2∕u2

∗
 when stability increases, the EFB model 

shows a decrease of the same ratio. Figure 5 shows the 
ratio between the vertical velocity variance and two-
times the turbulent kinetic energy as function of Ri. All 

4  The relations shown in Figs.  4–7 concerning the results of the 
MY82, EFB and CSB model are taken from Li et  al. [20]; see Sec-
tion 2, relations (5), (6), (7), (11), (13), (14), (21) and (22).
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the results exhibit similar behavior, showing a decreasing 
of the ratio w2∕q2 , indicative of a higher content of kinetic 
energy in the horizontal components. Figure 6 shows the 
ratio �2∕�2

∗
 . In neutral conditions our result presents a 

good agreement with most of the results present in the 
literature. As the stability increases, our curve follows the 
the MY82 and EFB model. Concerning the turbulent kinetic 
energy (see Fig. 7), our result shows a good agreement 
with some of the results present in literature for the whole 
stability range. In particular, for very stable conditions our 
curve follows the MY82 and EFB model.

4 � Discussion and conclusions

4.1 � Discussion

The similarity functions �m and �h derived in the present 
analysis are the result of the combination between the 
second-order turbulent scheme discussed in Section 2.2 
with the new heat flux equations proposed by Cheng et al. 
[8], together with the MY82 framework discussed in Sec-
tion 2.4. and the formula (36) for the ratio �z∕l . As already 
mentioned, the profiles of �m and �h do not present any 
threshold for the gradient Richardson number. In this, a 
crucial role is played by the parameterization proposed 

Fig. 3   Ratio l∕(�z) as a func-
tion of Ri from Eqs. (35) and 
(36)

Fig. 4   Blue squares: vertical 
velocity variance from Eq. (40) 
as function of Ri. Coloured 
lines: expression from various 
authors
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for the ratio �z∕l . Indeed, we have noticed that the pre-
sent approach, if the scale length is allowed to decrease 
without limit, as in Eq. (35), exhibits a singular behaviour 
at a finite value of Ri (see Fig. 3), and thus does not give a 
solution for larger Ri. This behaviour highligths the key role 
of the lenght scale parameterization.

Differently from �m and �h , the behaviors described in 
the relations (38) –(43) is not affected by the choice of the 
ratio �z∕l , but only by the parameterizations introduced in 
Section 2.1 and Section 2.3. Concerning the MY82 model, 
we would like to clarify the difference between the results 
due to the choice of the coefficient C2 . As already men-
tioned, for C2 = 1 the model can encompasses arbitrary 
large gradient Richardson numbers, while it presents 
a divergent behavior for C2 = 0.3 . This is due to the fact 

that the model predicts a threshold value for Ri and 
consequently a degeneration of turbulence (see Li et al. 
[20], Section 2 and Fig. 2). As discussed in Li et al. [20], Sec-
tion 3, the rational behind the choice of C2 = 1 is that it 
eliminates the dependence of the turbulent momentum 
flux uw on the horizontal heat flux u� . This revision allows 
the MY82 model to show results for any Ri. Similarly, the 
modification (15) proposed by Cheng et al. [8] modifies the 
equations of the heat fluxes in a way that a dependence 
on the momentum flux is not present in the equation of 
the horizontal heat flux, see (19)1.

Apart for the numerical values, the behavior described 
by the relation (42), (43) and the ratio between (40) and 
(43) is similar to the results of the literature presented 
here. Regarding the vertical velocity variance, (40), the 

Fig. 5   Blue squares: ratio 
between the vertical velocity 
variance and two-times the 
turbulent kinetic energy from 
Eq. (40) and Eq. (43) as function 
of Ri. Coloured lines: expres-
sion from various authors

Fig. 6   Blue squares: tem-
perature variance from Eq. 
(42) as function of Ri. Coloured 
lines: expression from various 
authors



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:214  | https://doi.org/10.1007/s42452-022-05088-8	 Research Article

difference in the behavior of our result, together with the 
result of MY82, with respect to the EFB model could be 
potentially related to the different parameterizations of 
the pressure terms. Indeed, while in our approach, as in 
the MY82 model, the coupling between the pressure fluc-
tuations and the gradient of the velocity or temperature 
fluctuations is expressed in terms of “return-to-isotropy” in 
the sense of Rotta [30], the EFB model [37] parametrizes 
the pressure terms depending on the stability. This choice 
seems more suitable for stably stratified flows.

4.2 � Conclusions

The analysis presented in this work concerned the modifi-
cation of the second-order turbulence closure model that 
avoids the threshold for the gradient Richardson number 
through the introduction of new heat fluxes equations. 
In term of similarity and structure functions, the mean 
wind speed and potential temperature profiles have been 
derived for the new model together with the second-order 
quantities as a function of the gradient Richardson num-
ber. The predictions of the new model have been con-
fronted with well know results from the literature.

Our findings are in a reasonable agreement with the 
results from the literature presented here. However, one 
important discrepancy is present in the profiles of the 
vertical velocity variance due to possibly, as already men-
tioned, the different parameterizations of the pressure 
terms. Consequently, it could be of some interest to inves-
tigate how the relations proposed in the EFB model could, 
potentially, modify the present results. In other words, it 
could be matter of future research to implement the pres-
sure-terms parameterizations introduced by Zilitinkevich 
et al. [37] in the framework of the MY82 scheme with the 

new heat fluxes equations proposed by Cheng et al. [8]. 
Particular attention should also be given to the expres-
sion of the ratio �z∕l where different alternatives could 
be suggested.

We conclude that the present work could be seen as 
an extension, and perhaps an improvement, of the analy-
sis developed by Cheng et al. [8], at least regarding the 
analysis of the similarity functions that do not present a 
critical value for the gradient Richardson number and the 
derivation of the equations describing the behavior of the 
variances and covariances of the turbulent fluctuations in 
terms of the gradient Richardson number.
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Appendix A

We present the derivation of Sm and Sh introduced in Sec-
tion 2.4. From (14)1 and (27)2 , we have

Consequently,

Now, from (11)3 and (27)2 , we derive

and, consequently

Finally, from (19)2 , (27), (44) and (45), we obtain

Using (28), after some algebra we end up with

that could be written in a more compact form as

w i t h  a = 3A�

2
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Finally, from (12), (27)1 , (45) and (48), we obtain

Using (28), after some algebra we end up with

that, in compact form reads as

with a� = 9A1A
�

2
(1 − C2)(1 − C4) , b� = 6A2

1
(3 − 2C2) and 

c� = 3A1(�1 − C1).

In conclusion, from (47), we have

with A = a − a� , B = b − b� and C = c − c� , and from (50)

Appendix B

We discuss how to obtain relations (38) - (43) introduced in 
Section 2.6. In particular, we present the derivation for the 
vertical velocity variance, the temperature variance and 
the turbulent kinetic energy normalized over the momen-
tum flux. Relations for the other quantities can be derived 
by similar arguments.

Turbulent kinetic energy q2∕u2
∗

From (14)2 we have

Substituting the expressions of the quantities defined in 
Section 2.5, we obtain
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After some algebra and using the equality z∕L = Ri �2
m
∕�h , 

we end up with

Finally, from the definitions (34), we can rewrite the above 
relation as follows

Vertical velocity variance w2∕u2
∗

From (11)3 , we have

and consequently

Similarly as above, using z∕L = Ri �2
m
∕�h together with 

the expression of the turbulent kinetic energy discussed 
above, we end up with
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Temperature variance �2
∕�

2

∗
∶

From (14)1 , we have

q2

u2
∗

=

(

l

�z

)2∕3
[

B1

(

�m − Ri
�2
m

�h

)]2∕3

.

q2

u2
∗

=

[

B1
G
1∕4

m

S
1∕2

m

(

1 − Ri
Sh

Sm

)

]2∕3

.

w2 = �1q
2
+ 2A1(3 − 2C2)

l

q
�gw�

w2 = �1q
2
+ 2A1(3 − 2C2)

l

q
�g

(

−u3
∗

��gL

)

.

w2

u2
∗

=

�

l

�z

�2∕3
⎧

⎪

⎨

⎪

⎩

�1

�

B1

�

�m − Ri
�2
m

�h

��2∕3

−2A1(3 − 2C2)

�

B1

�

�m − Ri
�2
m

�h

��−1∕3

Ri
�2
m

�h

⎫

⎪

⎬

⎪

⎭

.

w2

u2
∗

=

�

G
1∕4

m

S
1∕2

m

�2∕3
�

B1

�

1 − Ri
Sh

Sm

��2∕3

⎡

⎢

⎢

⎢

⎣

�1 − 2A1(3 − 2C2)

Ri
Sh

Sm

B1

�

1 − Ri
Sh

Sm

�

⎤

⎥

⎥

⎥

⎦

.

Similarly to the derivation of the previous quantities, we 
end up with

We conclude using (34)
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