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Abstract
Groundwater models serve as support tools to among others: assess water resources, evaluate management strategies, 
design remediation systems and optimize monitoring networks. Thus, the assimilation of information from observations 
into models is crucial to improve forecasts and reduce uncertainty of their results. As more information is collected rou-
tinely due to the use of automatic sensors, data loggers and real time transmission systems; groundwater modelers are 
becoming increasingly aware of the importance of using sophisticated tools to perform model calibration in combination 
with sensitivity and uncertainty analysis. Despite their usefulness, available approaches to perform this kind of analyses 
still present some challenges such as non-unique solution for the parameter estimation problem, high computational 
burden and a need of a deep understanding of the theoretical basis for the correct interpretation and use of their results, 
in particular the ones related to uncertainty analysis. We present a brief derivation of the main equations that serve as 
basis for this kind of analysis. We demonstrate how to use them to estimate parameters, assess the sensitivity and quan-
tify the uncertainty of the model results using an example inspired by a real world setting. We analyze some of the main 
pitfalls that can occur when performing such kind of analyses and comment on practical approaches to overcome them. 
We also demonstrate that including groundwater flow estimations, although helpful in constraining the solution of the 
inverse problem as shown previously, may be difficult to apply in practice and, in some cases, may not provide enough 
information to significantly constrain the set of potential solutions. Therefore, this article can serve as a practitioner-
oriented introduction for the application of parameter estimation and uncertainty analysis to groundwater models.

Article highlights

• We review the theoretical background that supports 
parameter estimation and uncertainty analysis tech-
niques applied to groundwater models.

• We demonstrate the application of parameter estima-
tion and uncertainty analysis to mathematical ground-
water models through an example.

• We comment on the main challenges that can be faced 
when applying parameter estimation and uncertainty 
analysis to groundwater models.
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1 Introduction

Groundwater models serve as support tools to assess 
water resources, evaluate management strategies, 
design remediation systems and optimize monitoring 
networks [1–4]. As such, results of numerical groundwa-
ter models guide decision makers on practical issues of 
public concern [5]. Therefore, the correct development 
of groundwater models and their ability to simulate the 
functioning of real groundwater systems are important 
beyond the realm of particular engineering or envi-
ronmental projects. As a minimum, it is expected that 
models are able to reproduce observed data and that 
their results can be used as reasonably approximations 
to evaluate future or hypothetical scenarios for ground-
water systems. This requires the integration of observa-
tions and models through calibration [6–9]. Furthermore, 
it is generally also important to quantify the uncertainty 
of the model results in order to include it into the risk 
associated to decisions supported by them [10, 11].

The increase in computational power and availability 
of new software have made possible the development of 
complex mathematical models to simulate groundwater 
systems [11–16]. Until recently, such models were devel-
oped, calibrated and analyzed in ad hoc ways, e.g. using 
trial and error for calibration and the manual variation 
of selected parameters for sensitivity analysis. However, 
the level of complexity and the number of parameters 
included in new models have made necessary the use 
of more systematic approaches [11, 13, 17, 18]. Meth-
odological frameworks for these purposes have become 
available during the past decades; some were brought 
to groundwater modelling from other fields, such as the 
oil industry or climate science [10, 19, 20]. However, the 
correct application of a systematic approach to develop, 
calibrate and analyze the results of such mathematical 
models is challenging, because it requires understanding 
and applying concepts that are far beyond traditional 
groundwater hydrology from disciplines such as linear 
algebra, calculus, and geostatistics. There are books, 
technical documents and detailed review articles about 
the subject [7–11, 13, 17, 20–22]. However, there is still 
much need for a brief, simple and practitioner oriented 
introductory discussion that explains with the use of 
only a few equations the functioning of sophisticated 
software tools that modelers apply nowadays.

Previous articles [16, 23] used simple groundwater 
models to discuss problems that may arise when try-
ing to calibrate them and assess the uncertainty of their 
results. Freyberg [23] reported on the results of an exer-
cise performed by graduate students who used trial 
and error (manual calibration) to calibrate a synthetic 

groundwater model using only a set of observed piezo-
metric head values. The main findings of that exercise 
were that groups of students used very different strate-
gies to accomplish the calibration and that their results 
were in some cases quite different. Moreover, the quality 
of the forecasts performed with the calibrated models, 
assuming slightly different boundary conditions to the 
ones considered for calibration, was wide-ranging and, 
surprisingly, it did not correlated well with the qual-
ity of the calibration. Calibrated models that had low 
residuals between simulated and observed piezometric 
heads did not provide better forecasts than calibrated 
models that had larger residuals. The group of students 
that reported the worst prediction used different val-
ues of hydraulic conductivity for each cell of the model. 
Moreover, the quality of the forecasts did not directly 
correlate with the ability of the modelers to find the 
correct values of the hydraulic conductivity used in the 
synthetic model adopted as virtual reality. Freyberg [23] 
explained some of the results of the exercise based on 
the theoretical understanding about parameter estima-
tion for groundwater models available at the time. The 
solution of the inverse problem to estimate parameters 
of groundwater models, even discounting differences 
in their conceptualization, admits multiple solutions 
[7]. The non-uniqueness of the solution can be due to a 
larger number of parameters than available observations 
or to correlation between parameters [16]. For example, 
the problem reported by [23] considered 1389 unknown 
values of hydraulic conductivity (parameters), but only 
22 piezometric head measurements. The findings of [23] 
established reservations with respect to the end result of 
the calibration of groundwater models and its usefulness 
to reduce the uncertainty of forecasts.

Recently, [16] revisited the original problem pre-
sented by [23], this time applying the latest available 
automatic parameter estimation and uncertainty analy-
sis techniques, including mathematical regularization 
techniques based on subspace methods to decrease 
the effective number of parameters included in the 
inverse problem [10, 13]. Their main findings were that 
automatic calibration of even highly parameterized 
models could be constrained, i.e. the potential large 
number of multiple solutions could be reduced to a 
much lower number, by including a single groundwater 
flow estimation as additional information to the avail-
able piezometric heads. [16] found that the use of auto-
matic frameworks for parameter estimation resulted in 
better-calibrated models that produced improved fore-
casts when compared to the original results presented 
by [23], which demonstrated the potential usefulness 
of using recently developed methods. Then, contrary 
to one of the conclusions of [23], highly parameterized 
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models with many parameters performed better than 
simple models with fewer parameters. The solution of 
the inverse problem for highly parameterized models, 
which demands a large number of model runs, is well 
suited for increasingly available parallel platforms. Thus, 
the calibration of this type of models is becoming more 
accessible in practical applications. On the other hand, 
[16] also concluded that good calibration does not nec-
essarily imply good forecasts assuming slightly different 
forcing terms, e.g. boundary conditions, to the scenario 
considered for calibration.

The main objective of this article is to explain, using 
an example, the main concepts required to calibrate 
a physically based mathematical model to simulate a 
groundwater system, assess its sensitivity and estimate 
the uncertainty of its results. We explain the main steps 
that are required and comment on some of the main 
pitfalls that can arise. We use as example a simplified 
model of a real natural setting previously studied as part 
of a long-term environmental study [24, 25]. To promote 
the use of simple analytical calculations to gain under-
standing that can be useful to interpret the results of 
more complex numerical models and to overcome some 
numerical challenges for obtaining reliable numerical 
solutions for this particular setting, we use an analyti-
cal model instead of a numerical groundwater model 
[26]. Therefore, this article aims to address the needs of 
modelers interested in applying methods for parameter 
estimation and uncertainty analysis. It also attempts 
to be useful for decision makers who base their deci-
sions on the results of groundwater models and need to 
understand their potential and limitations. Finally, since 
this article provides a practitioner-oriented introduction 

to the topic, it can also serve as material for an advanced 
graduate level groundwater modeling course.

This article is structured in four main sections, includ-
ing this introduction. In the next section we describe the 
Example problem that we use throughout the article. 
Next, we present a mathematical analysis of the applica-
tion of parameter estimation and uncertainty analysis for 
the Example problem. Finally, we provide some conclud-
ing remarks based on the results presented in the other 
sections.

2  Example description

We will consider as example the estimation of the posi-
tion of the phreatic surface (water table) for an aquifer 
located between two rivers as shown in Fig. 1. Both riv-
ers are separated by a distance L [L], the aquifer receives a 
constant recharge rate R [L/T], and we assume that there 
is only one observed value of the piezometric head h [L], 
hw , at the position of an existing well xw [L]. This example 
corresponds to an idealization of a real groundwater sys-
tem previously analyzed as part of an environmental study 
[24, 25] and, hence, it provides a realistic case problem. 
The numerical solution for this problem is challenging 
because it requires simulating the position of the water 
table, which for this case is very sensitive to the grid reso-
lution due to the potential occurrence of high hydraulic 
gradients as result of the combination of recharge and low 
hydraulic conductivity. See the Supplementary Material for 
details about the difficulties to obtain reliable numerical 
solutions for this example.

This example provides a reasonable case of study 
of practical interest that is similar to many other cases 

Fig. 1  Schematic of conceptual problem: Water table position for a phreatic aquifer located between two rivers that are connected to the 
groundwater system, so that they act as prescribed piezometric head boundary conditions
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(i.e. unconfined aquifer with recharge) that occur often 
in practice, while it includes only a limited number of 
parameters. Thus, the detailed explanation of the appli-
cation of the methods for parameter estimation and 
uncertainty analysis can be kept brief. The development 
of a mathematical model to simulate a groundwater sys-
tem similar to this example includes three main parts:

(a) Conceptual model We consider only the part of the 
subsurface that is completely saturated and that the 
aquifer behaves as unconfined, so that all recharge R 
enters directly and immediately to the aquifer. Fur-
thermore, the two rivers are connected to the aquifer 
and can be modeled as prescribed head boundary 
conditions, h1 and h2 . The water elevation in both riv-
ers and the recharge rate are relatively stable, so that 
we can model the system as steady-state. Given the 
different magnitude of the flow discharge in both 
rivers, it is likely that the shallow aquifer contains 
at least two materials of different grain size with an 
interface located at position xK  [L]. Based on expe-
rience and comparison with similar sites, it is esti-
mated that the values of K1 ∈ k1[0.1, 10] [L/T] and that 
K2 ∈ k2[0.1, 10] [L/T], where k1 and k2 represent a scale 
of the magnitude of K  for both materials. Therefore, 
the range of variability of K  for each hydrogeological 
unit is two orders of magnitude, which for hydraulic 
conductivity is a reasonable estimate without addi-
tional information [27]. We use dimensionless vari-
ables to define parameters that have the same units: 
fK = k2∕k1 , fR = R∕K1 and fh =

(
h2 − h1

)
∕L . The param-

eters are set such that recharge is never higher than 
hydraulic conductivity.

(b) Mathematical model Darcy Law describes the satu-
rated flow system, which combined with the mass 
balance equation results in a partial differential equa-
tion. We assume that the Dupuit approximation is 
valid, i.e. flow is preferentially horizontal, so that ver-
tical piezometric gradients and velocity component 
are negligible [28]. Furthermore, the thickness of the 
saturated aquifer is equal to the piezometric head or 
water table elevation, so that the datum level consid-
ered for computing the energy of the flow coincides 
with the horizontal bottom of the aquifer.

(c) Evaluating solution Given these assumptions, the pie-
zometric head as a function of the position measured 
from River 1, x , can be calculated from

(1)h2(x) =

{
a1x

2 + b1x + c1, x ≤ xK

a2
(
x − xK

)2
+ b2

(
x − xK

)
+ c2 x > xK

The analytical solution depends upon the hydraulic 
conductivity K  and piezometric head h . The constant coef-
ficients of both polynomials can be evaluated from both 
boundary conditions, h(x = 0) = h1 and h(x = L) = h2 , and 
imposing continuity of the water table and flow through 
t h e  i n t e r f a c e ,  i . e .  h

(
x−
K

)
= h

(
x+
K

)
 ,  a n d 

−K1

[
h
�h

�x

]

x−
K

= −K2

[
h
�h

�x

]

x+
K

.

The model can be written most concisely as 
h(x) = h

({
K1, K2

}
;
{
h1, h2, R

}
, x
)
 , where we can identify the 

following sets of output variables o = {h} , input param-
eters to be estimated e =

{
K1, K2

}
 , and forcing input vari-

ables f =
{
h1, h2, R

}
 . We have left R as a forcing parameter 

for reasons that will become clear later.
Although we perform this analysis based on an ana-

lytical solution, the same type of reasoning applies to a 
numerical model that solves similar partial differential 
equations, since the numerical solution should converge 
to the analytical solution. The comparison between the 
analytical and numerical solutions presented in the Sup-
plementary Material, demonstrates that despite the 
presence of vertical gradients in this case, the analytical 
solution based on the Dupuit approximation provides an 
adequate approximation. For this example, the solution 
(analytical or numerical) for the position of the water table 
at a given location in the aquifer can be highly non-linear 
with respect to the input parameters ( K1 and K2 ) depending 
on the settings of the problem as shown in the Supple-
mentary Material. The non-linear behavior of the solution 
can represent additional challenges for the application 
of automatic techniques to estimate parameters and for 
assessing the uncertainty of the model results.

3  Mathematical analysis

3.1  Water table

Considering a homogeneous aquifer with a single mate-
rial, i.e. single K  value, the mathematical solution reduces 
to

where a = −R∕K  , b =
(
h2
2
− h2

1
− aL2

)
 /L and c = h2

1
 . Thus, 

different values of recharge R and hydraulic conductivity 
K  that result in the same ratio R∕K  produce the exact same 
value of h(x) , i.e. K  and R are strongly correlated. We can 
only estimate either K  or R , or the combination of both 
R∕K , which sometimes can be used as a surrogate or modi-
fied parameter for calibration. Therefore, we excluded R 
from the set of parameters that must be estimated. It is 
also direct from (2) that piezometric head depends in a 

(2)h2(x) = ax2 + bx + c
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non-linear fashion with the input parameters of the prob-
lem, K  and R.

Figure 2 shows simulated water table elevations for the 
homogeneous case ( fK = 1.00) . The water table has a para-
bolic shape that is the result of the difference between the 
prescribed head values at both boundaries and recharge 
that produces the mounding of the water table between 
both rivers. For this case, the magnitude of the maximum 
mounding due to recharge is proportional to R∕K  [26]. For 
fR = 1 × 10−3 mounding is limited and all recharged water 
exits the model domain through the boundary with lower 
prescribed head on the left side, while water also enters 
the domain through the right boundary with higher h . 
Increasing the recharge rate, while keeping the values of 
hydraulic conductivity, i.e. larger fR , would result in larger 
mounding.

Figure 2 also shows the solution for heterogeneous case 
( fK = 0.01 ). Since we assume that K2 is a couple of orders of 
magnitude smaller than K1 , we observe that the mounding 
effect within material 2 is significantly larger than in mate-
rial 1, and a flow divide occurs within material 2. Then, the 
only water that enters and exits the domain comes from 
recharge, i.e. the total flow is Q = RL  [L2/T], which exits 
through the right and left boundaries.

3.2  Sensitivity analysis: Jacobian matrix

We numerically compute the Jacobian, � , or sensitivity 
matrix to quantify the local sensitivity of the model, i.e. the 
magnitude of the changes of the results due to changes in 
the input parameters. The element of � that corresponds to 
the result r and input parameter p , is defined as

Then, � can be evaluated using a first-order forward 
finite-difference approximation, to obtain

Figure 3 shows normalized values of the components 
of the sensitivity matrix as function of position along the 
model domain. The fact that the components of � are 
equal to 0 at both boundaries indicates that the results of 
the model do not change at those positions independently 
of the values of the parameters, as it would be expected 
when applying prescribed head values at both bounda-
ries. Two interesting results derive from this. First, values 
of head near the boundaries are less sensitive to changes 
in parameters than values located toward the center of 
the domain. Second, observations of wells located near 
both extremes are less relevant or provide less meaning-
ful information for the calibration of K  than observations 
collected near the position of the interface between both 
materials, since the simulated head at those positions does 
depend upon the values of the parameters [10, 17, 20]. This 
last conclusion has importance for real-world models that 
consider observations measured at tens or hundreds of 
different locations within a model domain. Moreover, if we 
had to decide where we should collect data or drill a new 
borehole to measure piezometric levels, we would select 
a location near the center between both rivers, since the 
variability of the results is greatest at that location.

It is important to notice the drastic change in the 
shape of J12 between the homogeneous and hetero-
geneous cases. In the latter, the simulated water table 
within material 1 is almost completely independent of 
the value of K2 . Hence, any measurement of piezometric 

(3)Jrp =
�r

�p

(4)�
({

K1, K2
}
|� , x

)
=

[
Δh

ΔK1
,
Δh

ΔK2

]

Fig. 2  Water table as a function of position between both rivers for 
two ratios of hydraulic conductivity, fK = K2∕K1 . a Homogeneous 
and b heterogeneous aquifer. Dashed red line shows position of 
interface between materials xK
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levels taken from a borehole located within material 1 
would provide no relevant information for the estima-
tion of K2 . This result can vary between both extremes 
presented here, homogeneous and heterogeneous case, 
depending upon the specific value of fK .

The fact that the components of the sensitivity matrix, 
� , change with x and with the ratio between both values 
of K  in a non-linear fashion, confirms that it only provides 
a measure of the local-sensitivity of the model around a 
given set of input parameters. This information may not 
be enough to evaluate the overall performance of com-
plex models that include non-linear relations between 
parameters and results and many parameters for other 
material distributions or locations.

3.3  Calibration: inverse problem

We use the single measurement of h that is available to 
constrain or condition the values of K1 and K2 , i.e. to cali-
brate the parameters of the model. Once we have evalu-
ated the Jacobian of the model at the position of the well 
with observed piezometric head hw , we can write a first-
order Taylor series approximation to get

where Δ� =
[
ΔK1,ΔK2

]
 and � corresponds to errors of the 

approximation that can be neglected. The last expression 
corresponds to Newton’s method. Assuming that hi

w
 repre-

sents the solution of the model for an initial set of variables {
K1, K2

}
 and ho

w
 corresponds to the observed value at the 

well, we can write

The solution of the linear system provides an expression 
to compute the magnitude of the variation of parameters 
Ki that required so that the results of the model are similar 
to the observed data. From linear algebra, we know that 
� has an inverse only if it is square and no singular, i.e. 
det(�) ≠ 0 . For the general case of rectangular matrices 
with more rows than columns, as happens when there 
are more observations than independent parameters, the 
solution of (6) can be found by using methods to solve 
over-determined linear systems, e.g. least squares [29]. 
When there are more parameters than observations, there 
is only a reduced number of parameter combinations that 
can be estimated [10, 13]. The combination of parameters 
that cannot be uniquely estimated, because they do not 
have effect on the output of the model, correspond to the 
null-space of � [30], i.e. all vectors � such that � ⋅ � = 0 [29].

To understand what happens when there are more 
parameters than observations, as in this example and in 
most real world applications, we can rewrite (6) as a system 
of algebraic equations, which for this case contains only 
one equation,

where Δhw = h0
w
− hi

w
 . Then, given an arbitrary variation 

of K1 , we can compute the corresponding variation of K2 
needed to obtain a model that reproduces the observed 
data, as

Therefore, for this case we can find infinite solutions to 
the inverse problem by selecting an arbitrary variation of 
K1 and computing the corresponding variation of K2 from 

(5)
hw

({
K1 + ΔK1, K2 + ΔK2

}
|� , xw

)
− hw

({
K1, K2

}
|� , xw

)
= � ⋅ Δ� + �

(6)h0
w
− hi

w
= � ⋅ Δ�

(7)Δhw = J11ΔK1 + J12ΔK2

(8)ΔK2 =
Δhw − J11ΔK1

J22

Fig. 3  First component of sensitivity matrix or Jacobian ( � , defined 
in Eq.  3) as function of the position of the observation well. a 
Homogeneous and b heterogeneous aquifer. Dashed red line 
shows position of interface between materials xK and blue line 
shows position of well with measured head xw
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the last equation. In summary, this example with 2 param-
eters and 1 single observation is equivalent to an algebraic 
system with 2 unknown variables and a single equation, 
which admits an infinite number of solutions. This is a sim-
ple and intuitive demonstration of the non-uniqueness of 
the solution for the parameter estimation problem when 
there are more parameters than observations, as it hap-
pens often for groundwater models due to the heteroge-
neity of the parameters that they include, e.g. hydraulic 
conductivity, recharge rates, etc.

An important step after computing the solution of the 
linear system, is to verify that the linear approximation is 
valid by evaluating the model using the estimated set of 
parameters and comparing the result with the observed 
measurements. In most cases, models are non-linear, so 
that differences between observations and the results pro-
vided by the calibrated model based on the linear approx-
imation are expected. Moreover, in real cases, measure-
ment errors affect observations; while simplifications in 
model structure and parameter distribution, referred to as 
structural errors, influence the results of simulations [10]. 
For simplicity, we consider that such errors do not affect 
our synthetic example.

The set of parameters that fit the observation, i.e. 
�∗ =

{
K1, K2

}
 , found by solving (8) or by directly applying 

(6) is computed through an iterative process, since they 
are based on the local linear approximation (5), which is 
only valid for a small region around the set of parameters 
that are used to evaluate it. We opted to use (8), since it is 
straightforward to implement according to the following 
steps:

1. Select an initial set 
{
K0
1
, K0

2

}
.

2. Evaluate model to compute initial result, hi
w

 and check 
if Δhw > TOL , where TOL is a prescribed tolerance to 
stop iterations, which should be chosen such that it 
is compatible with the potential magnitude of meas-
urement errors and the overall precision level of the 
model. If the last condition is true, continue to next 
step, else stop iterations.

3. Evaluate components of the Jacobian around the ini-
tial parameter set. For this model with two parameters, 
it requires evaluating the model two additional times.

4. Define a change in K1 , ΔK1 , and apply (8) to calculate a 
corresponding ΔK2 . For example, ΔK1 can be specified 
as a fixed percentage of the current value of K1.

5. Calculate new values K1 = K i
1
+ ΔK1 and K2 = K i

2
+ ΔK2

.
6. Check if new values are within ranges defined dur-

ing the conceptual model stage. If they are not, stop 
iterating and report failure to find a satisfactory solu-
tion. Then, only a limited number of initial parameters 
may result in a satisfactory solution. In practice, this 

can result in a large computational overhead due to 
attempting to solve many cases that end up in failure.

7. Evaluate model for K1 and K2 to compute hw and check 
residual versus tolerance. If residual is still too big, set 
last parameter values as initial set and go back to Step 
1.

We applied the previous algorithm to estimate com-
binations of K1 and K2 that fits the observed head hw . The 
true or target value �∗ for this synthetic example is known, 
since we use it to generate the observed head hw . We used 
as initial guesses random combinations of both variables 
generated assuming a uniform distribution of ln (K ) within 
the specified ranges of K  for each material. Figure 4 shows 

Fig. 4  Combinations of K1 and K2 assuming two different ratios, 
fK = 1.00, 0.01; for randomly selected values within specified range 
(blue dots) and after parameter estimation (red squares). Green 
dots show initial parameter values (seed) for the cases for which 
convergence criteria was satisfied. a Homogeneous and b hetero-
geneous aquifer



Vol:.(1234567890)

Research Article SN Applied Sciences           (2022) 4:213  | https://doi.org/10.1007/s42452-022-05086-w

Fig. 5  Normalized residual (i.e. difference between simulated and observed head) at position of observation well versus normalized values 
of hydraulic conductivity for randomly generated parameter sets. Red cross indicates values for the adopted virtual reality site. a Homoge-
neous and b heterogeneous aquifer
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the initial and estimated combinations of parameters for 
the homogeneous and heterogeneous cases. While the 
initial sets cover the full range of each parameter, the 
ones that result in satisfactory combination of param-
eters define a much smaller region that coincides with an 
almost straight line defined by (8), which passes through 
the target or true parameter set. For the heterogeneous 
case, the estimated parameters define an almost vertical 
rectangular region in the plane K1 − K2 , which indicates 
that the simulated piezometric head at the well is much 
less sensitive to the value of K2 than to the value of K1 . 
This is a consequence of: (1) the location of the well with 
observed data within material 1, and (2) the ratio between 
fK considered for the heterogeneous case (lower K2 ). It also 
agrees with the estimation of the local sensitivity of the 
model shown in Fig. 3. Figure 4 also shows the initial sets 
of parameters for which the iterative process finished with 
a solution that satisfied the convergence criteria fixed at 
1.5 % of the observed head hw . Note that for the heteroge-
neous case only 130 out of 500 initial sets of parameters 
resulted in satisfactory results.

As for most iterative algorithms, the convergence rate 
and the estimated solution depend on: (1) the initial set 
of parameters, (2) the tolerance or threshold value defined 
as criterion to stop the iterative process, TOL ; and (3) the 
size of the potential range defined for each parameter 
during the conceptual model stage, since larger ranges 
would potentially result in more iterations. Therefore, 
finding acceptable solutions for the parameter estima-
tion problem by using this type of algorithms involves a 
trade-off between the tolerance criteria that is set and the 
amount of computational effort considered acceptable. 
More relaxed criteria result in more parameter combina-
tions that fit the observed data, but at the cost of larger 
residuals. This trade-off is important to consider for reduc-
ing the uncertainty of the calibrated model results, as we 
will show next.

Figure 5 shows normalized residuals of piezometric 
head for the observation well versus normalized randomly 
generated values of K1 and K2 . For the homogeneous case, 
there is a wide range of values of K1 and K2 (from the mini-
mum value to almost 60% of the maximum value) that can 
result in simulated head at the well that is similar to the 
observed or target value (indicated by a red cross). How-
ever, for the heterogeneous case ( fK = 0.01 ) the range of 
potential values of K1 that result in a simulated value similar 
to the observed one is much reduced, while the range for 
K2 covers the full potential range of values considered as 
part of the conceptual model. For the heterogeneous case, 
the relation between residuals and K1 is well represented 
by a single decreasing line from low to high values of K1.

Previous studies have found that introducing a few esti-
mates of groundwater flows as additional observations 
can reduce the number of solutions for the inverse prob-
lem [16]. Figure 6 shows computed left and right outflows 
from the model considering only calibrated parameter sets 
for fK = 0.01 . For a large number of estimated parameter 
sets, the water table includes a water divide within mate-
rial 2 as shown in Fig. 2, so that water can flow to the left 
or the right depending on the location. Thus, the sum of 
both outflows (right and left) is equal to the total recharge. 
For other cases, when the total flow is larger than the total 
recharge, water can also enter the domain through the 
right boundary, thus it can only flow from right to left 
at any given location of the domain. This means that 
groundwater flow at some locations can even have dif-
ferent direction between calibrated models. Figure  6 
shows that all calibrated parameter sets result in outflows 
through the left boundary that vary between ± 20% of the 
total recharge. This means that for this particular example, 
any flow estimation that could be useful to discriminate 
between different calibrated parameter sets should have 
a level of confidence higher than 20% of the total flow, 
which is seldom achievable in real world projects. This 
could be a major limitation for the use of flow estimations 
to constrain the solution of the inverse problem for highly 
parameterized models, since groundwater flows cannot 
be measured except in very few cases and only with large 
margins of error.

Note that for this simple problem, the algorithm 
requires up to five iterations to find an acceptable solution, 
and that each iteration requires evaluating the sensitivity 
matrix, which means running the model Ne + 1 times. In 
addition, only 25 % of the initial guesses provided solu-
tions that were considered acceptable according to the 
set tolerance, which was relatively relaxed for this demon-
stration. Then, many iterations and computations did not 
produce a satisfactory solution. The method that we used 
is very basic and it does not incorporate some relatively 
easy improvements that have demonstrated to accelerate 
convergence, such as using transformed variables or using 
a modified Newton method by including an acceleration 
factor as in the Levenberg–Marquardt method imple-
mented in software platforms for parameter estimation 
[13, 20]. However, these findings point to the importance 
of using good initial guesses, and that the computational 
cost of applying this type of algorithms can grow very 
quickly with the number of parameters and the number 
of initial sets considered.

Sometimes the problem of finding suitable parameter 
values expressed in (5) is recast into an optimization prob-
lem that aims to reduce the value of an objective func-
tion to assess the goodness of fit between observed and 
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simulated variables. This is, in most cases, equivalent to 
making the residuals in the left side of (5) close to zero [10]. 
The main advantages of this formulation is that using an 
objective function allows assigning different weights for 
the residuals of observed variables at different locations 
and, also, introducing additional penalty terms to further 
force the calibrated model. For example, penalty terms 
can be included to enforce estimated flow discharges, 
or to force the calibrated parameters to be close to pre-
ferred values assigned during the conceptual model stage. 
Nevertheless, the problems discussed previously such as 
non-uniqueness of the solution and dependency on the 
convergence criteria still apply.

3.4  Uncertainty analysis

There are three main sources of uncertainty that can affect 
model results, which we review next.

a. Uncertainty due to parameter distribution
  We use the model to evaluate the water table for 

different random combinations of K1 and K2 that are 
within the ranges defined as part of the conceptual 
model, which is a form of global sensitivity analysis. 
Figure 7 shows simulated water table for 500 different 
combinations of K1 and K2 generated using a uniform 
distribution of ln (K ) within the specified ranges.

  For the homogeneous aquifer case ( fK = 1.00 ), 
the simulated water table differs from the true solu-
tion by up to 15 % of the prescribed head at the left 
boundary, h1 ; however the difference increases up to 
more than 100% for fK = 0.01 (heterogeneous aquifer). 
Those few cases represent extreme situations that are 
the result of less likely combination of parameters, 
however, since all values of K  are within the specified 
ranges, it is not possible to discard any of them with-
out additional information. Furthermore, the variabil-
ity between the different realizations is higher at the 
center of the simulated domain for the homogeneous 
case, while it is maximum at around the middle point 
of the area occupied by material 2 (lowest K  ) in the 
heterogeneous case. The magnitude of the variability 
of the simulated water table provides an indication 
of the prior uncertainty of the model results, which is 
only constrained by soft-knowledge before calibration. 
Despite the advantages and the valuable information 
that this type of analysis provides, it is seldom per-
formed in practice, because it may still be excessively 
time consuming for models with hundreds or thou-
sands of parameters, which require several hours or 
days to complete [31].

b. Uncertainty due to parameter estimation
  By including additional information about observed 

measurements, we can decrease the uncertainty of the 
model results at least at the locations where data is 

Fig. 6  Outflows through left 
and right boundaries divided 
by total recharge for calibrated 
parameter sets for the hetero-
geneous aquifer, fk = 0.01
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available. Since we created a synthetic base scenario 
or virtual reality by evaluating the model for a given 
set of parameters to generate the observed value of 
head at xW , we can also compare the results of the 
model at other locations between both rivers. Figure 8 
shows the simulated water table considering only sets 
of calibrated parameters, i.e. the ones that result in a 
simulated hw similar to the observed value. A small tol-
erance criteria or threshold limit, TOL , set during the 
parameter estimation stage, results in a better match 
between simulated and observed hw , while adopting 
a larger limit for the tolerance results in the opposite: 

larger differences between simulated and observed 
hw , together with more combinations of parameters 
that satisfy the converge criteria. Therefore, the toler-
ance threshold must be selected with care considering 
a trade-off between the need for reducing uncertainty 
of the model results and the computational cost.

  Figure 8 shows that the selection of the convergence 
criteria must also consider the possibility that for some 
problems, even restrictive convergence criteria used 
to evaluate the difference between simulated and 
observed values at a few locations (e.g. at the well in 
this case) may not imply a significant reduction of the 
uncertainty of the model results at other locations. It 
is also immediate from Fig. 8 that all simulations satisfy 
the convergence criteria imposed at the well, but that 
depending on the ratio between the hydraulic con-
ductivity of both materials fK , the difference between 
the results of the model and the adopted virtual real-
ity case can be quite large at other locations. Figure 8 
also shows in a simple way that the non-uniqueness 
of the parameter estimation problem is equivalent 
to having a large number of alternative parameter 
sets that reproduce the observed data with similar 
precision and thus, are equally likely to be correct. A 
consequence of this is that, ideally, every calibrated 
model should be reported with at least a few sets of 
parameters that are equally likeable in the sense that 
they reproduce observations. A null-space Monte Carlo 
approach, which reuses some of the results computed 
as part of the solution of the inverse problem, can be 
an economical and practical way to produce multiple 
alternative sets of parameters that explain observa-
tions [10].

  To quantify uncertainty, it is customary to identify 
the range of possible outcomes and the probability 
associated to intervals of those ranges. Histograms 
as the ones shown in Figs. 9 and 10 summarize well 
this type of information. Figures 9 and 10 show results 
for the heterogeneous aquifer ( fk = 0.01 ), while simi-
lar results for the homogeneous aquifer are included 
in the Supplementary Material. Figure 9 shows the 
probability of simulated heads at the well hw versus 
the normalized simulated value h∕h0 . We used 5000 
initial different parameter sets to obtain reasonable 
accurate estimations of the probabilities of the simu-
lated heads, which allows quantifying the inherent 
uncertainty of the model result without conditioning 
them to observed data. In a Bayesian framework, the 
resulting simulated heads would represent the prior 
probability distribution of the variable [10]. This par-
ticular set of initial guesses resulted in only 1216 sets 
of estimated parameters that matched the observed 
hw . The piezometric head values simulated consider-

Fig. 7  Water table for different combinations of randomly gener-
ated values of K1 and K2 . Thick black line shows the water table for 
the combination of parameters that represents the virtual reality 
site. Dashed red line shows position of interface between materials 
xK and blue line shows position of well with measured head xw . a 
Homogeneous and b heterogeneous aquifer. Note: fK corresponds 
to ratio between both scales k1 and k2 , thus for fK = 1.0 , K1∕K2 
ranges between [0.01, 100.0]
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ing only the estimated parameter sets describe the 
posterior probability distribution. Additional analysis 
considering different sets of randomly generated ini-
tial parameter sets demonstrated that this number of 
realizations provided probabilities that are significant 
and are consistent between different groups of ran-
dom parameter sets.

  When randomly generated sets of parameters are 
used to compute the probabilities, the range of poten-
tial outcomes of the model is relatively large (about 
20% of the true value), but most of the simulations 
produce values that are close to the true value, i.e. val-
ues of h∕h0 near 1 have highest probability. The shape 
of the probability distribution depends on the model 
features (see computed probabilities for the homog-
enous aquifer included in Supplemental Material), but 
also on the sampling strategy used to define the input 

parameter sets. For this example, the true parameter 
set, i.e. the one that defines the adopted virtual real-
ity, was selected as centered within the ranges, hence 
the probability is higher for values of h similar to the 
true values. If we consider only calibrated sets, then 
the range of potential outcomes of the model for hw 
decreases to less than 4%. Even though the estimated 
set of parameters results in a reduction of the uncer-
tainty of the model results around the single location 
with information, xw , the uncertainty of the results 
for other locations may not be much reduced. For 
example, Fig. 10 shows the probability of the simu-
lated head at approximately the middle point of the 
area occupied by material 2 ( x2 = 0.8L) . The range of 
potential values of h computed for x2 is similar for the 
random and estimated parameter sets, however the 
probability of each interval is slightly different.

Fig. 8  Simulated piezometric head h∗ using estimated parameters 
�∗ for different tolerance threshold (TOL). Thick black line shows 
the water table for the combination of parameters that represents 
the virtual reality site. Dashed red line shows position of interface 

between materials xK and blue line shows position of well with 
measured head xw . Note: fK corresponds to ratio between both 
scales of hydraulic conductivity, k1 and k2 , thus for fK = 1.0 , K1∕K2 
ranges between [0.01, 100.0]



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:213  | https://doi.org/10.1007/s42452-022-05086-w Research Article

c. Uncertainty due to forcing variables
  The standard procedure to quantify this uncertainty 

is similar to the one used to quantify the uncertainty 
of the model due to estimated parameters: generate 
many equally likeable or probable series of forcing 
parameters, e.g. recharge series for this example, and 
use them to run the model and collect its results to 
generate probability distributions of the possible out-
comes. Then, this analysis also requires defining pos-
sible ranges for forcing variables and selecting math-
ematical models to generate plausible time series. The 
rest of the analysis is similar to the one described pre-
viously (Figs. 9, 10). Some forcing variables, e.g. bound-
ary conditions, can sometimes be considered as part 
of the model parameters as part of the uncertainty 

analysis. However, it is better to keep them separate 
from the real parameters of the model that must be 
estimated, because, in general, the uncertainty related 
to their values have different origin and magnitude.

4  Conclusions

The fact that for practical applications, models always 
include more parameters than available observations, 
leads to an inverse problem that has multiple solutions. 
Automatic parameter estimation methods make explicit 
the existence of these multiple solutions and facilitate 

Fig. 9  Uncertainty of predicted piezometric head at the well posi-
tion xw using a randomly generated sets of parameters K1 and K2 
and b after parameter estimation. Normalized simulated head 
expressed as function of the head value assigned to right boundary

Fig. 10  Uncertainty of predicted piezometric head at position 
x2 = 0.8L using a randomly generated sets of parameters K1 and 
K2 and b after parameter estimation. Normalized simulated head 
expressed as function of the head value assigned to right boundary
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to find them. Thereby, they help to explore the poten-
tial variability of the model results that is coherent or 
supported by collected observations. We demonstrated 
through a synthetic example inspired by a real-world set-
ting, that adding estimates of groundwater flow as previ-
ously proposed [16] to reduce the number of potential 
solutions for the inverse problem, may be rather difficult 
and/or ineffective. Hence, it may be a better strategy to 
accept that the calibration of numerical models that 
include a large number of parameters will always lead 
to a large number of multiple solutions.

It is likely that the full quantification of the uncertainty 
associated to groundwater models will remain reserved 
for limited applications for some time due to the computa-
tional effort needed. The computational effort for models 
that include hundreds or even thousands of parameters 
may be prohibitively expensive even with the computa-
tional resources available today. Meanwhile, calibrated 
models used to make forecasts should at least include a 
sensitivity analysis that attempts to bound its potential 
results and help identifying the parameters that have 
greatest importance. Although this may be simple for 
linear models with few parameters, it may still be rather 
difficult for non-linear models that depend on multiple 
parameters with wide ranges of potential values, as it is 
the case of most groundwater models. Alternatively, lin-
ear uncertainty quantification, which requires little addi-
tional computational effort, can provide results that are 
informative for ranges of parameters for which models 
behave quasi-linearly, but must be analyzed considering 
their limitations [10, 11].
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