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Abstract
Antibiotic resistance is a major public health threat of the twenty-first century and represents an important risk to 
the global economy. Healthcare-associated infections mainly caused by drug-resistant bacteria are wreaking havoc in 
patient care worldwide. The spread of such pathogens limits the utility of available drugs and complicates the treatment 
of bacterial diseases. As a result, there is an urgent need for new drugs with mechanisms of action capable of curb-
ing resistance. Plants synthesize and utilize various metabolic compounds to deter pathogens and predators. Utilizing 
these plant-based metabolites is a promising option in identifying novel bioactive compounds that could be harnessed 
to develop new potent antimicrobial drugs to treat multidrug-resistant pathogens. The purpose of this review is to 
highlight medicinal plants as important sources of novel antimicrobial agents that could be developed to help combat 
antimicrobial resistance.
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1 Introduction

Bacterial resistance to antibiotics constitutes one of the 
most important and urgent public health threats of the 
twenty-first century [1]. Infections caused by multidrug-
resistant (MDR) pathogens are associated with increased 
mortality compared to those caused by drug-susceptible 
bacteria. The U.S. Center for Disease Control and Preven-
tion (CDC) has designated antibiotic resistance as an 
important burden on the U.S. healthcare system, and over 
$20 billion are spent on treatment cost every year [2]. MDR 
pathogens are projected to cause about 300 million pre-
mature deaths worldwide and up to $100 trillion loss to 
the global economy by 2050 [3, 4].

Given the threat posed by drug-resistant bacteria, 
there is an urgent need for novel compounds with diverse 
mechanisms of action capable of limiting antimicrobial 
resistance. Secondary plant metabolites are one of the 
unexplored sources of antimicrobial agents in nature. It 
is estimated that less than 1% of the global tropical plant 
species have been screened for pharmaceutical applica-
tions [5] and investigated phytochemically [6]. Given the 
spread of multidrug-resistant pathogens and the dwin-
dling number of available antibiotics, there is renewed 
interest in utilizing plant-based sources to identify potent 
novel antimicrobial agents.
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1.1  The declining potency of antibiotics

Antibiotics are among the most frequently prescribed 
drugs in modern medicine and have been used to treat 
bacterial infections since 1940s [7–9]. Bacterial resistance 
to antibiotics was first predicted by Alexander Fleming 
in 1945 during his Nobel Prize acceptance speech: “The 
time may come when penicillin can be bought by anyone 
in the shops. Then there is the danger that the ignorant 
man may easily under-dose himself and by exposing his 
microbes to nonlethal quantities of the drug make them 
resistant”. Many other factors may lead to resistance, 
including overuse of broad-spectrum antibiotics, and 
lack of early identification of causative pathogens and 
their antimicrobial susceptibility patterns. Additionally, 
heavy use of antibiotics in agriculture and intensive ani-
mal farming promote development of antibiotic resist-
ance [10, 11]. These factors, together with poor infection 
control, are the leading culprits in the increasing spread 
of resistance [7, 12, 13]. While antibiotic resistance has 
mainly been a clinical problem in healthcare settings, 
recent studies show existence of resistant pathogens in 
both primary care patients and community settings [2]. 
This has been exacerbated by easy access to antibiotics 
in many developing countries, where one can go to any 
pharmacy and obtain any form of drug without prescrip-
tion. Such practices either lead to overuse or underuse 
of broad-spectrum drugs, thereby increasing the risk of 
resistance and turn-over rates. Alarmingly, this has con-
tributed to rapid development of resistance and rapid 
loss of effectiveness of new antibiotics, usually within 
five years of introduction into the market [14]. Figure 1 
demonstrates the turn-over rates of various antibiotics 
from 1940 to 2015.

Most bacterial pathogens utilize various resistance 
mechanisms to render antibiotics ineffective. These 
include the use of efflux pumps, inactivating enzymes, 
target modification, and microenvironment modifica-
tions [34]. These antibiotic resistance mechanisms pose 
serious challenges to the pharmaceutical industry  in 
developing new drugs. The process of developing new 
antibiotics is time-consuming and extremely costly. 
As of December 2019, a total of 41 antibiotics were in 
development (15 in Phase 1 clinical trials, 12 in Phase 
2, 13 in Phase 3, 1 submitted for FDA application), and 
14 approved. It is estimated that only 60% of drugs that 
enter Phase 3 clinical trials will be approved. Figure 2 
shows the list of antibiotics in the pipeline between 2014 
and 2019 as well as those that have been discontinued. 
Given the mismatch between the rate at which bacte-
ria develop resistance and the slow pace of new drug 
development, the world may soon run out of effective 

antibiotics. As a result, there is renewed interest in iden-
tifying potent new bioactive compounds with the hope 
to develop novel antibiotics that are less amenable to 
bacterial resistance.

1.2  Developing potent novel drugs from plants 
sources

The use of medicinal plants in controlling diseases has 
been documented throughout the history of man. Tra-
ditionally, different parts of plants (leaf, stem, bark, 
root, fruit) have been used to treat, prevent, and con-
trol several diseases [35]. The World Health Organization 

Fig. 1  Timeline of antibiotics discovery and year of first observed 
resistance [15–33]
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(WHO) has prioritized the search for new antibacterial 
agents against multidrug-resistant ESKAPE pathogens 
(Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter species) [36]. These rap-
idly evolving pathogens are responsible for most of the 
cases of hospital-acquired infections globally [36]. Over 
the years, several medicinal plant extracts and secondary 
metabolites have been explored for their efficacy against 
these pathogens [37]. Some of these are:

– Different parts of Adiantum capillus-veneris and leaf 
extract of Artemisia absinthium have shown inhibitory 
effects against E. faecium and S. aureus [38].

– Leaf extracts of Aloe ferox, Cynodon dactylon, Acacia 
nilotica, bud of Syzygium aromaticum, and seed and 
leaf of Theobroma cacao were active against Klebsiella 
pneumoniae [39–41].

– Leaf extracts of Mentha sp. and Aloe vera and root of 
Zingiber officinale significantly inhibited P. aeruginosa 
growth [42].

– Root of Piper longum, stem of Kalanchoe fedtschenkoi, 
and fruit extract of Martynia annua were all found to 
be active against A. baumannii, [43–45].

– Leaf and seed extracts of Dacryodes edulis have activ-
ity against E. cloacae [46].

– Leaf extracts of Ipomoea batatas and Hibiscus esculen-
tus, leaf and seed extracts of Dacryodes edulis, bark of 
Azadirachta indica have inhibitory effects against E. 
aerogenes [46].

In addition to their antibacterial properties, medicinal 
plants have also been used in traditional medicine for 
the treatment of both human and animal fungal diseases 
[47]. The increased use of antifungal agents in addition 
to the spread of multidrug-resistant fungi, and limited 
number of drugs available has precipitated an inter-
est in new classes of antifungal drugs. Recent reports 
showed anti-fungal activities of several medicinal plants 
against different fungal species, including Candida albi-
cans, Aspergillus species, Trichophyton species, Micro-
scopium species, penicillium species, Fusarium species, 

Fig. 2  Antibiotic development pipeline from 2014 to 2019. As of 
December 2019, a total of 41 antibiotics were in development (15 
in Phase 1 clinical trials, 12 in Phase 2, 13 in Phase 3, 1 submitted 
for FDA application), and 14 approved. It is estimated that only 
60%  of drugs that enter Phase 3 will be approved for treatment 
(pewtrusts.org). New antibiotic development involves time and 

resources and there are very few novel antibiotics under develop-
ment. The declining number of antibiotics in the development 
pipeline, in part, reflects the challenges associated with its develop-
ment. At the same time, bacteria that survives antibiotic treatment 
are spreading
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Epidermophyton species, and Rhodotorula ruba [48]. 
Some of these plants are:

– Leaf extracts of Eugenia uniflora, Psidium guajava, Cur-
cuma longa, Piptadenia colubrina, Persea americana 
showed activity against C. albicans, C. dubliniensis, C. 
glabrata, and C. krusei [49].

– Leaf extract of Alibertia macrophylla exhibits inhibi-
tory effects against Cladosporium sphaerospermum, 
C. cladosporioides, A. niger, and Colletotrichum gloe-
osporioides [49].

– Leaf extract of Piper regnellii inhibits growth of Tricho-
phyton rubrum, Trichophyton mentagrophytes, and 
Microsporum canis [50].

– Root extract of Rubia tinctorum was active against A. 
niger, Alternaria alternaria, P. verrucosum, and Mucor 
mucedo [51].

– Different parts of Tithonia diversifolia were active 
against Microbotryum violaceum and Chlorella 
fusca [52].

– Seed of Cassia tora showed inhibitory activity against 
Botrytis cinerea, Erysiphe graminis, Phytophthora 
infestans, Puccinia recondita, and Pyricularia gri-
sea [53].

– Leaves and twigs of Chamaecyparis pisifera showed 
activity against P. oryzae [54].

The antiviral activities of medicinal plants have also 
been evaluated. The toxic side effects and ineffective 
response to the available antiviral drugs, especially in 
the wake of the coronavirus pandemic, has prioritized 
the development of potent agents to control deadly viral 
infections. Medicinal plants have been shown to possess 
potent antiviral agents with various activities against 
HIV, HBV, and several other viruses [55–59]. Exploring 
these plants and their bioactive metabolites will be a cost 
effective and secure way to develop new potent antiviral 
agents to combat viral diseases. Interestingly, 80% of the 
chronic Hepatitis B patients in China still rely on medici-
nal plants as primary treatment [60]. Some of these plants 
with antiviral activity showed similar or better efficacy 
against viruses than the available treatment options [60]. 
Among the reported medicinal plants with antiviral prop-
erties include:

– Bulb of Allium sativum L. has demonstrated potent 
antiviral activities against ADV-3, ADV-41, DENV, SARS-
CoV-2, HSV-I and II, HCMV, H9N2, IBV, H1N1, CBV-3, 
ECHO, EV-71, HRV-2, HAV, MeV, PIV-3, VV, [61].

– Leaf of Justicia adhatoda L. was active against SARS-
CoV-2, influenza virus, and HSV [60, 62].

– Rhizome of Cyperus rotundus L. inhibited SARS-CoV-2, 
HAV, HSV-I, and CVB [63, 64].

– Leaf of Ocimum basilicum L. was active against HIV-I, 
HSV, ADV-3, 8, 11, HVB, EV, and CVB-I [65–67].

Many of these plant extracts act by inhibiting viral rep-
lication, enhancing cellular immunity, inhibiting virus-cell 
attachment, inducing apoptosis of viral-infected cells, 
disrupting viral envelopes, inhibiting viral RNA and DNA 
synthesis, downregulating the expression of important 
host proteins, and inhibiting viral attachment to host cell 
surface [68].

Plants are rich in secondary metabolites and are a 
major source of chemical diversity, thus, may be prom-
ising sources of untapped potent antibacterial agents. 
Phytochemical analyses of some of these medicinal 
plants show different active groups, such as flavonoids, 
quinones, lignans, stilbenes, tannins, alkaloids, terpenes, 
polyphenolics, and coumarins [69], most of which are anti-
bacterial in nature. For instance, phenol derivatives inhibit 
bacterial growth by either reducing the pH, increasing 
membrane permeability, or altering efflux pumping [70]. 
Phenolic compounds, one of the important secondary 
metabolites, have shown to act on many bacterial targets 
including cytoplasmic membrane damage, topoisomerase 
inhibition, NADH-reductase and ATP synthase inhibition 
[71]. Tannins have also been shown to induce bacterial 
membrane damage and metabolism inactivation [72]. Fla-
vonoids, in turn may promote formation of extracellular 
complex soluble proteins and inhibit cell wall proteins as 
well as metabolism and DNA synthesis [73]. These mecha-
nisms of action associated with plant secondary metabolic 
compounds make them promising agents to be harnessed 
to develop novel drugs to combat the growing problem of 
antimicrobial resistance.

Plant secondary metabolites are usually produced as 
defensive mechanisms against predators, plant patho-
gens, insects, and animals. During response to patho-
gens, surface receptors present on plants detect infect-
ing agents by recognizing specific patterns and chemical 
motifs [74]. Plants detect bacteria using either patho-
gen associated molecular patterns (PAMPs) or pathogen 
effectors (Fig. 3). The PAMPS are sensed by pattern-rec-
ognition receptors present on plant cell surfaces, which 
in turn activates a signaling cascade leading to PAMP-
triggered immunity, the primary immune response in 
plants [75]. Bacteria can, however, interfere with PAMP-
triggered immunity by injecting effector molecules into 
the plant cell. These effectors are recognized by plant 
intracellular protein complexes such as the nucleotide-
binding leucine-rich repeat receptors, resulting in a 
hypersensitive response known as effector-triggered 
immunity, the secondary immune response in plants 
[76, 77]. These mechanisms either limit pathogen entry, 
restrict pathogen propagation, or kill pathogens within 



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:209  | https://doi.org/10.1007/s42452-022-05084-y Review Paper

the host plant cells. Once a pathogen is identified, plant 
cells also protect themselves by either reinforcing cell 
wall biosynthesis of lytic enzymes, producing secondary 
metabolites, or other pathogenesis related proteins [78].

Several bioactive compounds and their derivatives 
have been used as drugs for the treatment of different 
diseases, including cancer, hypertension, immuno-sup-
pression, neurological diseases, fungal, viral and bacte-
rial infections; some of which are either currently under 
clinical trials or already in the market [79]. Importantly, 
these compounds have demonstrated promising results 
in fighting the emergence of antibiotic resistant bacte-
ria [72] and increasing the potency of old antibiotics 
through synergistic association, thus, preventing the 
development of resistance [80]. Some examples are:

– Berberine: an isoquinolone isolated from plants such 
as Rhizoma coptidis. Berberine is known to possess 
activity against methicillin-resistant Staphylococcus 
aureus (MRSA) by inhibiting adhesion to human gin-
gival fibroblasts, an important step during biofilm 
development [81]. In addition to its ability to inhibit 
biofilm formation, several studies have reported a 
positive synergistic activity of berberine when com-
bined with other antibiotics. For instance, addition 
of berberine to azithromycin and levofloxacin lowers 
its minimum inhibitory concentration by 50.0–96.9% 

[82], as well as decreases adhesion and intracellular 
invasion of MRSA [83].

– Piperine: a piperidine-type alkaloid was isolated from 
the Piper species (Piper nigrum, Piper longum). This 
compound has strong antimicrobial activity against 
both Gram positive and negative bacteria (S. aureus, 
Bacillus subtilis, Salmonella sp and Escherichia coli) [84] 
and acts as an efflux pump inhibitor in S. aureus when 
combined with ciprofloxacin [85].

– Allicin: a sulfur-containing compound that is obtained 
from raw garlic (Allium sativum). Allicin has been 
shown to exhibit broad-spectrum antimicrobial activ-
ity against both Gram-positive and negative bacteria, 
including MRSA, Streptococcus spp., E. coli, and Salmo-
nella enterica serovar Typhimurium [86]. Allicin acts 
through S-allylmercapto modification of thiol-con-
taining proteins in bacteria, leading to reduction of 
glutathione levels, induction of protein aggregation, 
and inactivation of essential enzymes [86–88].

– Ajoene: another organosulfur found abundantly in 
oil-macerated garlic. Ajoene exhibits antibacterial 
activity against several Gram-positive and Gram-neg-
ative bacteria, including H. pylori, Mycobacterium spe-
cies, however, its antimicrobial property was more 
observed in Gram-positives [89]. The mechanism of 
action of this compound is similar to that of allicin. 
The use of this compound to treat antibiotic resistant 

Fig. 3  Plant immune response to pathogens. Bacteria are detected 
by either pathogen associated molecular patterns (PAMPs) or 
pathogen effectors: I The PAMPS activates the pattern-recognition 
receptors (PRRs) on the plant cell surface, which in turn activates 
a signaling cascade leading to PAMP-triggered immunity (PTI). II 
Pathogen effectors are recognized by plant resistance proteins, 

resulting in a hypersensitive response known as effector-triggered 
immunity (ETI). Together, these defense mechanisms result in the 
release of various secondary metabolites that ultimately kill the 
infecting pathogen. Given their novelty to human pathogens, these 
plant-derived antimicrobial secondary compounds can be har-
nessed to combat multidrug-resistant pathogens
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organisms is promising as it is now produced by total 
synthesis [90].

– Eugenol (4-allyl-2-methoxyphenol): a hydroxyphenyl 
propene, naturally occurring in essential oils from sev-
eral plants belonging to the Lamiaceae, Lauraceae, 
Myrtaceae, and Myristicaceae families [91]. Several 
mechanisms of action of Eugenol has been reported, 
including inhibition of Streptococci biofilm and enter-
otoxin formation, disruption of Salmonella typhi cell 
membrane, and reduction of  S.  aureus toxin gene 
expression [92]. In addition, Eugenol has also been 
reported to inhibit production of bacterial virulence 
factors, such as violacein, elastase, pyocyanin [93].

– Resveratrol (3,5,4′-trihydroxystilbene) is a naturally 
occurring polyphenolic antioxidant that has received 

massive attention for its potential health benefits. It 
can be extracted from different plant species, such as 
grapevines, pines, bananas, beans, pomegranates, pea-
nuts, and soybeans, The antimicrobial activity of res-
veratrol has not been fully studied. However, it exhibits 
antibacterial activity against several Gram-positive and 
Gram-negative foodborne bacteria by inhibiting gene 
expression [94]. Resveratrol also inhibits toxin produc-
tion, biofilm formation, motility and interferes with 
quorum sensing in a wide range of bacterial, viral and 
fungal species [95].

These plant-derived metabolites could potentially be 
harnessed as novel drugs to combat antibiotic-resistant 
bacteria due to their natural origin with no history of 

Table 1  Examples of plants with known activity against multidrug-resistant pathogens. These plant-based metabolites provide promising 
option to develop novel drugs against multidrug-resistant pathogens

Plant name and part Extract type Resistant bacteria Evaluation method Source, geographical loca-
tion

Moringa oleifera (Leaves)
Metricaria recutita (Flow-

ers)

Water, Ethanol, Methanol Clinical MDR, XDR, PDR 
isolates:

Escherichia coli
Klebsiella spp
P. aeruginosa
Proteus mirabilis
S. aureus
S. epidermidis

Microbroth dilution Disc 
diffusion

Farm in El-Fayoum gover-
norate, Egypt [100]

Scutellaria barbata  
(Herbs)

Water extracts Clinical MDR Acinetobacter 
baumannii

Disc diffusion, time-kill 
assays, murine lung 
infection model

Herb store in Kaohsiung 
City, Taiwan [101]

Allexis cauliflora  (leaves)
Persea Americana  

(Stones)
Entada Africana (bark)
Pentaclethra macrophylla 

(Bark)

CH2Cl2/MeOH MeOH 
C4H8O2 Extracts

Kanamycin-resistant E. coli 
AG100A

Microbroth dilution Different regions of Cam-
eroon [102]

Entada abyssinica  (Leaves 
and roots)

Clinical MDR Klebsiella 
pneumoniae Kp55

Pentaclethra macrophylla  
(Bark)

Clinical MDR Providencia 
stuartii-NAE16

Alkanna tentoria
 (leaves)

Aqueous, chloroform, 
ethanol and hexane 
extracts

A. baumannii, E. coli, P. 
aeruginosa S. aureus

Well diffusion Charsadda region, Pakistan 
[103]

Artemisia absinthium 
(Bark)

Aqueous Ethanol Extracts Enterococcus faecium, 
Staphylococcus aureus

Disc diffusion, time-kill 
assays

Sudhnoti district, Northern 
Pakistan [104]

Martynia annua (bulk) Enterococcus 
faecium,Staphylococcus 
aureus, Acinetobacter 
baumannii

Disc diffusion, time-kill 
assays

Adiantum capillus-venaris 
(Bark)

Enterococcus faecium, 
Staphylococcus aureus

Disc diffusion, time-kill 
assays

Zanthoxylum armatum 
(Bark)

Enterococcus faecium, 
Staphylococcus aureus

Time-kill assays

Swertia chirata (Bark) Staphylococcus aureus Disc diffusion, time-kill 
assays
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prolonged exposure to human pathogens. To our knowl-
edge, no resistance to plant-based compounds has been 
recorded to date. Moreover, secondary metabolites from 
plants have different active moieties and offers a repertoire 
of different activities that may be utilized against different 
bacterial targets [96]. Many cost-effective approaches are 
available to identify, quantify and characterize the bioac-
tive plant compounds for further investigation as poten-
tial new drug molecules [97]. These include the use of 
spectroscopy, gas chromatography, high-pressure liquid 
chromatography, and thin-layer chromatography to pro-
vide improved extraction efficiency, yield, extraction time, 
selectivity, and sensitivity in quantitation [98, 99].

2  Conclusion

Antimicrobial resistance is a major global health prob-
lem. This has been precipitated by rapid development 
and spread of resistant mechanisms resulting in loss of 
effectiveness of new antibiotics, usually within five years 
of introduction into the market [14]. As of today, no effec-
tive drug is available to reverse antibiotic resistance in 
bacteria. Several approaches have been undertaken to 
control bacterial resistance, including controlling anti-
biotic prescription, enhanced antimicrobial stewardship 
programs to improve antibiotic therapy, and developing 
new drugs. Another important approach, but less studied 
is to harness plant-based compounds. Plants are rich in 
several antimicrobial secondary metabolites and may be a 
rich source of potent drugs with a variety of chemical moi-
eties that could target different resistant mechanisms in 
bacteria. Several plant species have already been reported 
to show potential antimicrobial effects against multidrug-
resistant bacteria (Table 1). A deeper understanding of the 
mechanisms of action of these plant-derived compounds 
is needed. Harnessing secondary plants metabolites would 
be a cost-effective and innovative strategy to develop next 
generation novel antimicrobials and/or improve current 
antimicrobials to combat the emerging threat of antibiotic 
resistance, develop databases for plant metabolites, and 
their possible antimicrobial targets.
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