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Abstract 
Electrospinning is a simple, cost-effective, flexible, and feasible continuous micro-nano polymer fiber preparation technol-
ogy that has attracted extensive scientific and industrial interest over the past few decades, owing to its versatility and 
ability to manufacture highly tunable nanofiber networks. Nanofiber membrane materials prepared using electrospinning 
have excellent properties suitable for biomedical applications, such as a high specific surface area, strong plasticity, and 
the ability to manipulate their nanofiber components to obtain the desired properties and functions. With the increasing 
popularity of nanomaterials in this century, electrospun nanofiber membranes are gradually becoming widely used in 
various medical fields. Here, the research progress of electrospun nanofiber membrane materials is reviewed, including 
the basic electrospinning process and the development of the materials as well as their biomedical applications. The 
main purpose of this review is to discuss the latest research progress on electrospun nanofiber membrane materials and 
the various new electrospinning technologies that have emerged in recent years for various applications in the medical 
field. The application of electrospun nanofiber membrane materials in recent years in tissue engineering, wound dressing, 
cancer diagnosis and treatment, medical protective equipment, and other fields is the main topic of discussion in this 
review. Finally, the development of electrospun nanofiber membrane materials in the biomedical field is systematically 
summarized and prospects are discussed. In general, electrospinning has profound prospects in biomedical applications, 
as it is a practical and flexible technology used for the fabrication of microfibers and nanofibers.
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Article highlights

•	 This review summarizes recent research on the appli-
cation of electrospun nanofiber membranes as tissue 
engineering materials for the cardiovascular system, 
motor system, nervous system, and other clinical 
aspects.

•	 Research on the application of electrospun nanofiber 
membrane materials as protective products is dis-
cussed in the context of the current epidemic situation.

•	 Examples and analyses of recent popular applications 
in tissue engineering, wound dressing, protective prod-
ucts, and cancer sensors are presented.
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1  Introduction

In the past few decades, nanotechnology has been 
widely studied and has progressed significantly. Nano-
materials obtained by nanotechnology have received 
a lot of attention owing to their excellent performance 
and have had a wide and profound impact on various 
industries, especially the medical industry.

Electrospinning technology, as a simple and low-cost 
method to prepare continuous micro-and nano-polymer 
fibers, has gradually become the focus of research. The 
electrospinning process utilizes thousands to tens of 
thousands of volts of high-voltage electrostatic repul-
sion to produce fibers from a polymer solution and syn-
thesize sophisticated three-dimensional structures [1]. 
At present, more than 200 kinds of natural polymers and 
composites, such as gelatin, silk fibroin, chitosan, and 
collagen, as well as a large number of synthetic poly-
mers such as polycaprolactone (PCL), poly-lactic acid, 
and poly(lactic-co-glycolic acid) have been applied in 
electrospinning technology systems [2].

The method of using electrostatic force to produce 
fibers has been known for more than 100 years [3]. In 
1902, Morton and Cooley filed two patents on electro-
spinning and described a prototype of an electrospin-
ning device [4]. In 1934, Formhals invented and patented 
an experimental device for the preparation of polymer 
fibers by electrostatic force. His patent published how a 
polymer solution formed a jet between the electrodes; 
this was the first patent to describe in detail a device for 
preparing fibers by high voltage electrostatic electricity 
and is considered to be the beginning of the preparation 
of fibers using electrospinning technology [5]. Since the 
1990s, after Reneker et al. demonstrated the feasibility 
of producing electrospun nanofibers from several poly-
mers, the number of publications on electrospinning has 
grown exponentially [4].

Electrospinning has been widely applied in the bio-
medical field. On the one hand, it benefits from the 
rapid development of nanotechnology, and on the other 
hand, it benefits from its unique material properties. The 
nanofibers obtained by electrospinning have strong 
plasticity, a flexible structure, and a large surface area-
volume ratio, which can enhance cell adhesion, prolifera-
tion, and differentiation activities. Recent literature has 
shown that electrospinning techniques allow the nano-
surface modification of tissue engineering materials to 
control protein adsorption and biochemical construction 
of protein layers, thus building “bottom-up” nanoscale 
features that can be used to guide surface hydrophilicity, 
oxide layer thickness, or functional group distribution 
to form extracellular matrix (ECM)-like nanostructures 

that mimic biological environments and influence cell 
behavior, signal transduction, and nutrient transport 
[6]. Therefore, their application in the field of tissue 
engineering has been widely noticed and studied. In 
addition, electrostatically-spun nanofiber membrane 
materials have shown increasing applicability to the 
construction of drug delivery systems, not only due to 
their good biocompatibility as well as safety, but also 
due to their large specific surface area-volume ratio, 
which allows drugs to maintain a high effective surface 
area at a lower cost [7]. More notably, electrostatically-
spun nanofiber membranes also provide flexibility in the 
choice of drug-carrying materials and offer a variety of 
methods to carry drugs, such as coating and encapsu-
lation [8]. It is worth mentioning that at a time when 
the Coronavirus epidemic continues to make significant 
impacts on people’s lives, electrospinning nanofiber 
membranes have the advantages of high porosity, pore 
size adjustability, and a small fiber diameter, providing 
grounds for many new ideas regarding the production 
of medical protective gear [9]. Recently, an increasing 
number of biomedical products made of electrospun 
nanofibers have been approved for clinical use [10].

In recent years, the electrospinning technology boom 
has led to the application of electrospinning equipment 
from the laboratory to the market. Several manufactur-
ers have developed new methods to improve the pro-
duction capacity of electrospinning products by adapt-
ing traditional electrospinning, and have succeeded in 
making electrospinning nanofiber products available 
in a relatively safe way with relatively simple operation 
[11]. In the medical field, several electrospun nanofiber 
membrane materials have been successfully patented, 
commercially produced, and used for surgical implants, 
dressings, and medical devices [12].

In this review, the basic principle of electrospun 
nanofiber membrane preparation is briefly introduced, 
and the applications of electrospun nanofiber mem-
branes in various medical fields in recent years are clas-
sified and discussed. In the following section, we intro-
duce the basic principle of electrospinning technology 
and its improvement and development in recent years. 
In Sects. 3–6, we respectively introduce, in detail, the 
application of electrospun nanofiber membranes in 
stent engineering, wound dressing, tumor diagnosis and 
treatment sensor development, protective equipment 
development, and other medical fields in recent years. In 
the last section, we summarize the wide application of 
electrospun nanofiber membranes in the medical field 
more broadly and discuss the development prospects of 
electrospinning technology.
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2 � Fundamental principles 
of electrospinning

2.1 � Basic electrospinning equipment and workflow

The most basic equipment used in electrospinning is a 
high voltage power supply, a flow controller, a spinneret 
(i.e., a syringe pump with a needle), and a grounded col-
lector [13, 14] (Fig. 1). The polymer solution/melt used for 
electrospinning is extruded from the spinneret at a cer-
tain speed under the control and propulsion of the syringe 
pump. Due to surface tension, the initially extruded liquid 
takes the shape of suspended spherical droplets. When a 
high voltage power supply is connected, a high voltage is 
applied between the spinnerette and the grounded col-
lector [15]. The electrostatic repulsion of the high voltage 
stretches the droplet on the tip of the needle from its nor-
mal spherical shape to a conical shape (also known as a 
Taylor cone). When the voltage exceeds a given threshold, 
the electric field force will overcome the surface tension 
of the droplet and cause the filament to extend from the 
tip of the cone, creating one or more jets of charged poly-
mer solution [16]. During the charged jet jetting process, 
factors such as the solvent volatilization of the polymer 
solution (solution electrospinning) or solidification of 
the polymer melt (melt electrospinning), as well as the 
effect on the charged jet under the influence of electric 
field forces will cause unstable stretching and whipping 
[17, 18]. Eventually, the charged jet rapidly refines and 
solidifies during this motion, and the resulting solid fibers 
are attracted, deposited, and collected by an electrically 
charged grounded collector. In this manner, polymer fib-
ers with nano to submicron fibers can be obtained [19].

Continuous nanofibers with good morphological char-
acteristics cannot be prepared using traditional methods 
such as drawing, self-assembly, phase separation, and 
template synthesis [20]. Electrospinning technology is 
widely used because it can work synergistically through 
multiple mechanisms to produce nanofibers with con-
tinuous, highly ordered, and smooth morphology, and 
different factors can be regulated to circumvent adverse 
effects [21]. Compared with other methods, electrospin-
ning is simpler, more versatile, and less costly. In addition, 
electrospun nanofibers have the advantages of a small 
diameter, large surface area, high aspect ratio, and high 
flexibility [22].

The electrospinning process is influenced by many 
adjustable variables, the three most important of which 
are the spinning conditions, the polymer solution, and the 
environmental conditions [18]. The spinning conditions 
mainly include the intensity of the applied voltage, the 
flow rate controlled by the syringe pump, and the tip-to-
collector distance; the influence of the polymer solution 
on electrospinning usually comes from its concentra-
tion, conductivity, viscosity, surface tension, and polymer 
molecular weight; and the environmental influences are 
mainly ambient temperature and humidity [14]. By con-
trolling the materials and methods of electrospinning, the 
composition, structure, and properties of nanofibers can 
be designed for specific applications.

2.2 � Drug loading strategies for electrosspun 
materials

In recent years, in addition to loading drugs directly onto 
the surface of flat nanofiber membranes, most researchers 
have chosen to use drug-hybrid electrospinning scaffolds 
such as the recently popular coaxial electrospinning tech-
nique, co-blended electrospinning technique, and emul-
sion electrospinning technique to produce drug-loaded 
nanofiber membranes to achieve the controlled release 
of drugs in electrospun nanofiber membranes over long 
periods [23]. Coaxial electrospinning is the simultaneous 
electrospinning of two solutions through two coaxially fed 
capillary channels in the same needle to produce poly-
meric micro-nanofibers with different internal and exter-
nal parts of the core-sheath structure, while being able 
to encapsulate the drug into the core-sheath structure. It 
is considered an effective strategy to achieve slow drug 
release [24]. Emulsion electrospinning and co-blended 
electrospinning are also used to fabricate core-sheath 
structures capable of achieving sustained drug release. 
The difference between these two methods is that emul-
sion electrospinning utilizes a water-in-oil emulsion struc-
ture and is mostly used for water-soluble drugs loaded into 
the core layer, while co-blended electrospinning uses an Fig. 1   Schematic diagram of typical electrospinning device [14]
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oil-in-water emulsion structure, which is mainly used to 
load fat-soluble drugs into the core layer to form a core-
sheath structure [24].

2.3 � Improvement and development 
of electrospinning technology in recent years

The production rate of the laboratory-scale equipment 
needed to needle electrospinning is low, and such equip-
ment is unsuitable for large-scale industrial manufacturing 
[14]. In recent years, researchers have continued to try to 
develop new means to expand electrospinning produc-
tion. Researchers have successively used different meth-
ods of design, such as single-needle and multi-needle 
modification. For example, a single nozzle with a fluted 
tip can be used to create multiple jets instead of the tra-
ditional single needle to increase production. But they 
are still not satisfactory [11, 25]. The single-needle modi-
fication technique does not provide significant capacity 
improvement, while the multi-needle design suffers from 
problems such as electrostatic field interaction between 
needles and needle clogging [11]. Recently, needleless 
technology has started to gain attention.

In needleless technology, traditional needles are 
replaced with different new spinnerets and hence the 
problems of electrostatic field effects between needles 
and needle clogging are avoided. The spinnerets used in 
needleless electrospinning can be divided into two main 
categories: rotary spinnerets and fixed spinnerets [26]. 
Rotating spinnerets mechanically rotate the polymer 
solution, while stationary spinnerets typically use differ-
ent means, such as magnetic fields or bubbles, to assist in 
the initiation process [27]. Different needleless electrospin-
ning forms of self-guided multi-nozzles, although present 
in different forms, can improve the production efficiency 
of electrospun nanofiber membrane materials to a large 
extent.

Alternating current (AC) electrospinning technology 
uses alternating current instead of conventional direct cur-
rent (DC) as the power source. The jet is generated from 
the droplet and forms a nanofiber plume in the stretching 
electric field. The fiber plume accelerates with the elec-
tron wind generated under the action of the electric field 
force and slows down beyond a certain distance (3–4 cm). 
The fiber is then pulled thin and eventually forms a fiber 
deposit due to solvent evaporation.

From 2004 onwards, when Royal Kessick was the first to 
publish a study on the use of alternating current for elec-
trospinning [28], it was gradually discovered that AC elec-
trospinning is more advantageous to DC electrospinning 
in several aspects [29]. On the one hand, the efficiency of 
AC electrospinning is higher. Multiple jets can be formed 
simultaneously on the droplet surface under the action 

of AC, and the yield is more than 20 times that of DC elec-
trospinning under the same experimental conditions [30]. 
On the other hand, the jets of AC electrospinning are more 
stable during the stretching process and they do not carry 
much charge due to the high AC voltage, so there is no 
need to use the attraction of grounded conductive col-
lectors. The self-bundling of the fiber plume also makes 
it easy to twist and knot it into yarns to form more stable 
nanofibers. More importantly, AC electrospinning is rela-
tively more controllable. During this process, the stretch-
ing of the fiber plume is mainly affected by the electric 
wind or corona wind which appears around the metal 
electrode. The speed of the electric wind or corona wind is 
proportional to the AC voltage within a certain range, so to 
a certain extent it can control the formation of nanofiber 
morphology and properties by controlling the voltage 
and frequency of AC [31]. However, at present, the appli-
cation of AC electrospinning also has its relative shortcom-
ings. For example, the fiber diameter that is formed only 
reaches 300–500 nm. This is relatively bulky compared 
with DC electrospinning, which can be as fine as 1 nm [32]. 
Recently, the study of nanofibrous yarn materials obtained 
via AC electrospinning assembly has been favored in bio-
medicine. Nanofibrous yarn materials consist of multiple 
bundles of very fine nanofibers interconnected to form a 
material structure with high mechanical integrity [33] and 
are commonly used in the fabrication of various biomedi-
cal materials such as sutures [34]. There is no doubt that 
the development of AC electrospinning technology will 
attract great attention in the future.

3 � Application of electrospun nanofiber 
membranes in tissue engineering

The rapid development and breakthroughs in tissue engi-
neering have contributed significantly to the repair and 
reconstruction of damaged tissues and organs, especially 
the repair of bone and cartilage, heart and blood vessels, 
skin, and other tissues and organs, thereby attracting 
increasing attention.

Cytokines affecting cell growth and differentiation, 
suitable cell sources, and suitable scaffolds for tissue cell 
regeneration are the three basic components of tissue 
engineering construction [35]. The key to tissue engineer-
ing is to select the right biomaterials and construct the 
right scaffolds. A scaffold material must be biocompatible 
and biodegradable, promote cell penetration and tissue 
growth, provide biomechanical support, have a low price, 
and be easy to obtain, produce, and handle [36]. Many dif-
ferent biomaterials have been extensively tested to meet 
these requirements; however, electrospinning materials 
stand out from the rest.



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:172  | https://doi.org/10.1007/s42452-022-05056-2	 Review Paper

Using electrospinning to produce nanofiber materials is 
popular in tissue engineering. Compared with other fiber 
formation processes, such as self-assembly and phase sep-
aration, it is a relatively simple and is a more cost-effective 
method to produce fibrous scaffolds with submicron pore 
structures and interconnected fiber diameters [37]. The 
materials that are used for tissue engineering and those 
that are used as carriers into the human body for organ 
repair need to be easily absorbed and easily degraded. 
Electrospinning technology, with its drug-carrying mate-
rial selection flexibility and versatile drug-carrying meth-
ods, can facilitate researchers to solve this challenge well. 
Additionally, the performance of electrospun nanofiber 
materials is affected by the fiber size. According to the 
observation and analysis of the human body by modern 
biotechnology, the ECM of almost all connective tissues 
(such as the skin, cartilage, and bones) in the human 
body is similar in structure to nanofibers. Through elec-
trospinning technology, it is not only possible to control 
the structure and morphology of the produced nanofiber 
membrane material through parameters such as textile 
conditions, it is also possible to simulate the ECM struc-
ture, including the porosity, mechanical properties, and 
area-to-volume ratio. Modification of the nano surface of 
the tissue engineering material can also be achieved using 
electrospinning technology, thus allowing the construc-
tion of the surface protein layer and the distribution of 
functional groups and surface hydrophilicity to be con-
trolled. In addition, it can provide an environment similar 
to the original structure of natural tissue ECM, thus ensur-
ing—as much as possible—the integrity of cellular nutri-
ent transport and permeability, and greatly improving the 
biocompatibility of the obtained tissue-engineered scaf-
folds [38, 39].

3.1 � Application of electrospun nanofiber 
membranes in cardiovascular tissue 
engineering

Cardiovascular disease (CVD) has long been the lead-
ing cause of death in the world, posing a great threat to 
human health. CVD includes coronary artery disease (such 
as angina pectoris and myocardial infarction), stroke, val-
vular heart disease, myocarditis, cardiomyopathy, aortic 
aneurysm, artery disease, thromboembolic disease, and 
venous thrombosis [40]. All cardiovascular diseases have 
their own unique and hidden pathogenesis. For many 
years, the main clinical use of surgery and cell therapy 
was to treat cardiovascular system diseases [41]. However, 
conditions such as the high risk of rejection and unneces-
sary structural changes in the body condition place many 
limitations on the use of traditional therapies in various 
ways. The cardiac muscle is a kind of electroactive tissue, 

and the regeneration potential of cardiomyocytes is very 
small, which leads to their weak self-repairing ability; as 
such, repairing cardiomyocytes remains a problem. How-
ever, decades after the introduction of cardiovascular 
tissue engineering, it has evolved to induce the creation 
of functional heart tissue, providing a great boost to the 
treatment of CVD [42]. Electrospun nanomaterials are 
good as conductive and inducer scaffolds and are suitable 
platforms for heart and blood vessel cells, thus providing a 
new approach for cardiovascular tissue engineering. There 
has been extensive research on vascular grafts, artificial 
heart valves, and myocardial tissue engineering in particu-
lar in recent years.

3.1.1 � Application of electrospun nanofiber membranes 
in vascular grafts

Although the gold standard for vascular replacement is 
still autografting, the use of autologous grafts is limited by 
donor shortage and secondary site injury, thereby making 
autografting difficult to deal with for all types of vascu-
lar injury. Artificial vascular transplantation has become 
a research hotspot in the field of vascular replacement. 
Although large vessel grafts have been successfully used 
in the clinic, the use of small-diameter vessels (diame-
ter < 6 mm) remains a significant challenge, as most exist-
ing vascular graft materials are prone to secondary intimal 
hyperplasia and thrombosis [43]. Therefore, there is an 
urgent need for new strategies to develop novel small-
diameter grafts with rapid endothelialization and without 
thrombotic complications [40].

To solve the aforementioned problem, many research-
ers have focused on electrospun nanofiber membrane 
materials. For example, Kuang et al. used a simple elec-
trospinning technique to fill nanofibers with salvianolic 
acid B and heparin extracted from the traditional Chinese 
herbal plant Salvia miltiorrhiza to construct the vascular 
lining. This method was able to effectively prevent acute 
thrombosis and promote the rapid endothelialization 
of blood vessels [44]. Wan et al. combined electrospin-
ning and progressive in situ biosynthesis and prepared 
a small-diameter composite vascular graft combined 
with nanofilament bacterial cellulose and sub-microfiber 
cellulose acetate, which was also effective in reducing 
the thrombotic potential of the graft and enhancing 
endothelialization [45] (Fig. 2a). Jiayin et al. electrostati-
cally spun different thicknesses of PCL onto porous poly-
glycerol sebacate (PGS) and found that thicker PCL fibers 
which also have higher porosity were more capable of 
promoting angiogenesis and showed better mechanical 
properties than thinner groups, thus demonstrating the 
importance of porosity and fiber diameter in the design 
of vascular grafts [46]. Kang et al. utilized a co-blended 
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electrospinning technique to create a combination of nat-
ural ECM and synthetic degradable polymers, and then 
used them as vascular grafts for animal experiments. The 
grafts exhibited sustained hyaluronic acid release and pro-
moted the regeneration of smooth vascular muscle [47]. 
Similar strategies have emerged in recent years, and it can 
be predicted that these biomimetic vascular grafts using 
electrospun nanofibers will play an important role in vas-
cular reconstruction and regeneration.

3.1.2 � Application of electrospun nanofiber membranes 
in artificial heart valves

Valvular heart disease affects approximately 2.5% of the 
global population. According to a new report [48], as 
life expectancy increases in industrialized countries, the 

incidence of valvular heart disease will triple after 2050 
owing to age-related valvular degeneration [49]. At pre-
sent, the main treatment methods include valvular repair 
and replacement. The former is the first choice for young 
patients with aortic regurgitation. Valvular replacement 
remains the treatment of choice for patients with severe 
valvular dysfunction, with more than 300,000 patients 
globally reported to undergo valvular replacement sur-
gery annually [50].

At present, most valves used in clinical practice are 
made from animal pericardial tissue. These valves have 
complex post-processing procedures; the complexity of 
their ingredients and batch instability/variability make 
quality control difficult and they come with a high risk of 
viral infection and costs that the average person cannot 
afford [49]. Therefore, finding a new valve source to replace 

Fig. 2   a Small diameter composite vascular grafts combined with 
nanofilament bacterial cellulose (BC) and submicrofiber cellulose 
acetate (CA) were prepared by electrospinning and step-by-step 
in  situ biosynthesis [45]. Reprint with permission from The Royal 
Society of Chemistry; b Manufacture the microprocessed polyglyc-
eride sebacate (PGS) sheet; The PGS sheet was placed between two 

aluminum electrodes and connected to the ground. PGS/Polycap-
rolactone (PCL) fibers were placed on both sides of the PGS layer 
for electrospinning. The use of this fibrous membrane stent in valve 
repair [52]. Reprint with permission from Elsevier; c PCL and PGS 
fibers have been used in cardiac tissue engineering [57]. Reprint 
with permission from Elsevier
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the traditional domesticated animal sources has become 
the new research focus [51]. Pericardial leaflets are more 
prone to calcification, injury, and deterioration; thus, good 
hemodynamic performance and anti-calcification perfor-
mance are required for new valve materials.

The electrostatically spun nanofiber membrane mate-
rial is easy and inexpensive to obtain, and it can well avoid 
the risk of infection that may occur using a traditional 
valve extracted from an animals. This provides a new ave-
nue for developing suitable valve materials in clinical prac-
tice. Nafiseh et al. developed elastic scaffolds with tunable 
anisotropic mechanical properties by assembling micro-
fabricated PGS and fibrous PGS/PCL electrospun sheets. 
They report that these materials can effectively support 
the growth of valvular mesenchymal cells and mesen-
chymal stem cells in three-dimensional structures and 
promote the deposition of heart valve ECM [52] (Fig. 2b). 
Using the electrospinning technique, Jana et al. prepared 
a nanofibrous material that can simulate a three-layer 
natural valve. The experimental results showed that this 
material has good morphological, mechanical, and bio-
logical characteristics, which can be used as a basis for the 
development of a tissue-engineered heart valve structure 
for the treatment of heart valve disease [53]. Poly (L-lactic 
acid-co-ε-caprolactone) (PLCL) and silk fibroin (SF) were 
blended in different proportions to fabricate electrospun 
scaffolds. The results showed that the electrospun scaf-
folds with a PLCL/SF ratio of 80/20 had good mechanical 
properties, anti-calcification ability, and good cellular 
compatibility, thereby having great potential as a tissue 
engineering material for heart valves [51]. Therefore, more 
tissue-engineered heart valves constructed by electrospun 
nanofiber membrane materials are being researched, 
offering the potential for suitable artificial valve materials.

3.1.3 � Application of electrospun nanofiber membranes 
in myocardial tissue engineering

Myocardial infarction (MI) is one of the leading causes of 
death worldwide. It is a structural and functional disorder 
caused by the sudden obstruction of one or more coronary 
arteries, which leads to changes such as reduced cardiac 
contractile power and finally to chronic or congestive 
heart failure. Studies have shown that only 1% of the cells 
in the heart muscle tissue itself can regenerate each year 
and this number drops to 0.3% at age 20 and to zero by 
age 75 [54]; therefore, there is high demand for alternative 
therapeutic strategies and approaches to repair damaged 
post-MI tissue, a common strategy known as cardiac tissue 
engineering (CTE). CTE has become a research hotspot in 
the field of tissue engineering owing to its great potential 
for clinical applications.

Electrospun nanofiber membranes can produce con-
tinuous micro-nano polymer fibers, which have a biomi-
metic structure that can simulate the ECM structure of car-
diomyocytes well [55]. Richard et al. used electrospinning 
to design a non-invasive PCL/gelatin scaffold to obtain a 
nanofiber woven mesh that enhances the recruitment of 
macrophages, the expression of pro-angiogenic cytokines, 
vascular endothelial growth factor, the placental growth 
factor, and the corresponding host angiogenesis mecha-
nisms [56]. In addition, the homogenous defect-free felts 
of PCL and PGS have been successfully electrospun in the 
acetic acid solvent. The results showed that acetic acid had 
no negative effect on the ability to form a uniform fiber 
with a diameter of 1.3 μm without defects [57]. Moreover, 
the mechanical properties of electrospun nanofiber mem-
branes are higher than those of human myocardial tissue, 
which may be beneficial to reduce infarct dilation and 
left ventricular remodeling [57] (Fig. 2c). It is not difficult 
to imagine that the rapid development of cardiac tissue 
engineering will provide more options and strategies for 
the treatment of ischemic myocardial injury and infarction.

3.2 � Application of electrospun nanofiber 
membranes in bone and cartilage

Bone and cartilage tissue is one of the most vulnerable 
organs in the human body, which has more than 200 
bones of different shapes, sizes, and functions. The loss 
of bone function due to diseases such as fractures and 
osteoporosis will inevitably lead to a loss of life quality. 
Fortunately, bones exhibit a unique ability to regenerate 
can be healed without structural or functional damage. 
However, whenever the size of the defect exceeds the 
healing capacity of the osteogenic tissue, the site does 
not regenerate completely and the problem needs to be 
addressed using a bone graft [36]. Traditional solutions 
involving bone grafts are limited by their high cost and 
lack of tissue donors.

In recent years, people have tried a variety of 
approaches to overcome such large bone defects, by com-
bining bone tissue engineering with biomimetic scaffolds. 
According to the research progress of recent decades, 
osteoinduction and inorganic biomimetic scaffold mate-
rials are continuously optimized, and scaffold structures 
similar to the microstructural design of original bone tis-
sue are continuously updated [58].

The application of nanofibrous scaffolds prepared by 
electrospinning in bone tissue engineering has attracted 
a lot of attention since it came into public view. The poten-
tial of electrospun nanofibrous materials as bone substi-
tutes is promising because electrospinning can simulate 
ideally the micro-nano morphology of the fiber structure 
similar to that of natural bone ECM [59].
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3.2.1 � Application of electrospun nanofiber membranes 
in bone tissue engineering

Bone defects, often caused by trauma, tumors, osteomy-
elitis, abnormalities, and degenerative diseases, have a sig-
nificant impact on patient quality of life. The repair of large 
bone defects remains a clinically difficult problem because 
of the limited supply of traditional bone graft tissue and 
the increasing clinical demand. Therefore, according to the 
current situation, it is particularly important to develop 
bionic tissue engineering scaffolds for bone regeneration 
[60]. In tissue engineering, scaffolds provide a platform for 
cell attachment, proliferation, and differentiation, and play 
an important role in regulating cell behavior through a 
unique microenvironment [61].

Ideal properties for bone repair applications include 
mechanical strength, immediate limb stability, biologi-
cal activity, interconnecting pores (blood supply, gas 
exchange, bone growth, and vascular penetration), degra-
dability, controlled delivery of bioactive molecules/drugs, 
bone fusion, osteoinduction, bone conduction, and pre-
vention of biofilm infection [62] (Fig. 3a).

In recent years, nanofibrous materials are an attractive 
option for bone tissue regeneration applications because 
of their 3D nanostructures that mimic the natural ECM; 
they are excellent in vitro and in vivo compatibility [63–65]. 
Electrospun nanofibers have attracted extensive attention 
because of their high drug loading efficiency, convenient 
component control, and morphology design [60].

The use of electrospun nanofiber materials for the repair 
of different types of bone defects has become a research 
hotspot in recent years. For example, Perumal et al. studied 
the ability to repair critical-sized femoral bone defects in 
New Zealand white rabbits using a double-layer nanocom-
posite coating of polycaprolactone and nano-hydroxyapa-
tite impregnation and electrospinning. The results showed 
that the nanocomposite-coated implants had controlled 
in vivo degradation and improved bioactivity, which dem-
onstrated that these coated implants could be used as a 
bioabsorbable implant material for the repair of critical 
segmental bone defects [66]. Venugopal et al. electrospun 
PCL nanofibers with hexadecanoic acid, octadecanoic acid, 
N, N-diisopropylamine, and phytochemicals isolated from 
the medicinal plant Wattakaka volubilis; the results showed 
that PCL nanofibers mixed with this phytochemical sub-
stance could significantly promote the growth and prolif-
eration of primary human meniscus and osteoblast-like 
cells [67]. In addition, some studies have used fractional 
nanostructured bone carrier MP2 core–shell nanofibers 
to repair cranial defects of critical size in rats [62]. The use 
of electrospun tissue engineering materials, including 
all kinds of long bone and flat bone, has been proposed 
extensively.

The periosteum plays an important role in bone devel-
opment and injury healing. However, there are few stud-
ies on artificial periosteum, which are also limited by the 
complexity of their construction and the biological risk of 
clinical application. Nevertheless, there is an accumulating 

Fig. 3   a Preparation and application of shish-kebab (SK) struc-
ture electrospinning scaffold for repairing skull defect in vivo [62]. 
Reprint with the permission from American Chemical Society; b 
Tissue engineered periosteum is used to repair bone defects [68]. 

Reprint with permission from Elsevier; c Fabrication of coaxial PGS-
KGN/PCL aligned nanofibers and application of the fiber mem-
brane in cartilage repair [73]. Reprint with permission from Elsevier
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body of research on the repair of bone defects by perios-
teum regeneration; the classic tissue-engineered perios-
teum used for bone defects in rats is shown in the figure 
[68] (Fig. 3b). For example, it has been reported that icariin 
(ICA) was introduced into poly(ε-caprolactone) (PCL)/gela-
tin nanofibers by coaxial electrospinning technology to 
prepare an artificial periosteum. The results of this study 
demonstrate that the ICA-loaded PCL/gelatin electrospun 
membrane has great potential to promote bone regenera-
tion as a bionic artificial periosteum [69]. In some studies, 
vascular endothelial growth factor (VEGF) was encapsu-
lated with hyaluronic acid-polylactic acid core–shell struc-
ture by collagen self-assembly and microsol electrospin-
ning techniques. Complete regeneration of periosteum 
and bone tissue is achieved by inducing endogenous 
cambium in vivo [70]. These studies indicate that bionic 
periosteum has proved to be effective and multifunctional 
in triggering periosteum and bone regeneration and pro-
vides a promising strategy for the clinical repair of bone 
defects.

3.2.2 � Application of electrospun nanofiber membranes 
in cartilage tissue engineering

Articular cartilage is a very durable tissue that helps the 
body withstand significant compression and shear forces. 
However, after a traumatic injury, due to the lack of blood 
vessels in the natural cartilage, the potential for cartilage 
to regenerate internally is weak. If left untreated, focal 
cartilage damage can lead to degenerative osteoarthri-
tis [71]. In clinical practice, autologous transplantation of 
chondrocytes is considered an ideal strategy. However, it 
is difficult to extract a sufficient amount of cartilage dur-
ing natural cartilage grafting, and this method is prone to 
morbidity in its donor area [72]. Loading stem cells with 
the ability to differentiate cartilage into tissue-engineered 
scaffolds is gradually becoming a popular research direc-
tion for cartilage tissue repair. The structure of electrospun 
nanofiber membranes not only makes them highly valu-
able as osteogenic scaffolds, it has also led to their gradual 
exploration as chondrogenic scaffolds to repair cartilage 
defects. This enables the fabrication of fibrous scaffolds 
with high porosity and large surface areas that mimic the 
nanoscale and arrangement of collagen fibers in the natu-
ral extracellular matrix of articular cartilage [73] (Fig. 3c).

Many recent studies have reported the application of 
electrospun nanofiber membranes for cartilage repair. 
For example, Martin et  al. developed an electrospun 
cell-free fibrous hyaluronic acid scaffold that provides 
a specially designed factor to enhance cartilage repair: 
stromal cell-derived factor-1α (SDF-1α) and transforming 
growth factor-β3 (TGF-β3). Experiments showed that the 
SDF-releasing scaffold produced a lower cartilage healing 

response, which should guide the search for alternative 
growth factor combinations [74]. Begum et al. employed 
an electrospinning technique that uses a chondro-induced 
cellulose and silk polymer blend (75:25 ratio) to simulate 
the in vivo nanofiber ECM of cartilage [75]. Girao et al. 
employed a continuous adaptive electrospinning spray-
ing setup to construct a grading system consisting of 
PCL fibers and polyethylene glycol sacrificial particles as 
an excellent biomimetic material for CTE [76]. The use of 
coaxial PGS-Kartogenin (KGN)/PCL-directed nanofibers 
to repair cartilage defects has also been proven to be a 
good strategy [73]. Although there are many challenges 
in translating cartilage therapy into clinical practice, it is 
believed that with the advancement of research, electro-
spun nanofibrous membrane materials will play their role 
in the cartilage repair field.

3.3 � Application of electrospun nanofiber 
membranes in neural tissue engineering

The nervous system is the most complex system in the 
human body. It consists of the central nervous system 
(CNS) and the peripheral nervous system (PNS). Globally, 
6.8 million people die each year as a result of traumatic 
brain and spinal cord injuries, neurodegenerative diseases, 
and neurological diseases such as stroke [77].

CNS does not regenerate under normal circumstances, 
and the current medical methods for damaged CNS mainly 
focus on stabilization and prevention. The treatment for 
PNS injuries is relatively simple. The nerve fibers of PNS 
have a remarkable ability to regenerate and almost com-
pletely return to normal function after crush injury or Sun-
derland Type II injury, under the control of Schwann cells 
through their unique ability to dedifferentiate into cells 
that drive the healing process [78]. At present, the treat-
ment of PNS injury includes nerve autograft and allograft, 
but problems include the shortage of the donor’s nerve, 
disease at the donor site, and difficulty in abnormal regen-
eration [79]. In recent years, neural tissue engineering and 
regenerative medicine have provided new strategies for 
traditional transplantation methods. Nerve tissue engi-
neering uses an external biomaterial scaffold as a platform 
to allow cells to migrate to the site of injury and repair the 
tissue [79, 80].

Recent attention has focused on the use of biomaterials 
as scaffolds for axon growth, loaded with cells and/or neu-
rotrophic or neuroprotective factors [81, 82]. In general, 
researchers have chosen polymeric materials with excel-
lent electrical conductivity to mimic the natural ECM dur-
ing neural development. Common conductive polymers, 
including polyphenylene, polypyrrole (PPY), and polythio-
phene, have been extensively studied for the fabrication 
of neural tissue engineering scaffolds [82–84].
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Electrospun nanofiber membranes have been widely 
studied and applied in the treatment of PNS. Zhao et al. 
prepared PPY/SF conductive composite nanofiber mem-
brane scaffolds using electrospinning and 3D bio-printing. 
Schwann cells inoculated on these scaffolds were electri-
cally stimulated, and thus showed enhanced viability, pro-
liferation, and migration, as well as upregulated expression 
of neurotrophic factors. This can effectively promote axon 
regeneration and myelin sheath regeneration in vivo, and 
thus promote nerve regeneration and functional recov-
ery [85] (Fig. 4a). Idini et al. showed that the loading of 
glycosaminoglycan (GAG) onto PCL nanofiber membrane 
scaffolds can enable GAGs to exert their promoting effects 
on Schwann cell proliferation and synaptic formation and 
contribute to the repair of PNS injury [78]. With the pro-
gress of electrospinning nanofiber membrane technol-
ogy and neural tissue engineering-related research, it is 
believed that injurious diseases of the peripheral nervous 
system will be better treated.

3.4 � Application of electrospun nanofiber 
membranes in skin tissue engineering

The skin is the largest organ in the body of vertebrates, and 
its main function is to provide a natural barrier between 
the body and the external environment. In addition, the 
skin has immune regulation, temperature regulation, 

absorption of external substances, secretion, excretion, 
metabolism, and other important functions [86].

Skin wounds occur when the structural integrity of the 
skin is damaged by a variety of factors. These factors may 
be tissue rupture due to trauma, burns, congenital abnor-
malities, diseases that cause physical or psychological 
distress, or even chronic defects. When a wound occurs, 
the structural integrity of the skin needs to be repaired in 
order not to interfere with homeostasis, inflammation, cell 
migration, proliferation, and maturation [87]. Though the 
skin has a strong self-healing ability and scar tissue on the 
skin will gradually recover after trauma or skin injury, in 
severe cases of injury scar tissue produces higher collagen 
during the healing process. This in turn causes the tissue 
to become harder than its natural part, and the new skin 
from this scar tissue is less elastic than the original skin. 
Thus, the application of skin tissue engineering is needed 
in such an instance.

Skin tissue engineering-derived skin substitutes for 
wound healing have been widely used in clinical practice 
and have been developed extensively in recent years, with 
many new materials being carefully evaluated and await-
ing approval for clinical use [88]. Electrospun materials can 
simulate the ECM of skin tissue very accurately and are 
among the ideal materials for skin tissue engineering.

Electrospun nanofiber membrane materials for skin tis-
sue engineering have developed rapidly in recent years. 
Many researchers have conducted experimental studies 

Fig. 4   a The electrospinning PPY/SF conductive composite 
nanofiber membrane scaffolds and the possible mechanisms of the 
promoted neural regeneration [85]. Reprint with permission from 
Elsevier; b Hybrid chitosan (CH), polyvinyl alcohol (PVA), and silk 
mat were prepared by electrospinning method and applied to the 

full-thickness wound 6 excision rat model to evaluate the wound 
healing potential of transplanted CH-PVA + silk mat preimplanta-
tion of MSC-derived keratinocytes [89]. Reprint with permission 
from Springer Nature
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to find suitable materials for skin tissue engineering. Fathi 
developed co-electrospun composites of polyvinyl alco-
hol, chitosan, and silk mat; the results of the experimental 
analysis suggested that the new fibrous structure could be 
used in the repair of damaged skin and regenerative medi-
cal applications as a skin substitute [89] (Fig. 4b). Sirsendu 
et al. used co-blended electrospinning to obtain a silk-
gelatin loaded hybrid cationic gelatin/hyaluronic acid/
chondroitin sulfate nanofiber composite scaffold, which 
was experimentally shown to promote adhesion and 
proliferation of hMSCs to a certain extent and to be effec-
tive for skin tissue repair [90]. Arturo et al. applied a novel 
recombinant biomaterial called the system for obtaining 
fibers from elastin-like recombinants. It can be cross-linked 
directly to the formed nanofibers during the flight of the 
fiber jet from the needle tip to the collection electrode 
during the spinning process, either as a dressing to pro-
mote skin cell growth or it can be directly implanted into 
the injured area as a tissue-engineered skin substitute [91].

4 � Application of electrospun nanofiber 
membranes in wound dressing

During wound healing of the skin, the electrospinning 
membrane is not only used as a substitute for skin tis-
sue engineering; it is also widely used as a wound dress-
ing to promote wound healing. Skin is a very fragile and 
easily damaged organ; therefore, there has been a lot of 
research interest in the repair of skin wounds. The normal 
process of wound healing consists of four stages: hemo-
stasis, inflammation, proliferation, and ECM remodeling. 
The healing process is primarily regulated by interactions 
between various types of cells, bioactive factors, and sup-
porting platforms (usually natural ECM secreted by cells). 
Under pathophysiological conditions, the healing process 
of the body will be severely disrupted. For example, severe 
injuries caused by burns or accidents cause a loss of skin 
tissue that exceeds the body’s normal ability to heal, lead-
ing to an inability to heal. Most hard-to-heal wounds are 
related to large wounds from accidents or diseases such 
as diabetes. These conditions, which often require surgical 
treatment such as skin grafts, have become a major medi-
cal burden over the years [92].

An ideal wound dressing should absorb excess wound 
exudate while keeping the wound moist. This effectively 
protects the wound from microorganisms, allowing gas 
exchange and facilitating wound healing [93, 94]. In addi-
tion, the dressing material should be non-toxic, non-
allergenic, easy to apply or remove, and have suitable 
adhesion. Traditional wound dressings, such as gauze, 
bandages, and sponges, are used to prevent bacterial inva-
sion, but their limited ability to expand limits their use [95]. 

Modern wound dressings, such as hydrogels and nanofib-
ers generated by electrospinning naturally sourced active 
ingredients, have been extensively explored to overcome 
this problem in regenerative medicine and trauma [96].

In recent years, the electrospinning nanofiber mem-
brane materials used as a wound dressing to promote 
wound healing have emerged one after another. Tra-
ditional healing drugs have been used to load fibrous 
membrane scaffolds. For example, a study using honey 
mixed with alginate/polyvinyl alcohol-based electrospun 
nanofiber membranes showed good antioxidant and anti-
bacterial activity, which is beneficial for wound healing 
[97] (Fig. 5a). In other studies, photosensitizer (PS) materi-
als were used in electrospinning to obtain nanocomposite 
films. As a key component of photodynamic therapy, PS 
materials can produce cytotoxic reactive oxygen species 
by visible or ultraviolet light irradiation, and they show sig-
nificant antibacterial properties. The results showed that 
the nanofiber membrane could effectively inhibit inflam-
mation and control infection in wound healing, showing 
its application potential as wound dressing [98] (Fig. 5b). 
In addition, it is reported that Shi et al. constructed self-
pumping dressings as bio-fluid pumps by combining the 
fiber film electrospun from the hydrophobic polyurethane 
nanofiber array with a hydrophilic microfiber network such 
as medical gauze. This self-pumping dressing can unidi-
rectionally drain excess biofluid from the hydrophobic 
side to the hydrophilic side of the wound, thus prevent-
ing these biofluids from wetting the wound and causing 
infection, and greatly accelerating the healing process 
[73]. Yang et al. used mechanical growth factor to surface 
modify electrospun PCL fiber scaffolds. This modification 
directed macrophage phenotypic conversion, effectively 
reducing wound foreign body reaction in healing [99]. 
Electrospinning nanofiber membranes have strong plas-
ticity and can be easily fabricated with different properties 
after changing the materials, conditions, and methods of 
electrospinning. As such, their popularity in the field of 
wound dressings remains high.

5 � Application of electrospun nanofiber 
membranes in cancer diagnosis 
and treatment

Cancer is a disease caused by mutated cells, whose ability 
to proliferate indefinitely and escape apoptosis eventually 
leads to the formation of tumors and subsequent invasion 
of surrounding tissues [100]. Currently, the most common 
treatment for cancer is the use of chemotherapy drugs. 
According to the World Health Organization, a total of 9.6 
million people died of cancer in 2018, making it the second 
leading cause of death globally, with the majority of cases 
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occurring in low- and middle-income countries [101]. Early 
detection and effective treatment have always been key 
factors in improving the survival rate of cancer patients. 
In addition to the increased incidence of cancer, cancer-
related morbidity and mortality are further exacerbated 
by the development of tumor resistance to some existing 
chemotherapeutic drugs. As the disease progresses, the 
need for new therapies increases; however, the high cost 
of developing new drugs, high failure rates, and long trial 
cycles mean that new therapies are urgently needed for 
cancer treatment [101].

5.1 � Application of electrospun nanofiber 
membranes for immunosensor/cancer 
screening

The early detection and treatment of cancer are crucial for 
the improvement of survival rates. However, early cancers 
are usually asymptomatic and hard to detect. The char-
acteristic biomarkers of cancer tumor overexpression 
are likely to appear in the early stage of the disease, and 
their identification and detection may be the best way to 

identify early malignant tumors. This has led to the emer-
gence of a variety of cancer biomarker-sensing technolo-
gies [102].

The latest advances in nanoscience and nanotechnol-
ogy have opened up new fields for the development of 
biosensors. Electrospun nanofilament membrane materi-
als are comparable in size to biomolecules and offer high 
sensitivity and selectivity while providing device minia-
turization and unaffected performance [102]. The use of 
nanofibers in areas such as volatile analysis, tumor imag-
ing, and fluid sample analysis has accelerated the early 
diagnosis of cancer and helped improve patient survival 
[103].

Recent research on nanofiltration membrane sensors 
related to early tumor diagnosis has not been success-
ful. Brince et al. synthesized highly oriented zinc oxide 
(ZnO) nanowires embedded in multi-walled carbon 
nanotubes using electrospinning and the fabrication 
of a novel biosensor platform based on multi-walled 
carbon nanotubes embedded in zinc oxide nanowires 
for the ultra-sensitive detection of tumor antigen125. 
This antigen is the tumor marker of ovarian cancer and 

Fig. 5   a The production process and the photograph of honey/SA/
PVA nanofiber membrane [97]. Reprint with permission from Else-
vier; b Synthesis process of UTG-PVDF nanocomposite film, and 
its sterilization principle under near-infrared light irradiation [98]. 

Reprint with permission from American Chemical Society; c Con-
struction of carcinoma antigen-125 immunosensor and schematic 
diagram of action principle [104]. Reprint with permission from 
Elsevier
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the gold standard of diagnosis [104] (Fig. 5c). More sen-
sors included in clinical research and application will 
promote the early diagnosis and treatment of cancer, 
thereby improving greatly the survival rate of cancer 
patients.

5.2 � Application of electrospun nanofiber 
membranes for drug delivery in the treatment 
of cancer

Nanofiber electrospinning is becoming the preferred 
process for the development of a variety of novel drug 
delivery systems (DDSs), owing to its simplicity, cost-
effectiveness, and unique top-down preparation pro-
cess [105]. The high flexibility of electrospun nanofibers 
enhances the control of drug release kinetics, simultane-
ously delivers different therapeutic drugs, and promotes 
local therapeutic effects, thereby reflecting the advan-
tages of electrospun nanofibers in drug delivery system 
applications [106].

As drug delivery systems, electrospun nanofiber scaf-
folds are easy to operate, have low toxicity and good 
therapeutic effects, and are often used as targeted drug 
delivery tools [100]. This is a promising anticancer drug 
delivery technology, especially in postoperative topi-
cal chemotherapy, which allows for direct topical drug 
delivery to the tumor site and precise temporal and 
spatial control of the release of therapeutic drugs [100]. 
Balan et al. studied the anticancer effect of drug-loaded 
nanofibers with A431 cells by preparing PCL nanofibers 
loaded with chitosan nanoparticles. When the nanopar-
ticle and nanofiber scaffold treatments were adminis-
tered, the survival rate of A431 cells decreased by 30% 
and 50%, respectively. This indicates that the nanofiber 
delivery system opens a new frontier in the field of 
cancer therapy with reduced side effects and efficient 
cancer targeting [107]. Kita et al. investigated the ability 
of an electrospun polylactic acid drug reservoir device 
(DRD) to prolong the delivery time of the ear protectant 
metformin and established an in vitro model using SH-
SY5Y human neuroblastoma cells. These results suggest 
that electrospinning DRD could provide a drug delivery 
system for customizable chemotherapeutic drugs that 
could have broad clinical applications in the personal-
ized delivery of inner ear treatment [108]. Implantable 
biopolymer DDSs will be more widely used in clinical 
practice as more polymers are discovered for the con-
struction of electrospun nanofiber delivery systems. In 
addition to cancer therapy, electrospun nanofibrous 
scaffolds are widely used as drug delivery systems for 
wound dressing, growth factor delivery, nucleic acid 
delivery, and stem cell delivery [109].

6 � Application of electrospun nanofiber 
membranes in medical protective 
equipment

The COVID-19 pandemic has caused shortages in medi-
cal protective clothing equipment. This has put many 
people, especially health care workers, at high risk [110]. 
There is an increasing demand for effective antimicrobial 
and antiviral protective devices that are easy to use.

The electrospun nanofiber membrane material is 
favored in the manufacturing field of medical protec-
tive equipment such as masks and protective clothing 
because of its good surface porosity and chemical func-
tionalized surface that greatly enhances the filtration 
performance of nanomembranes. Moreover, it also has 
good air permeability and is comfortable.

In the past 2 years, the scientific community has seen 
an explosive increase in the research of electrospun 
nanofiber membranes in medical protective devices. 
A multifunctional electrospinning polymethyl meth-
acrylate (PMMA) nanofiber with ZnO nanorods and sil-
ver (Ag) nanoparticles (PMMA/ZnO−Ag Nanoparticles) 
as decorative materials for making protective cushions 
have been reported. This material has antibacterial and 
antiviral properties, facilitates the photocatalytic deg-
radation of organic pollutants, and can be reused [111] 
(Fig. 6a). Patil et al. reported a layered biodegradable 
mask with a polylactic acid nanofiber filter layer pre-
pared using needleless electrospinning, which is effec-
tive in pandemic prevention [112] (Fig. 6b). Shao et al. 
developed a janus fiber membrane material that pro-
vides comprehensive protection with a focus on both 
dust and directional water transfer capabilities [113]. 
Another study reported that the a protective material 
made of superhydrophobic microporous membrane 
that is both waterproof and breathable can be made via 
electrospinning [114]. Additionally, it has high poten-
tial in the application of protective clothing. These facts 
demonstrate that the nanofiber membrane materials 
produced by electrospinning play an important role in 
a variety of fields.

7 � Conclusions and future perspectives

Compared with nanofibrous membrane materials 
obtained using other techniques, nanofibrous mem-
brane materials obtained using electrospinning have 
unique advantages (high plasticity, specific surface 
area, and porosity). Obtaining nanofibrous membra-
nous scaffolds using electrospinning technology is 
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simpler and cheaper than most other technologies. Its 
industrial mass production is being explored by large 
instrument companies, and various new electrospinning 
technologies are being developed (there is also con-
tinuous development of various novel electrospinning 
technologies). The ease of nanosurface modification and 
the versatility of spinning material options have allowed 
researchers to explore new scaffold constructions, with 
breakthroughs in bone and cartilage, vascular grafts, 
artificial heart valves, and bionic myocardial tissue. The 
small diameter and adjustable pore size of electrostati-
cally spun nanofiber films have also shown advantages 
in the manufacture of wound dressings and medical 
protective gear. Solvent-free or green solvent electro-
spinning methods have also received much attention 
in recent years, especially in the medical field. Electro-
spinning with green solvents to obtain nanofiber struc-
tures capable of replacing nanofiber components with 
chemical components can effectively avoid a range of 
side effects [115] and can effectively enhance the effec-
tiveness of drugs [116]. It is evident that the application 
of electrospun nanofiber film materials should continue 
to develop and grow in the foreseeable future.

Although electrostatically spun nanofiber membranes 
have facilitated significant advances in tissue engineer-
ing, cancer therapy, and drug delivery, some problems 
remain to be resolved. For example, the electrospin-
ning process is not applicable to certain electrically 
sensitive materials, especially biomolecules, resulting 
in a relatively narrow range of applications. In addition, 
it requires operation under high voltage conditions, 

which may pose a safety risk to the operator. In addi-
tion, electrospinning technology is mostly used in labo-
ratory research; large-scale industrial production of the 
technology is still not very mature. However, given that 
a large number of researchers are continuing to explore 
and develop multi-needle technology, needle-free tech-
nology, and AC electrospinning technology, demonstrat-
ing their potential for large-scale industrial production, 
this problem should gradually be solved. Finally, based 
on the simplicity, feasibility, and cost-effectiveness 
of electrospinning technology and its broad applica-
tion prospect in the biomedical field, it is expected to 
develop rapidly in the coming years.
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Fig. 6   a PMMA/ZnO−Ag Nanoparticles (Ag NFS) was prepared 
by electrospinning method with this solution, which was used 
to make protective clothing [111]. Reprint with permission from 
American Chemical Society; b Preparation of polylactic acid 

nanofiber filter layer by needle-less electrospinning is used to 
manufacture three-layer cotton-PLA-cotton layered biodegradable 
mask [112]. Reprint with permission from Elsevier
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