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Abstract 
This paper presents a new design approach for two main components of an ultrasonic plastic welding machine, booster 
and horn, based on an analytical model. The design procedure is developed due to the lack of a comprehensive and 
precise analytical model for rapid design and analysis of these components. The previous analytical models use the one-
dimensional wave equation that causes significant errors in designing components with large lateral dimensions. Three-
dimensional vibrations are considered for developing an analytical model using the apparent elasticity method. In this 
way, longitudinal frequency equations are coupled with radial frequency equations by mechanical coupling coefficients. 
Also, the damping of materials is taken into account. The model can be adapted to calculate the resonant length of the 
components or calculate the resonant frequency. To verify the model, the results are compared to a numerical simulation. 
The difference between analytical and numerical resonance frequency is less than 0.02%. Moreover, an experimental 
modal analysis is performed, which shows 0.9% error with analytical results.

Article highlights 

• A new design approach for boosters and horns has 
been developed based on an analytical model.

• Three-dimensional vibrations are considered in the 
model using the apparent elasticity method.

• The accuracy of calculating resonant frequencies is 
more than one-dimensional design method.
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1 Introduction

Ultrasonic welding is a standard method for welding par-
ticular materials such as plastics. This welding method is 
based on propagating ultrasound waves along compo-
nents and heating workpieces due to visco-elastic losses 
and the friction between surfaces. Ultrasonic horn and 
booster must be designed to have a longitudinal mode 

shape in the desired working frequency. The resonant fre-
quency can be altered by dimensional changes [1]. There 
are two general approaches to design ultrasonic horns and 
boosters: (i) traditional approach based on one-dimen-
sional wave equation in the longitudinal direction (ii) finite 
element simulations [2]. Using finite element softwares 
is very common because of its simplicity, but design-
ing dimensions with this method would be extremely 
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time-consuming. In most cases, the horns are designed 
conical, exponential, stepped, and cylindrical [3]. Nad et al. 
[4] examined various shapes of horns and presented the 
most optimal shape for the design of horns. Dang et al. 
[5] showed that the horn’s vibrational amplitude with 
Bezier profile is more significant than other curves. Also, 
the results showed that this kind of horn is more durable 
due to less stress concentration and has a uniform ampli-
tude of vibrations in its output surface. On the other hand, 
the stepped horn has the highest amplitude and suffers 
more stress concentration in the corners, which reduces 
its life dramatically. Singh et al. [6] compared stepped 
and exponential horns with two different materials using 
ANSYS software. Li et al. [7] modeled a horn according to 
spring-mass-damper interaction in one direction and two 
degree-of-freedom (DOF). The results showed a 0.1% dif-
ference between experiments and the proposed model 
for the resonance frequency. Wang and Lin [8] compared 
six different types of large cylindrical horns to reduce 
lateral vibrations utilizing COMSOL software. Also, they 
investigated the vibration uniformity of output surfaces 
of these horns. They stated that it is challenging to pre-
sent an analytical solution for large-sized grooved horns 
because of their complex shapes. Carboni [9] explored 
the cause of cracking of corners and slots in two kinds 
of horns by FEM software. Kumar et al. [10] researched 
the necessity of considering slots on a horn’s body and 
its effect on displacement uniformity of the output sur-
face and its optimal location. Naseri et al. [11] designed a 
steel horn using FEM software for equal channel angular 
pressing (ECAP). Rani et al. [12] designed a horn with dif-
ferent materials and assessed the effect of temperature 
on the nodal plane experimentally and numerically. Yu 
et al. [13] modeled a horn using a one-dimensional wave 
equation. They approximated the length of two elements 
of the horn with constant cross-section by a 1D analytical 
model. However, they investigated the effect of tempera-
ture on the resonance frequency numerically using FEM 
software, and they showed that the resonance frequency 
decreases with the increasing temperature. Kumar and 
Prakasan [14] designed two different horns for joining 
metallic parts. They used the sound velocity through the 
horn for calculating the total length of the horn. Next, they 
calculated other dimensions using FEM software based on 
a methodology of trial and error that they had proposed 
for optimizing essential parameters.

Based on the literature survey, horn and booster were 
typically designed by FEM software. The presence of an 
analytical model is necessitated to investigate the effect 
of each parameter on the resonance frequency by a 
mathematical model. However, in some of these studies, 
it is mentioned that the use of a one-dimensional ana-
lytical model cannot be reliable and reasonable due to its 

amount of error caused by the large lateral dimensions 
of horns.

In this paper, a design procedure is developed due to the 
lack of a comprehensive and precise analytical model for 
rapid design and analysis of these components. The previous 
analytical models use a one-dimensional wave equation that 
causes significant errors in designing components with large 
lateral dimensions. Nevertheless, the absence of a unanimous 
mathematical model for accurate design of these compo-
nents feels [15]. On the other hand, the traditional approach 
for designing these parts is not accurate because it considers 
only one-dimensional vibration. Therefore, a 3D vibrational 
model should be provided to design these components pre-
cisely. The nodal plan location, mode shape, and resonance 
frequency can be obtained with this model. In this study, a 
comprehensive mathematical model based on the coupling of 
longitudinal and radial vibration is developed to calculate horn 
and booster dimensions, resonance frequency, mode shape, 
and magnifying factors. To begin with, the analytical model 
for boosters and horns are presented. Next, the designed horn 
and booster with the analytical model are analyzed with FEM 
software to verify the analytical model. Finally, experimental 
tests have been conducted to verify the result of the model.

2  Analytical modeling

2.1  Theory

Horns and boosters are usually made up of Ti or Al-7075-T6. 
These components consist of a solid, hollow cylinder, and 
exponential sections. When the diameter to length ratio 
of a component is less than one-quarter of a wavelength, 
a one-dimensional wave equation can be used to model 
the components analytically [16]. Nevertheless, in general, 
there are radial and circumferential displacements in these 
components that should be considered for a more realistic 
model, especially in the case of workpieces with large lat-
eral dimensions and short lengths to reduce the amount 
of error [17]. A cylindrical 3D element is taken, and stresses 
are exerted on it, shown in Fig. 1.

Mechanical coupling coefficient (n), is defined as the 
ratio of longitudinal stress ( �z ) to lateral stress consist of 
radial ( �r ) and circumferential stress ( ��).

The mechanical coupling coefficient is related to the 
geometry of the component, and it is usually a negative 
number. Radial and longitudinal displacement equations 
are coupled with this parameter.

(1)n =
�z

�r + ��
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The longitudinal displacement equation for a cylinder is 
obtained by solving the differential equation of displace-
ment. uz is the displacement and kz is the apparent wave 
number in longitudinal direction.

A and B in Eq. (2) remain unknown constants. The longi-
tudinal displacement equation for an exponential part is:

Radial frequency equation for hollow and solid cylin-
ders are obtained by solving the radial differential equa-
tion. ur is the displacement and kr is the apparent wave 
number in radial direction. J0 is Bessel functions of the first 
kind and Y0 is Bessel functions of the second kind.

By applying boundary conditions for a hollow cylinder 
( �r=a = 0, �r=b = 0 ), radial frequency equation is obtained 
as follows.

a and b are the external and internal radius of the hollow 
cylinder respectively and � is Poisson’s ratio.

By applying boundary conditions ( ur=0 = 0, �r=a = 0 ), 
radial frequency equation for a solid cylinder (Fig. 2a) is 
obtained:

(2)
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The following assumptions are considered for the ana-
lytical model:

 (1) The vibration mode does not change in the wave prop-
agation along the components.

 (2) Shear stresses and strains are ignored.
 (3) The waves inside the components are assumed sinu-

soidal.
 (4) The diameter change in the components is far from 

the critical values, so the effect of chamfers and fil-
lets are ignored.

 (5) The acoustic impedance of air is ignored, so the horn 
or booster that works in the air is called “unloaded,” 
and its stress is considered zero.

 (6) The machined surfaces for the wrench seat on the 
booster and horn are ignored.

 (7) The booster and horn’s torsional and bending mode 
shapes are ignored.

 (8) The effect of the screw that connects the booster 
and horn is ignored.

 (9) Wave differential equations are considered in the 
radial and longitudinal directions.

 (10) Differential equations in longitudinal and radial 
directions are related to each other by the mechani-
cal coupling coefficient.

 (11) To write the radial frequency equation of the expo-
nential segments of the booster and horn, the mean 
radius of these segments is used.

2.2  Analytical model of booster and horn

Figure 2 presents the booster. The booster is divided into 
eight segments, including hollow and solid cylinder and 
exponential part. The geometrical shape of the booster 
increases the amplitude of oscillations.

According to Eqs. (5) and (6), the radial frequency equa-
tions of segments 1 to 8 are as follows [18].

(6)akrJ0

(
kra

)
−

[
(1 − � − 2�n)

(1 − �n)

]
J1

(
kra

)
= 0

Fig. 1  The cylindrical element of components

Fig. 2  a Solid and b hollow cylinder
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To obtain the longitudinal frequency equation, accord-
ing to Eqs.  (2) and (3), the displacement equations for 
each segment are written, then boundary conditions are 
applied (Fig. 3). The longitudinal displacement equations 
of segments 1 to 8 are as follows:

(7)
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By considering the assumptions and using boundary 
conditions in longitudinal equations, Eq. (17) has been 
obtained. [X] is the unknown coefficient of A, B, C …. The 
condition for the existence of a solution is that the deter-
minant of the coefficient matrix should be equal to zero. 
The longitudinal frequency equation is obtained by this 
condition. Next, with solving radial frequency equations 
and longitudinal frequency equation, the resonance fre-
quency of the booster and the mechanical coupling coef-
ficient of each segment are calculated.
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Fig. 3  The booster elements and boundary conditions
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Equation 17 for the booster can be expressed as follows.

(17)
[
The coefficientsmatrix

]
[X ] = [Zreosmatrix]
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Table 1  Booster’s dimensions

Element number Length (mm) Inner radius 
(mm)

Outer 
radius 
(mm)

First 13 7 20
Second 12 7 32
Third 44.5 0 32
Fourth 4 0 34.5
Fifth 2.5 0 32
Sixth 30 0 14.5
Seventh 25.2 0 14.5
Eighth 20 6 14.5

Table 2  AL 7075-T6 mechanical characteristics

Sign Amount Unit

Density � 2823 kg
/
m3

Young’s Modulus E 70 GPa

Poisson’s ratio � 0.33 –
Damping ratio � 0.00146 [19] –

Table 3  Booster’s results

First longitudinal resonance frequency 19,943 Hz

Mechanical coupling coefficient of first element  − 13.95
Mechanical coupling coefficient of second element  − 10.06
Mechanical coupling coefficient of third element  − 8.8
Mechanical coupling coefficient of fourth element  − 8.8
Mechanical coupling coefficient of fifth element  − 11.13
Mechanical coupling coefficient of sixth element  − 17.67
Mechanical coupling coefficient of seventh element  − 30.97
Mechanical coupling coefficient of eighth element  − 25.81

Fig. 4  The horn elements and boundary conditions
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The value of each alpha is in the appendix. The non-
linear system of equations for the booster is achieved by 
one longitudinal and eight radial frequency equations. All 
dimensions and material properties are given in the equa-
tions. The resonance frequency and mechanical coupling 
coefficients of each section remain unknown parameters. 
Table 1 shows the dimensions of the booster, and Table 2 
shows AL 7075-T6 mechanical characteristics.

The resonant frequency of the transducer has been 
measured as 19,943 Hz. The resonant frequency of all 
components should be matched in order to prevent losss 
and have a completely longitudinal mode shape. Con-
sidering the resonant frequency of the transducer, the 
results of solving the system of equations using MATLAB 
are reported in Table 3.

Figure 4 shows the horn. The horn is divided into three 
segments, including solid cylinder and exponential part.

The radial frequency equations of segments 1 to 3 are 
as follows.

The displacement equations for each element are as 
follows.
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Table 4  Horn’s dimensions

Element number Length (mm) Inner radius 
(mm)

Outer 
radius 
(mm)

First 53.7 0 12.5
Second 15 0 17.5
Third 60 0 17.5

Table 5  The resonant frequency and mechanical coupling coeffi-
cients

Longitudinal resonance frequency 19,943 Hz

Mechanical coupling coefficient of first element  − 42.74
Mechanical coupling coefficient of second element  − 30.97
Mechanical coupling coefficient of third element  − 27.02

Fig. 5  a Horn and b Booster modeled in CATIA

Fig. 6  Generated mesh for booster
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By placing the boundary conditions into displacement 
equations, the longitudinal matrix equation of the horn 
is derived.
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Fig. 7  Booster’s mode shape of 
the first longitudinal resonance 
frequency at 19,945.7 Hz

Fig. 8  Horn’s mode shape of 
the first longitudinal resonance 
frequency of 19,952.6 Hz
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The non-linear system of equations for horn is achieved 
by one longitudinal and three radial frequency equations 
in the same way as the booster. Table 4 shows the dimen-
sions of the horn and Table 5. reports the results of solving 
the system of equations using MATLAB.

3  Numerical modeling

ANSYS software is used for numerical analysis. For this 
purpose, the booster and horn are modeled in the CATIA 
software (Fig. 5) with the same dimensions in the analytical 

analysis. Subsequently they are imported into the ANSYS 
software for modal analysis. In the numerical analysis, the 
longitudinal resonance frequency, mode shape, and mag-
nification factor of the horn and booster are computed. 
Also, the results are compared with analytical ones. The 
mechanical characteristics are demonstrated in Table 2.

Figure 6 shows generated mesh for the booster. The free 
mesh type is chosen for this study. The mesh type is trian-
gular, and the number of Nodes is 6481.

The booster’s modal analysis results are shown in Fig. 7. 
The first longitudinal resonance frequency is 19945 Hz, 
which shows a 0.01% error with the analytical result 
(19,943 Hz). On the other hand, the magnification factor 
of the component is 3.6, which shows a 25% error with 
the analytical result (2.7). Moreover, according to Fig. 7 the 
nodal plane is placed at a proper distance on the flange. 
The displacements should be minimum on the flange 
to cause less effect on the resonance frequency of the 
booster.

Figure 8 shows the horn’s modal analysis results. The 
first longitudinal resonance frequency is 19952 Hz, which 
shows 0.01% error with the analytical result (19,943 Hz) 
and the magnification factor of the horn is 1.8.

4  Fabrication and experimental tests

The booster and the horn which is designed analytically, 
are fabricated for the sake of experimental tests. The longi-
tudinal resonance frequency is calculated by modal ham-
mer test for each component. Figure 9. shows fabricated 
booster and horn. The results of this test show longitudinal 
resonance frequency of booster and horn is 20110 Hz and 
20,137 Hz respectively, which have 0.83% and 0.96% error 
with analytical results and 0.82% and 0.91% with numeri-
cal results.

Fig. 9  Fabricated booster and horn

Fig. 10  Booster’s mode shape
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Figure 10 shows the 3-D mode shape of the booster. 

Also, frequency response function (FRF) diagrams of these 
components have been shown in Figs. 11 and 12. The 
magnification factor of the component is 3, which shows 
16.66% and 10% errors with numerical and analytical 
results respectively.

Table 6 shows a summary of results and comparisons.
Table 7 shows the difference between 1 and 3D ana-

lytical model results. The calculated resonance frequency 
of the horn and the booster using a 3D analytical model 
is more accurate than a 1D model. The reason is that the 
lateral vibration is taken into account in a 3D analytical 
model.

5  Discussion

This study introduced a new approach to designing ultra-
sonic horns and boosters using a three-dimensional ana-
lytical model. The results were compared with numerical 
simulations and experimental tests. As shown in Table 6 
the measured resonance frequency is quite close to its 
expected amount in the experimental test. According to 
Table 7 the accuracy of the 3D analytical model is higher 
than the 1D model due to consideration of lateral vibra-
tions. Also, the magnification factor of the booster was 
calculated using the 3D analytical model.

Designing ultrasonic boosters and horns is time-con-
suming and requires trial and error to tune them for a 
special application, the 3D analytical model eliminates the 
trial and error process and makes these components easy 
to modify and optimize.

6  Conclusion

A new analytical design procedure was developed for 
designing horns and boosters of the ultrasonic plastic 
welding machine. The design procedure considers the 
longitudinal and lateral vibration of the component. 
The error of the conventional 1D vibrational equation is 
sharply decreased by using the new design procedure. The 
results of the analytical design were compared with the 
numerical results and experimental tests. Also, 1D and 3D 

Fig. 11  Booster’s frequency response function (FRF) diagram

Fig. 12  Horn’s frequency response function (FRF) diagram

Table 6  Measured resonance frequency of the booster and the horn, magnification factor of the booster and comparisons between the 
results

Unit Analytical Numerical Experimental Analytical and 
numerical error 
(%)

Analytical and 
experimental error 
(%)

Numerical and 
experimental error 
(%)

Booster’s resonance frequency Hz 19,943 19,946 20,110 0.01 0.83 0.82
Horn’s resonance frequency Hz 19,943 19,953 20,137 0.01 0.96 0.91
Booster’s magnification factor – 2.7 3.6 3 25 10 16.66
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analytical models were compared and showed that the 3D 
analytical model is more accurate. The 3D analytical model 
was more accurate than the 1D model. To sum up, the fol-
lowing results can be drawn from this study:

1. The proposed 3D analytical model can eliminate or 
reduce trial and error steps for designing each com-
ponent using FEM software which remains a time-
consuming process for designers.

2. Designed components with this method were more 
accurate than previous analytical models.

3. A reliable mathematical model was proposed to inves-
tigate the effect of different length, material proper-
ties and radius of elements on the resonant frequency, 
mode shape, and magnification factor of ultrasonic 
boosters and horns for the first time.

Moreover, the proposed 3D analytical model can be 
developed to calculate the frequency response of the 
complete vibrating set of ultrasonic plastic welding 
including, transducer, booster, and horn. Also, using the 
proposed mathematical model, different optimizations 
can be conducted in order to increase the efficiency of 
these components.
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The amount of each alpha in booster’s matrix equation:
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Table 7  1D and 3D analytical 
comparisons

Analytical Unit 3D 1D 1D and 3D 
analytical error 
(%)

Booster’s resonance frequency Hz 19,943 19,531 2.07
Horn’s resonance frequency Hz 19,943 19,157 3.94
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