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Abstract
Understanding the stability and aggregation of nanoparticles in aqueous milieu is critical for assessing their behavior 
in the natural and engineered environmental systems and establishing their threat to human and ecosystems health. In 
this study, the colloidal stability and aggregation kinetics of nanocrystal quantum dots (QDs) —CdSe/ZnS QDs—were 
thoroughly explored under a wide range of aqueous environmental conditions. The z-average hydrodynamic diameters 
(z-avg. HDs) and zeta potential (ξ potential) of CdSe/ZnS QDs were measured in monovalent electrolyte (NaCl) and diva-
lent electrolyte  (CaCl2) solutions in both the absence and presence of natural organic matter (NOM)—Suwannee River 
natural organic matter, SRNOM to assess the dynamic growth of these nanoaggregate-QD-complexes, and the evalu-
ation of their colloidal stability. Results show that  CaCl2 was more effective to destabilize the QDs compared to NaCl at 
similar concentrations. An increase in NaCl concentration from 0.01 to 3.5 M increased the z-avg. HD of QD aggregates 
from 61.4 nm to 107.2 nm. The aggregation rates of QDs increased from 0.007 to 0.042 nm·s−1 with an increase in ionic 
strength from 0.5 to 3.5 M NaCl solutions, respectively. In the presence of  Na+ cations, the aggregation of QDs was limited 
as steric forces generated by the original surface coating of QDs prevailed. In the presence of  CaCl2, the aggregation of 
QDs was observed at a low concentration of  CaCl2 (0.0001 M) with a z-avg. HD of 74.2 nm that significantly increased 
when the  CaCl2 was higher than 0.002 M. Larger sizes of QD aggregates were observed at each level of  CaCl2 concentra-
tion in suspensions of 0.002–0.1 M, as the z-avg. HDs of QDs increased from 125.1 to 560.4 nm, respectively. In the case 
of  CaCl2, an increase in aggregation rates occurred from 0.035 to 0.865 nm·s−1 with an increase in ionic strength from 
0.0001 M to 0.004 M, respectively. With  Ca2+ cations, the aggregation of QDs was enhanced due to the bridging effects 
from the formation of complexes between  Ca2+ cations in solution and the carboxyl group located on the surface coat-
ing of QDs. In the presence of SRNOM, the aggregation of QDs was enhanced in both monovalent and divalent electro-
lyte solutions. The degree of aggregation formation between QDs through cation-NOM bridges was superior for  Ca2+ 
cations compared to  Na+ cations. The presence of SRNOM resulted in a small increase in the size of the QD aggregates 
for each of NaCl concentrations tested (i.e., 0.01 to 3.5 M, except 0.1 M), and induced a monodispersed and narrower 
size distribution of QDs suspended in the monovalent electrolyte NaCl concentrations. In the presence of SRNOM, the 
aggregation rates of QDs increased from 0.01 to 0.024 nm 1 with the increase of NaCl concentrations from 0.01 to 2 M, 
respectively. The presence of SRNOM in QDs suspended in divalent electrolyte  CaCl2 solutions enhanced the aggregation 
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of QDs, resulting in the increase of z-avg. HDs of QDs by approximately 19.3%, 42.1%, 13.8%, 1.5%, and 24.8%, at  CaCl2 
concentrations of 0.002, 0.003, 0.005, 0.01, and 0.1 M, respectively. In the case of  CaCl2, an increase in aggregation rates 
occurred from 0.035 to 0.865 nm·s−1 with an increase in ionic strength from 0.0001 to 0.004 M, respectively. Our find-
ings demonstrated the colloidal stability of QDs and cations-NOM-QD nanoparticle complexes under a broad spectrum 
of conditions encountered in the natural and engineered environment, indicating and the potential risks from these 
nanoparticles in terms of human and ecosystem health.

Keywords Quantum dots · Nanoparticles · Sodium ions · Calcium ions · Natural organic matter · Stability · Aggregation · 
Interfacial complexation

1 Introduction

Among the various types of nanoparticles, quantum 
dots (QDs), which are semiconductor nanoscale crystals, 
encompass a wide range of areas of application owing to 
their optical and electronic properties [1]. Their capacity 
of fluorescence in different spectral regions, with a supe-
rior excitation enhancement, high quantum yield, and 
elevated photobleaching threshold, makes them suitable 
for potential applications in biomedical imaging [2, 3], 
biomarkers and biosensors [4–7], site-specific gene medi-
cal treatment and site-specific drug delivery or targeting 
[8, 9], diagnosis and therapy [10, 11], nanophotocatalysis 
[12–15], and luminescence based-probes [16, 17]. In addi-
tion, QDs are used in various applications in electronics 
industries such as solar cells [18–21], visual and display 
technologies such as light emitting diodes [22–24], and 
information technologies such as quantum information 
processing (QIP) for storing, processing and communicat-
ing data [25].

The large amount of production and diversity of appli-
cations of nanoparticles greatly augments the probability 
of their discharge into the natural and engineered envi-
ronmental systems. The concurrent risk to environmental 
health and public safety from such releases has generated 
much concern worldwide about their fate and transport 
in the environment after release and potential toxicity fol-
lowing exposure [26–32].

At present, a consistent body of studies on the fate, 
behavior, and effects of nanoparticles in the environment 
indicates a clear correlation between the mobility and 
retention of nanoparticles in various media, including 
soil and water, and their physical and chemical proper-
ties and the physical, chemical, and biological factors and 
processes in the environment. The physical and chemical 
properties of nanoparticles and the physical, chemical, and 
biological conditions and processes in the environment 
that affect the nanoparticles’ transport behavior and fate 
encompass adsorption, aggregation/stabilization, disso-
lution, and transformation [33]. The mobility of nanopar-
ticles in soil and water is governed by their aggregation, 
deposition kinetics, and straining. Although nanoparticles 

may aggregate to form larger colloidal size particles [34], 
these nanoaggregates have fractal structures [35] and 
impact the surface interaction processes; consequently 
the nanoparticles size and geometry are of environmen-
tal significance [36]. Concerning the QD nanomaterials, 
the presence of a shell, surface modification, and resist-
ance to aggregation significantly enhances their mobility 
in sand columns [37–39] and in other media [26, 40, 41]. 
Environmental factors influencing the fate and transport 
characteristics of nanoparticles, including QDs, include: 
water chemistry (e.g., pH, electrolyte type, ionic strength, 
organic matter, and surfactant) [39, 42–48]; natural and 
engineered porous media materials (e.g., sand and soil) 
[47, 49]; degree of saturation (e.g., unsaturated and satu-
rated) [45, 50, 51]; hydraulic properties of porous media 
materials (e.g., flow velocity and hydraulic conductivity); 
fluid flow in porous media materials (e.g., saturated flow, 
unsaturated flow, and preferential flow phenomena such 
as unstable fingered flow) [42, 50, 52, 53]; and porous 
media geometrical characteristics (e.g., grain size distri-
bution and grain shape irregularity) [45].

Like transport, the bioavailability and toxicity of nano-
particles are influenced by their physico-chemical charac-
teristics, particularly the size and surface properties that 
determine the nanoparticle aggregation state and stability 
behavior. Stability (i.e., the resistance to aggregation) has 
also been evaluated and is believed to play a pivotal role in 
determining toxicity [26, 54, 55]. Research on the toxicity 
of QD nanoparticles on the ecosystem has involved inves-
tigations of microorganisms, fungi, aquatic and terrestrial 
plants (e.g., algae, Arabidopsis thaliana), invertebrates (e.g., 
mussels), and vertebrates (e.g., crustaceans, fish, mice, 
and primates) [29, 56–60] at the cellular, subcellular, and 
molecular scales [61]. Moreover, with an accumulation of 
evidence, the adverse effect of QD nanoparticles on the 
ecosystem is now beyond dispute. For instance, growth 
inhibition in bacteria [62] and protozoa [63]; physical 
changes in cellular structure decreasing catalase activi-
ties of algae [28, 64]; DNA damage-causing immunotoxin 
effects mediated in mussel cells [65, 66]; damage to the 
hematopoietic organ and hematocytes of invertebrate 
(e.g., Daphnia magna) organisms [67–70]; reduced the 
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phagocytic activity of phagocytes of fish [71]; and aberra-
tions including malformations of the placenta and fetus in 
mice [72, 73] have all been observed following exposure 
to QD nanoparticles.

The potential exposure routes for human to QDs are 
contaminated environmental media, workplace, and ther-
apeutic or diagnostic administration for medicinal pur-
poses [56]. The adverse effect of QDs on human cells (e.g., 
lung, kidney, liver, skin, breast, intestine, vein, and pros-
tate) [72, 74–79] is also now well recognized. Cytotoxicity 
in human cells has been observed following exposure to 
QDs in many in vitro studies. For instance, mercapto-unde-
canoic acid (MUA) modified CdSe QDs caused bronchial 
epithelial cell apoptosis, change in gene level response, 
and generation of reactive oxygen species [77].

Considering the significant influence of stability on the 
QD nanoparticles’ fate and transport [49, 80, 81], bioavail-
ability [82–84], and toxicity [26, 61, 85–87], it is of immense 
importance to understand their stability and aggregation 
behavior in the natural and engineered environmental sys-
tems, and thus to evaluate the interaction mechanisms 
and to model and forecast the fate, transport, transforma-
tion, and toxicity of nanoparticles in these environmental 
systems [26, 88].

Several studies have revealed that nanoparticles exhibit 
different properties upon aggregation [89, 90]. Aggrega-
tion kinetics are controlled by particle properties—size 
[91–94], shape [91, 93], chemical composition, surface 
charge, and surface modification [39, 92, 93, 95]. Aggrega-
tion kinetics are also influenced by environmental chemis-
tries such as pH levels [42, 96–100], ionic strength [96–98, 
101–104] and electrolyte types [97, 105–107], and natural 
organic matter (NOM) [36, 106, 108–112].

The role of pH in the stability behavior and aggrega-
tion kinetics of nanoparticles is well known in terms of 
modifying the surface charge of nanoparticles and dis-
rupting the electrostatic energy barriers [26, 42, 96, 97]. 
The variation of surface charge of the nanoparticles at dif-
ferent pH levels is caused by the change in the protona-
tion-deprotonation equilibria of the functional groups of 
capping agent located at the surface of the nanoparticles. 
Rapid aggregation of nanoparticles occurs at the point 
zero charge  (pHPZC) because of the decrease of repulsive 
electrostatic interactions between the surfaces of nano-
particles, whereas stabilization of nanoparticles occurs at 
both higher and lower pH conditions due to the increasing 
repulsive electrostatic interactions between the surfaces 
of nanoparticles [26, 40, 97, 113, 114].

Among the factors that may affect nanoparticles’ sta-
bility, the effects of ionic strength and electrolyte types 
have been the subject of substantive studies. Electrolytes 
in the environment can cause the compression of electric 
double layers (EDLs) of nanoparticles, resulting in their 

destabilization as a result of the decrease of the electro-
static repulsion energy barrier [50, 85, 96, 97, 103, 115]. 
Compared to the monovalent electrolytes (e.g., NaCl and 
KCl), divalent electrolytes (e.g.,  CaCl2 and  MgCl2) have 
a more pronounced effect on the destabilization of the 
nanoparticles in suspension by cause of the high efficiency 
in screening the EDLs and the bridging effect through the 
complexation of divalent cations [105, 111, 115–117].

NOM existing in the natural and engineered environ-
mental systems can alter the chemical processes and affect 
the aggregation of nanoparticles through various mecha-
nisms depending upon the properties of nanoparticle and 
the environmental chemistry [100, 105, 106, 118, 119]. The 
various mechanisms involved in the interactions between 
nanoparticles and NOM include hydrophobic interactions, 
electrostatic interactions, steric interactions, hydrogen 
bonding, and bridging. In monovalent electrolyte and low 
concentrations of divalent electrolyte solutions at higher 
pH well above the  pKa values of NOM, the presence of 
NOM has been found to enhance the stability of nano-
particles. The enhanced stability is caused by the elec-
trostatic repulsions from the strongly negative surface of 
nanoparticles due to either the completely deprotonated 
functional groups or steric repulsion. In a higher concen-
tration divalent electrolyte suspension, NOM is thought 
to enhance the aggregation of nanoparticles due to the 
bridging interactions [111, 115].

The potential for synergistic interaction between elec-
trolytes and NOM is thus important for understanding 
the mechanisms of QD nanoparticle aggregation for the 
purpose of predicting their environmental fate, transport, 
and toxicity. However, the interaction among QD nanopar-
ticles and electrolytes and NOM that results in a variation 
of colloidal stability and aggregation kinetics is complex. 
Indeed, only a few studies have sought to explore the rea-
sons that tie aggregation heterogeneity to the complex 
interactions of electrostatic and steric forces among par-
ticles, electrolytes, and NOM in natural surface and sub-
surface environments [120]. Therefore, it is critical to study 
the interactions between nanoparticles, the interactions 
between nanoparticles and electrolytes, the interactions 
between nanoparticles and electrolyte-NOM systems and 
their resulting structures for purposes of elucidating their 
effect on the aggregation and stability of QD nanoparticles 
in aqueous systems.

The objective of this study is to systematically investi-
gate the effects of ionic strength, monovalent and divalent 
electrolytes, and NOM upon the aggregation behavior and 
the mechanisms that control the stability of QD nanopar-
ticles in aqueous systems. To this end, we investigated 
the dynamic stability of QD nanoparticles as a function 
of monovalent (NaCl) and divalent  (CaCl2) cations con-
centration in both the absence and presence of NOM. The 
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aggregation kinetics of QD nanoparticles were studied 
using time-resolved dynamic light scattering (DLS) and 
electrophoretic light scattering (ELS) for the various nan-
oparticle-aqueous systems. Linking experimental meas-
urements and theoretical calculations, the critical coag-
ulation concentration (CCC) values for the aggregation 
and the DLVO energy profiles between QD nanoparticles 
were defined. The results obtained through this systematic 
study of QD nanoparticles in aqueous systems contribute 
to advance the understanding of the water chemistry fac-
tors and mechanisms that influence the stability of QD 
nanoparticle. Such an understanding is critical to assess 
the environmental and toxicological risks to QD nanopar-
ticles exposure.

The novelty of this research consists of the analysis of 
the mechanisms governing the interfacial interactions 
between the surface of QDs in the presence of NOM and 
different electrolytes (monovalent electrolyte NaCl and 
divalent electrolyte  CaCl2), the description and measure-
ment of the dynamic growth of these nanoaggregate-QD-
complexes, and the evaluation of their colloidal stability in 
aqueous environment.

2  Materials and methods

2.1  CdSe/ZnS quantum dots synthesis

The synthesis of water-dispersible CdSe/ZnS QDs that 
include a core of cadmium selenium (CdSe) and a protect-
ing shell of zinc sulfide (ZnS) was achieved following fab-
rication processes reported in the research literature [50, 
121–123]. The QD ligand shell is made of tetradecylphos-
phonic acid (TDPA) and is covered by 40% octylamine-
adjusted poly(acrylic acid) (OA-PAA) [124, 125]. The syn-
thesized CdSe/ZnS core–shell nanoscale crystals consist of 
the following elements and dimensions: the core of CdSe/
ZnS QD has a diameter of 2.3 nm and is encapsulated by 
a shell with a layer thickness of 1.5 nm, yielding CdSe/ZnS 
QDs that have a particle size of 5.3 nm in diameter. These 
synthesized QDs have a quantum yield that is evaluated 
at 30% [122]. These QDs formed have an emission wave-
length that is measured at 630 nm. Transmission Electron 
Microscopy (TEM) characterization of the CdSe core of QDs 
are displayed in micrographs (Fig. 1). Knowledge of the 
properties of nanoscale crystal structured materials, such 
as QDs, at the atomic level can be accomplished by utiliz-
ing atomic number contrast scanning transmission elec-
tron microscopy (Z-STEM) [126, 127]. The Z-STEM imaging 
of the structural details of CdSe/ZnS core/shell nanoscale 
crystals are presented in the research of McBride et al. 

Fig. 1  TEM micrographs of a characteristic sample of core CdSe 
quantum dots. QDs utilized in the experiments were of a smaller 
average size ( ∼ 2.3  nm). TEM micrographs of core CdSe QDs were 
acquired employing the TEM JEOL JEM-3010. The JEOL JEM-3010 

is a 300 kV transmission electron microscope instrumented with a 
LaB6 electron  source and equipped with an ultra-high resolution 
pole piece (Cs = 0.6  mm). The JEOL JEM-3010 has a resolution of 
0.14 nm lattice and 0.17 nm point-to-point
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(2006). The synthesized water-soluble QDs in this study 
had an original concentration of 1.38 ×  10–5 M and a z-aver-
age hydrodynamic diameter (z-avg. HD) of 46.8 nm. Addi-
tional dilution of the original concentration of the QDs 
suspension was performed to achieve a concentration 
of 5 ×  10–7 M utilizing ultrapure deionized water  (diH2O) 
with a resistivity of 18.2 MΩ·cm, obtained using a labo-
ratory water purification system (Millipore Corporation, 
Billerica, MA) to prepare the stock suspension of QDs. This 
QDs stock suspension was then stored in the dark at 4 °C.

2.2  Suwannee River natural organic matter

Suwannee River natural organic matter (SRNOM, RO Isola-
tion 2R101N) was acquired from the International Humic 
Substances Society (IHSS), St. Paul, MN and used as a 
model to mimic NOM in aqueous systems. The stock solu-
tion for SRNOM was made by mixing 50 mg of SRNOM 
into 250 mL of ultrapure  diH2O. The SRNOM solution was 
then stirred for 24 h in darkness and subject to filtration 
using a 0.2 μm Polyethersulfone (PES) membrane filter 
under vacuum (VWR, Randor, PA), after which the solution 
was stored in the dark at 4 °C. The initial pH of the SRNOM 
stock solution was 3.45 ± 0.01. The total organic carbon 
(TOC) content of the SRNOM stock solution quantified by 
a TOC analyzer (TOC-V CSH, Shimadzu, Kyoto, Japan) was 
82.68 ± 2.20 mg/L.

2.3  Electrolyte‑Suwannee River natural organic 
matter‑Quantum dots‑based suspensions 
preparation

Sodium chloride (BDH®, ACS Grade) and calcium chloride 
dihydrate (Fisher Chemical®, ACS Grade) were used for the 
ionic strength and electrolyte type dependent QD aggre-
gation experiments. Different concentrations of back-
ground electrolyte solutions were prepared by dissolving 
electrolytes in ultrapure  diH2O and then stirred for 1 h. All 
the electrolyte-QD suspensions were prepared by mix-
ing 1.8 mL background electrolyte solutions and 0.2 mL 
QDs stock suspension in a BI-SCP plastic sample cuvette 
(10 W × 10L × 52H mm, 3.5 mL), resulting in a QD concen-
tration of 5 ×  10–8 M. Before incorporation, both the QD 
stock suspension and background solution were subjected 
to filtration utilizing a syringe filter unit (Millex®, Millipore-
Sigma, Burlington, MA) with a 100 nm pore size membrane 
to eliminate contaminations. The total ionic strengths of 
the QD suspensions were 0.001–3.5 M for sodium chloride 
and 0.0003–0.3 M for calcium chloride as calculated using 
Eq. (1) [128, 129]:

where I is the ionic strength of solution (M), ci is i th species 
molar concentration (M), and Zi is the charge number of 
the i  th species.

For the experiments involving electrolyte-NOM-QD-
based suspensions, a fixed amount of SRNOM stock solu-
tion was added to ionic strength-modified electrolyte 
solutions to attain SRNOM concentrations of 10 mg/L. 
All background electrolyte-NOM solutions were titrated 
with 0.1 M sodium hydroxide (Sigma-Aldrich, Reagent 
Grade) or 0.1 M hydrochloric acid (BDH®, ACS Grade) to 
pH of 7.00 ± 0.01. The measurements of the pH values of 
the solutions were performed using an Orion 720A pH/Ion 
Meter (Thermo Fisher Scientific, Waltham, MA). A total of 
42 solutions were created for experimentation including 
 diH2O, two types of electrolytes — monovalent electro-
lyte NaCl at concentrations ranging from 0.001 to 3.5 M, 
and divalent electrolyte  CaCl2 at concentrations ranging 
from 0.0001 to 0.1 M—in both the absence and presence 
of SRNOM at 10 mg/L at pH 7 (Table 1).

2.4  Particle size and zeta potential measurements

The z-avg. HD of the QD nanoaggregates suspended in 
a wide range of ionic strengths and electrolytes in both 
the absence and presence of SRNOM were quantified by 
the time-resolved dynamic light scattering (DLS) method 
using a NanoBrook 90Plus Zeta Particle Size Analyzer 
(Brookhaven Instruments Corporation, Holtsville, NY). 
Immediately after mixing, the electrolyte-NOM-QD sus-
pensions were agitated manually for 10 s to achieve a 
well-mixed and homogeneous suspension for z-avg. HD 
measurements at a 90° scattering angle. The z-avg. HD 
measurements data were obtained at 10 s intervals for 
approximately ~ 11 min to obtain the aggregation kinet-
ics of QDs. The z-avg. HD were reported as average values 
and included standard deviations. All measurements were 
conducted at 25 °C.

The NanoBrook 90Plus Zeta Particle Size Analyzer was 
also utilized to measure the zeta potential (ξ potential) of 
QDs under various ionic strengths and electrolytes in both 
the absence and presence of SRNOM. Regarding particle 
size analysis, immediately after mixing, the electrolyte-
NOM-QD suspensions placed in a BI-SCP plastic cell were 
agitated manually for 10 s, and the ξ potential was meas-
ured using electrophoretic light scattering (ELS). Three 
ELS measurements (10 cycles per measurement) were 
made for each sample within ~ 11 min. ξ potentials were 
reported as average values and included standard devia-
tions. The temperature was maintained at 25 °C during all 

(1)I =
1

2

n
∑

i=1

ciZ
2

i
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the measurements. The pH value at the  pHPZC for the QDs 
was measured between pH 1.5 and 3.5 [130].

2.5  Aggregation kinetics

The quantitative analysis of the aggregation kinetics 
of QDs was determined by the aggregation rate con-
stant(k11) , that was correlated to the rate of increase of 
the z-avg. HDs (ddz−h(t)) of the aggregates with time t  
measured by DLS, and k11 , which is expressed as follows 
[105, 131–133]:

where, No is the initial particle concentration.
The aggregation rate was computed using a linear least-

squares (LLS) regression analysis of the measured z-avg. 
HD data during a ~ 11 min aggregation stage [111]. The 
aggregation kinetics of the colloidal systems were char-
acterized by the aggregation attachment efficiencies (�) 
as a function of the experimental electrolyte types and 
concentrations, and in both the absence and presence of 
SRNOM. The attachment efficiency was then computed by 
normalizing the aggregation rate constant (k11) acquired 
under reaction-limited aggregation (RLA) regimes to the 
aggregation rate constant ((k11)fast) taken under the dif-
fusion limited aggregation (DLA) regimes and � , which is 
expressed as follows [105, 131, 132]:

The RLA and DLA regimes take place at ion concen-
trations below and above the CCC, respectively. Two 
lines of attachment efficiencies dependent upon the 
ion concentrations under RLA and DLA regimes were 

(2)
1

N0

(

ddz−h(t)

dt

)

∝ k11

(3)� =

1

W
=

k11

(k11)fast

=

1

N0

(

ddz−h(t)

dt

)

t→0

1

(N0)fast

(

ddz−h(t)

dt

)

t→0,fast

then extrapolated by linear functions with their inter-
sections generating the corresponding CCC values [105, 
111, 131, 134]. To compute the attachment efficiency 
with SRNOM, k11 obtained in the presence of SRNOM 
was normalized to (k11)fast acquired in the absence of 
SRNOM [105, 135].

2.6  Potential energy of interaction 
between the particles

Classical DLVO theory can be utilized to forecast the sta-
bility of (nano)particles in aqueous solutions by studying 
the interaction energy between particles. As stated in this 
theory, the two main forces between particles are the van 
der Waals attraction and the EDL repulsion [136, 137]. The 
sum of these two forces is then used to determine either 
a repulsive or attractive net interaction between the par-
ticles [106, 138]. The EDL repulsion (∅EDL) energy can be 
calculated and expressed as follows:

In the case of 𝜅r > 5 , the Hogg-Healy-Fuerstenau (HHF) 
formula is used [139]:

In the case of 𝜅r < 5 , the linear superposition approxi-
mation (LSA) expression is used [140]:

The van der Waals attraction ( ∅vdW ) energy can be cal-
culated using the following expression [141]:

The sum of these two energies, known as the total 
potential energy, is used to determine if the net interaction 

(4)∅EDL =

4��r2�2

2r
ln[1 + exp(−�H)]

(5)∅EDL = 4��r2Y2

(

kBT

e

)2
exp(−�H)

H + 2r

(6)

∅vdW = −

A

6

[

2r2

H2
+ 4rH

+

2r2

H2
+ 4rH + 4r2

+ ln

(

H2
+ 4rH

H2
+ 4rH + 4r2

)]

Table 1  The 42 solutions created for experimentation on the stabil-
ity and aggregation of nanocrystal CdSe/ZnS QDs in aqueous sys-
tems as a function of both electrolyte type and concentration and 
the absence and presence of SRNOM at 10  mg/L. These solutions 

include diH2O, two types of electrolytes — monovalent cation  Na+ 
at concentrations ranging from 0.001 to 3.5 M, and divalent cation 
 Ca2+ at concentrations ranging from 0.0001 to 0.25  M at pH 7 — 
and in both the absence and presence of SRNOM at 10 mg/L

System pH SRNOM Concentration (mg/L) Electrolyte Concentration (M)

DI Water 7 0 0
7 10 0

NaCl 7 0 0.001, 0.01, 0.1, 0.5, 0.75, 0.875, 1, 1.5, 2, 2.5, 3, 3.5
7 10 0.01, 0.1, 2, 2.5, 3, 3.5

CaCl2 7 0 0.0001, 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 
0.015, 0.02, 0.03, 0.05, 0.075, 0.1

7 10 0.001, 0.002, 0.0025, 0.003, 0.005, 0.01, 0.05, 0.1, 
0.25
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between two particles is either repulsive or attractive. It is 
expressed as follows:

where r  is the radius of particles (m), �  is the zeta 
potential (V), � is the permittivity of water, which is 
6.95 × 10−10(C

2
J−1m−1

)[98], H is the separation distance 
between two particles (m), and A is the Hamaker con-
stant of particles in water [142]. A value of 6.216 × 10−20J 
was used for A [143, 144]. Further, e is the charge of 
an electron 

(

1.60 × 10−19C
)

 , kB is the Boltzmann con-
stant 

(

1.38 × 10−23JK−1
)

 , T  is the absolute temperature, 
and kBT  is thermal energy (at room temperature 25◦C , 
1kBT = 4.11 × 10−21J).

Furthermore, � is the inverse of the Debye length (m−1
) 

[145, 146] and is expressed as:

where, NA is the Avogadro number 
(

6.02 × 1023mol
−1
)

 , Zi is 
the valency of the ith ion, and c∞

i
 is the bulk concentration 

of ion species i  , expressed in molL
−1 . At 25 °C, � is calcu-

lated as a function of the electrolyte concentration C with 
units of M [147–150], and is expressed as follows:

For 1:1 electrolyte,

For 2:1 electrolyte,

Finally, Y  is the scaled effective surface potential (or the 
asymptotic constant) [140] and is expressed as follows:

3  Results

3.1  Characterization of quantum dot nanoparticles 
at pH 7 in  diH2O

The z-avg. HD of QDs dispersed in  diH2O at the neutral 
pH of 7 was measured by DLS prior to investigating the 
effect of the electrolyte type and concentration, in both 
the absence and presence of SRNOM on their aggrega-
tion kinetics. The QDs were well dispersed, with a z-avg. 

(7)∅total = ∅vdW + ∅EDL

(8)� =

�

NAe
2
×

∑

i
c∞
i
Z2

i

� × kB × T

(9)�(nm−1
) =

√

C

0.3045

(10)�(nm−1
) =

√

C

0.176

(11)Y =

8tanh

(

e�

4kBT

)

1 +

[

1 −
2�r+1

(�r+1)
2 tanh

2
(

e�

4kBT

)]1∕2

HD of approximately 57.5 nm. The aggregates’ size distri-
bution indicated that 9%, 48%, 36%, and 7% of the QD 
aggregates were in the ranges of 21–40, 41–60, 61–80, and 
81–100 nm, respectively (Figure S1).

The surface charge measurements indicated that the 
QDs with a ZnS shell and OA-PAA surface modification 
used in this study were negatively charged in a  diH2O sus-
pension at a pH of 7. The average ξ potential of QDs in this 
condition was approximately − 3.99 mV (Table 2).

3.2  Effect of monovalent and divalent electrolytes 
on quantum dot nanoparticles

NaCl as a monovalent electrolyte and  CaCl2 as a divalent 
electrolyte were added to QD samples, both with suspen-
sions at pH 7.0 to determine their effect on QD stability 
and aggregation. No significant change in QDs aggregate 
size was observed in NaCl concentrations from 0.001 to 
0.875 M (except for 0.1 M). However, the effects of the 
monovalent electrolyte on the QD nanoparticle aggrega-
tion significantly increased when the NaCl concentration 
was higher than 1 M (Fig. 2a). Larger sizes of QD aggregates 
were observed at each level of ionic strength in suspen-
sions of 1–3.5 M, with the z-avg. HDs of QDs increasing from 
57.5 nm  (diH2O, pH 7) to approximately 102.3 nm (3.5 M), 
respectively (Table 2). Monodispersed and narrow size dis-
tribution of QDs were in suspensions with NaCl concentra-
tions varying between 0.001 and 3.5 M (Fig. 3a, b).

In the presence of divalent electrolyte  CaCl2, the aggre-
gation of QD nanoparticles was detected at a low concen-
tration of  CaCl2 (0.0001 M) with a z-avg. HD of 74.2 nm that 
significantly increased when the  CaCl2 was higher than 
0.002 M. Larger sizes of QD aggregates were observed 
at each level of  CaCl2 concentration in suspensions of 
0.002–0.1 M, as the z-avg. HDs of QDs increased from 
125.1 nm to 560.4 nm, respectively (Fig. 2b). Monodis-
persed and narrow size distribution of QDs were observed 
in suspensions with  CaCl2 concentrations varying between 
0.0001 and 0.002 M (Fig. 4a, b). Both poly-dispersed and 
larger size distribution of QDs were present in suspen-
sions with  CaCl2 concentrations varying between 0.002 
and 0.1 M (Fig. 4a, b).

The measured ξ potentials of QDs at different ionic 
strength solutions for monovalent and divalent electrolytes 
are shown in Table 2, and in Figs. 5a and c. These data indi-
cated both an increase of the ξ potential (i.e., becoming less 
negative and sometimes slightly positive) and a decrease 
in magnitude of the ξ potential of QDs, with increasing 
ionic strength of both monovalent and divalent electro-
lyte concentrations. Significant differences were observed 
for the concentrations of monovalent and divalent elec-
trolytes at which a reduction in the magnitude of the ξ 
potential was observed. The values of the ξ potential of QDs 



Vol:.(1234567890)

Research Article SN Applied Sciences           (2022) 4:101  | https://doi.org/10.1007/s42452-022-04948-7

were approximately − 15.03 mV at a NaCl concentration of 
0.001 M, which increased rapidly to approximately − 1.89 mV 
once the ionic strength increased beyond 0.875 M.

The effect of the divalent electrolyte  CaCl2 on the ξ 
potential of QD nanoparticles was similar to that of the 
monovalent electrolyte. The values of the ξ potential of 
QDs were approximately − 10.77 mV at a  CaCl2 concentra-
tion of 0.0001 M and increased rapidly to values near 0 mV 
and − 7 mV once the  CaCl2 concentration increased beyond 
0.03 M. However, compared to the monovalent electrolyte 
concentrations, at lower concentrations the presence of 
divalent electrolyte in suspensions enhanced both the 
increase of the ξ potential of the QD nanoparticles (i.e., 
becoming less negative) and also the decrease in the mag-
nitude of the ξ potential of those particles. In addition, as 

the NaCl concentration increases in the NaCl-QDs system, 
the ξ potential of QDs decreased, as illustrated by the trend 
(linear) regression analysis (Fig. 5a), although large stand-
ard deviations are observed for ξ potential values for high 
concentrations of NaCl at about and above 1 M. Similarly, 
as the  CaCl2 concentration increases in the  CaCl2-QDs sys-
tem, the ξ potential of QDs decreased, as illustrated by the 
trend (linear) regression analysis (Fig. 5c), although large 
standard deviations are reported for ξ potential values for 
high concentrations of  CaCl2 at about and above 0.1 M. The 
Pearson’s correlation coefficients for the ξ potential values 
of QDs and the ionic strength values of NaCl-QDs system 
and the ξ potential values of QDs and the ionic strength 
values of  CaCl2-QD system are 0.21 and 0.63, respectively.

Table 2  Measurements of zeta potentials (ξ potentials) and 
z-average hydrodynamic diameters (z-avg. HDs), and calculation 
of Debye length, aggregation rates, and attachment efficiency of 
QDs suspended in aqueous solutions including diH2O, two types 

of electrolytes — monovalent electrolyte NaCl at concentrations 
ranging from 0.001 to 3.5 M, and divalent electrolyte  CaCl2 at con-
centrations ranging from 0.0001 to 0.1 M at pH 7 in the absence of 
SRNOM

System Electrolyte Con-
centration (M)

Ionic 
Strength (M)

Inverse of the 
Debye length κ 
 (nm−1)

QD Diameter d 
(nm)

Zeta Potential ζ 
(mV)

Aggregation 
Rate (nm/s)

Attach-
ment 
Efficiency 
(α)

Rate R2

NaCl 0 0 0.000 57.5 ± 13.7 − 3.99 ± 6.19 NA NA 0.00
0.001 0.001 0.104 62.3 ± 12.7 − 15.03 ± 8.99 NA NA 0.00
0.01 0.01 0.329 58.0 ± 17.8 − 14.73 ± 6.29 NA NA 0.00
0.1 0.1 1.040 122.5 ± 68.9 − 7.19 ± 17.70 NA NA 0.00
0.5 0.5 2.326 50.1 ± 6.9 − 4.27 ± 13.04 0.007 0.037 0.13
0.75 0.75 2.849 60.9 ± 6.1 11.19 ± 46.87 NA NA 0.00
0.875 0.875 3.077 61.7 ± 3.8 − 1.89 ± 48.33 0.001 0.005 0.03
1 1 3.289 75.1 ± 7.2 − 1.88 ± 24.43 NA NA 0.00
1.5 1.5 4.029 80.1 ± 5.6 − 4.48 ± 77.66 0.002 0.005 0.04
2 2 4.652 100.2 ± 13.0 6.93 ± 57.86 NA NA 0.00
2.5 2.5 5.201 81.8 ± 10.9 − 1.54 ± 33.49 0.053 0.891 1.00
3 3 5.698 99.9 ± 12.0 − 16.31 ± 70.46 0.016 0.066 0.30
3.5 3.5 6.154 102.3 ± 9.1 1.42 ± 53.85 0.042 0.740 0.78

CaCl2 0.0001 0.0003 0.057 74.2 ± 28.3 − 10.77 ± 3.23 0.035 0.066 0.04
0.001 0.003 0.180 52.5 ± 5.8 − 4.52 ± 4.67 0.023 0.592 0.03
0.002 0.006 0.255 125.1 ± 36.8 − 13.19 ± 4.88 0.181 0.978 0.21
0.003 0.009 0.312 330.8 ± 119.1 − 12.78 ± 4.68 0.610 0.915 0.70
0.004 0.012 0.360 552.8 ± 185.8 − 13.25 ± 3.63 0.865 0.826 1.00
0.005 0.015 0.403 552.4 ± 141.3 − 11.20 ± 5.56 0.646 0.796 0.75
0.01 0.03 0.569 608.8 ± 170.0 − 11.76 ± 2.18 0.767 0.746 0.89
0.015 0.045 0.697 637.1 ± 157.4 − 9.92 ± 2.91 0.718 0.798 0.83
0.02 0.06 0.805 651.0 ± 158.7 − 8.62 ± 4.18 0.727 0.835 0.84
0.03 0.09 0.986 631.7 ± 171.3 − 7.72 ± 8.71 0.806 0.855 0.93
0.05 0.15 1.273 685.0 ± 175.4 0.31 ± 17.28 0.750 0.812 0.87
0.075 0.225 1.559 678.2 ± 183.3 − 0.47 ± 23.87 0.802 0.729 0.93
0.1 0.3 1.801 560.4 ± 77.8 − 7.34 ± 13.59 0.310 0.625 0.36
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3.3  Effect of Suwannee River natural organic matter 
on quantum dot nanoparticles in monovalent 
and divalent electrolyte solutions

The stability of QDs was also investigated as a func-
tion of both the monovalent and divalent electrolyte 

concentrations in the presence SRNOM at 10 mg/L. Here, 
an increase in the monovalent electrolyte NaCl concen-
tration from 0.01 to 3.5 M increased the z-avg. HD of QD 
aggregates from 61.4 nm to 107.2 nm. The presence of 
SRNOM resulted in a small increase in the size of the QD 
aggregates for each of NaCl concentrations tested (i.e., 
0.01 to 3.5 M, except 0.1 M), and induced a monodis-
persed and narrower size distribution of QDs suspended 
in the monovalent electrolyte NaCl concentrations 
(Fig. 3c, d).

Also in the presence of SRNOM, the effect of the diva-
lent electrolyte  CaCl2 on the z-avg. HDs of QDs in sus-
pensions was concentration-dependent (Fig.  2b), and 
an increase in the divalent electrolyte  CaCl2 concentra-
tion from 0.001 to 0.25 M increased the z-avg. HD of QD 
aggregates from 51.9 nm to 692.9 nm. The presence of 
SRNOM in QDs suspended in divalent electrolyte  CaCl2 
solutions enhanced the aggregation of QDs, resulting in 
the increase of z-avg. HDs of QDs by approximately 19.3%, 
42.1%, 13.8%, 1.5%, and 24.8%, at  CaCl2 concentrations of 
0.002, 0.003, 0.005, 0.01, and 0.1 M (Table 3), respectively. 
A monodispersed and narrow size distribution of QDs 
was observed in suspensions in the presence of 10 mg/L 
SRNOM with  CaCl2 concentrations varying between 0.001 
and 0.002 M (Fig. 4c, d). However, a poly-dispersed and 
larger size distribution of QDs was observed in suspen-
sions with  CaCl2 concentrations, varying between 0.0025 
and 0.25 M (Fig. 4c, d).

The influence of electrolyte type and concentration 
on the surface charge properties of QDs in the pres-
ence of 10  mg/L SRNOM was characterized as shown 
in Figs. 5b and d. The presence of SRNOM did not show 
a measurable difference in ξ potentials of QDs at each 
electrolyte concentration (both for monovalent electro-
lyte NaCl and divalent electrolyte  CaCl2) compared to the 
absence of SRNOM due to the overlap of the standard 
deviations. However, as the NaCl concentration increases 
in the NaCl-SRNOM-QDs system, the ξ potential of QDs 
decreased, as illustrated by the trend (linear) regression 
analysis (Fig. 5b), although large standard deviations are 
observed for ξ potential values for high concentrations of 
NaCl at about and above 1 M. Similarly, as the  CaCl2 con-
centration increases in the  CaCl2-SRNOM-QDs system, the 
ξ potential of QDs decreased, as illustrated by the trend 
(linear) regression analysis (Fig. 5d), although large stand-
ard deviations are reported for ξ potential values for high 
concentrations of  CaCl2 at about and above 0.1 M. The 
Pearson’s correlation coefficients for the ξ potential values 
of QDs and the ionic strength values of NaCl-SRNOM-QDs 
system and the ξ potential values of QDs and the ionic 
strength values of  CaCl2-SRNOM-QD system are 0.45 and 
0.61, respectively.

Fig. 2  DLS measurements of the z-average hydrodynamic diameter 
(z-avg. HD) of QDs suspended in aqueous chloride salt solutions as 
a function of the types and concentrations of electrolytes and the 
absence and presence of SRNOM at 10  mg/L: a Monovalent elec-
trolyte NaCl in both the absence and presence of the SRNOM at 
10 mg/L, b Divalent electrolyte  CaCl2 in both the absence and pres-
ence of the SRNOM at 10 mg/L



Vol:.(1234567890)

Research Article SN Applied Sciences           (2022) 4:101  | https://doi.org/10.1007/s42452-022-04948-7

3.4  Effect of monovalent and divalent electrolytes 
on aggregation kinetics of quantum dot 
nanoparticles

To study the effects of electrolytes type and ionic strength 
on the aggregation kinetics of QDs, the z-avg. HDs of QD 
nanoparticles were measured at different electrolyte con-
centrations over a period of ~ 11 min (Figs. 6 and 7). The 
type and concentration of the electrolytes significantly 
affected both the aggregation kinetics and the z-avg. 
HDs. An increase in the electrolyte concentration resulted 
in a significant increase in the aggregation rates in most 
of the systems analyzed (Fig. 8). The  CaCl2 systems pro-
duced a higher set of aggregation rates than NaCl within 
the ranges of electrolyte concentrations analyzed. The 
aggregation rates of the NaCl increased from 0.007 to 
0.042 nm·s−1 with an increase in ionic strength from 0.5 
to 3.5 M, respectively. The size of the QD aggregates in 
NaCl was observed as nearly constant with time at low 
electrolyte concentrations (0.001 to 0.875 M), with a slight 
increase observed at higher electrolyte concentrations 
(2.5 to 3.5 M) (Table 2 and Fig. 6). QD aggregation was 
observed in all suspensions with the addition of  CaCl2, 

as the z-avg. HD of QDs increased with time (Table 2 and 
Fig. 7). Higher aggregation rates of QD nanoparticles were 
measured in the presence of the divalent electrolyte com-
pared to the monovalent electrolyte for the same ionic 
strength. In the case of  CaCl2, an increase in aggregation 
rates occurred from 0.035 to 0.865 nm·s−1 with an increase 
in ionic strength from 0.0001 to 0.004 M, respectively. The 
aggregation process was almost constant and independ-
ent of the  CaCl2 concentration again when the  CaCl2 con-
centration was higher than 0.004 M (Fig. 8).

3.5  Effect of Suwannee River natural organic 
matter on aggregation kinetics of quantum 
dot nanoparticles in monovalent and divalent 
electrolytes solutions

To examine the effects of 10 mg/L of SRNOM on the aggre-
gation kinetics of QDs in the presence of different types 
of electrolytes and ionic strengths, the z-avg. HDs of QDs 
were measured over a period of ~ 11 min (Fig. 6 and 7). The 
presence of SRNOM had significant effects on the aggrega-
tion rates of QDs in suspensions with different concentra-
tions of NaCl and  CaCl2 (Fig. 8). The aggregation profiles 

Fig. 3  Particle size distribution of QDs in suspensions as a function of NaCl (0.001–3.5 M) and the presence of SRNOM at 10 mg/L: a NaCl-QD 
systems within 0–100 s; b NaCl-QD systems at last 100 s; c NaCl-SRNOM-QD systems within 0–100 s; d NaCl-SRNOM-QD systems at last 100 s
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of QDs as a function of time in suspensions at different 
monovalent electrolyte NaCl and divalent electrolyte  CaCl2 
concentrations in the presence of 10 mg/L SRNOM are 
shown in Figs. 6 and 7, respectively.

In the presence of SRNOM, the size of the QD aggre-
gates in suspensions under low NaCl concentration condi-
tions (i.e., 0.01 to 2 M) increased slightly with time (Fig. 6). 
Therefore, in the presence of SRNOM, the aggregation 
rates of QDs increased from 0.01 to 0.024 nm  s−1 with the 
increase of NaCl concentrations from 0.01 to 2 M, respec-
tively (Fig. 8a). The presence of 10 mg/L SRNOM enhanced 
the aggregation rates of QDs significantly compared to the 
absence of SRNOM in the monovalent electrolyte solu-
tions under low NaCl concentration conditions (i.e., 0.01 
to 2 M). Under high NaCl concentration conditions (i.e., 
2.5 to 3.5 M), the aggregation rates of QDs in suspensions 
in the presence of SRNOM increased significantly with the 
increase of the NaCl concentrations.

In the presence of SRNOM, the z-avg. HDs of QDs 
increased rapidly with time once the concentration of 
 CaCl2 in suspension was above 0.001 M, which resulted 
in a rapid aggregation of QDs (Fig. 7). The aggregation 
rates of QDs were highly correlated with the concentra-
tion of  CaCl2 in the regimes of 0.001 to 0.003 M (Fig. 8b). 

QD aggregation rates increased from 0.012 to 0.800 nm∙s−1 
as  CaCl2 concentration increased from 0.001 to 0.003 M 
(Fig. 8), respectively. The aggregation rate was then almost 
constant and independent of the  CaCl2 concentration 
when the  CaCl2 concentrations were higher than 0.003 M 
(Fig. 8b). As also observed in the absence of SRNOM, the 
 CaCl2 systems produced higher aggregation rates as the 
NaCl at the same electrolyte concentration in the pres-
ence of 10 mg/L SRNOM. As an overall trend, the pres-
ence of SRNOM in the divalent electrolyte  CaCl2 solutions 
enhanced the aggregation rates of QDs under all  CaCl2 
concentration conditions examined in this study.

4  Discussion

4.1  Stability of quantum dot nanoparticles in  diH2O 
at pH 7

The water-soluble QDs with a concentration of 5 ×  10–8 M 
diluted by  diH2O at pH 7 utilized in this study were well 
dispersed, with a z-avg. HD of 57.5  nm. Compared to 
the synthesized water-soluble QDs at concentration 
of 1.38 ×  10–5 M with a z-avg. HD of 46.8 nm, the slight 

Fig. 4  Particle size distribution of QDs in suspensions as a func-
tion of  CaCl2 (0.001–0.25  M) and the presence of SRNOM at 
10  mg/L: a  CaCl2-QD systems within 0–100  s; b  CaCl2-QD systems 

at last 100  s; c  CaCl2-SRNOM-QD systems within 0–100  s; and d 
 CaCl2-SRNOM-QD systems at last 100 s
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increase in size to 57.5 nm when diluted in  diH2O is a 
strong indicator of their stability. The size of the QDs 
diluted in  diH2O is smaller than the results in previous 
studies which are summarized in Table 4. For example, the 
diameters of TGA-CdTe QDs, SLN-CdSe QDs, and F-68/SDS/
CTAB-CdSe QDs dispersed in  diH2O were 60–100 nm [151], 

92.3 nm [152], and 159/178/266 nm [153], respectively. 
Therefore, the spontaneous aggregation and the forma-
tion of QD nanoaggregates did not occur when the QDs 
were diluted in  diH2O, which differed from other stud-
ies on metal-based nanoparticles, such as ZnO, in which 

Fig. 5  Zeta potential (ξ potential) variation of QDs suspended 
in aqueous chloride salt solutions as a function of the types and 
concentrations of electrolytes and the absence and presence of 
SRNOM at 10 mg/L: a Monovalent electrolyte NaCl, b Monovalent 

electrolyte NaCl in the presence of SRNOM at 10 mg/L, c Divalent 
electrolyte  CaCl2, and d Divalent electrolyte  CaCl2 in the presence 
of SRNOM at 10 mg/L
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nanoparticles easily formed large aggregates when diluted 
in water [154].

The stability of the CdSe QDs in water is determined by 
both the surface modification and the surface charge [93, 
153]. The measurements of the ξ potential of the nanopar-
ticles suspended in aqueous solutions are used to assess 
changes in the surface charges. When the ξ potential val-
ues are higher than ± 30 mV, the charged particles may 
provide sufficient electrostatic repulsive forces to stabilize 
the particles in suspension by forming an EDL [134, 155]. 
In this study, the QDs suspended in  diH2O with a neutral 
pH had a negative charge because of the deprotonation of 
the poly(acrylic acid) which contained carboxyl function-
alities and which was used in the QD surface coatings. This 
finding is in agreement with previous reports indicating a 
negatively charged nanocrystal CdSe/ZnS QD coated with 
MUA (i.e., QD-COOH)[156]. Regarding the negative sign of 
the charged surface, the ξ potential of QDs was lower (ca. 
− 3.99 mV) than the ξ potential that was reported previ-
ously. For example, the ξ potentials of poly(acrylic acid) 
modified CdSe/ZnS QDs in suspensions at pH 7.0 were 
− 45.8 mV [38] and − 53.9 mV [123]. Therefore, the limited 
surface charge may prove insufficient for generating an 
electrostatic repulsive barrier between the QDs to prevent 
aggregation.

To examine the interaction between particles, the 
total potential energy was calculated based on the clas-
sical DLVO theory of the stability of colloids. The results 
of the DLVO interaction net potential energy profile are 
presented in Fig. 9. The total potential energy is described 
essentially by the van der Waals attractive interaction 
between particles at distance less than 20 nm. Though the 
net total potential energy was dominated by the electro-
static repulsive interaction between particles at distances 
of more than 20 nm, the energy barrier was negligible with 
potential energies as low as 0.25 kBT  . This limited repulsive 
energy barrier was not sufficient for maintaining QD dis-
persal in water as compared with the required minimum 
repulsive energy of 15 kBT  [157]. Although the z-avg. HDs 
of QDs remained constant with time in  diH2O at pH 7.0, the 
contribution of the electrostatic interactions was minor, 
thus inferring a dominant role of the steric repulsive force 
in ensuring the stability of QDs under this condition.

4.2  Stability and aggregation kinetics of quantum 
dot nanoparticles as a function of both ionic 
strength and electrolyte type

In this study, divalent  (Ca2+) electrolyte was more effective 
in destabilizing the QDs compared to monovalent  (Na+) 
electrolyte. The decrease in magnitude of the ξ potentials 

Table 3  Measurements of zeta potentials (ξ potentials) and 
z-average hydrodynamic diameters (z-avg. HDs), and calculation 
of Debye length, aggregation rates, and attachment efficiency of 
QDs suspended in aqueous solutions including diH2O, two types 

of electrolytes — monovalent electrolyte NaCl at concentrations 
ranging from 0.01 to 3.5  M, and divalent electrolyte  CaCl2 at con-
centrations ranging from 0.001 to 0.25 M at pH 7 in the presence of 
SRNOM at 10 mg/L

System Electrolyte 
Concentration 
(M)

Ionic 
Strength 
(M)

Inverse of the 
Debye length 
κ  (nm−1)

Z-average 
Diameter d 
(nm)

Zeta Potential ζ 
(mV)

Aggregation 
Rate (nm/s)

Attachment 
Efficiency (α)

Rate R2

NaCl + 10 mg/L 
SRNOM

0 0 0.000 53.4 ± 6.4 − 29.09 ± 7.05 N/A N/A 0.00

0.01 0.01 0.329 61.4 ± 8.8 − 5.83 ± 5.47 0.010 0.040 0.18
0.1 0.1 1.040 71.1 ± 10.2 − 5.66 ± 20.36 0.017 0.093 0.31
2 2 4.652 90.3 ± 11.0 2.77 ± 51.53 0.024 0.167 0.45
2.5 2.5 5.201 86.8 ± 8.0 − 12.20 ± 66.02 0.034 0.628 0.64
3 3 5.698 89.0 ± 12.6 − 2.16 ± 81.70 0.060 0.803 1.12
3.5 3.5 6.154 107.2 ± 8.9 7.59 ± 78.23 0.019 0.184 0.36

CaCl2 + 10 mg/L 
SRNOM

0.001 0.003 0.180 51.9 ± 6.2 − 2.51 ± 6.10 0.012 0.148 0.01

0.002 0.006 0.255 149.3 ± 52.0 − 8.55 ± 8.19 0.254 0.963 0.29
0.0025 0.0075 0.285 311.8 ± 119.6 − 14.87 ± 2.97 0.636 0.957 0.74
0.003 0.009 0.312 470.1 ± 184.2 − 13.87 ± 3.11 0.800 0.786 0.92
0.005 0.015 0.403 628.8 ± 180.1 − 15.73 ± 2.05 0.829 0.877 0.96
0.01 0.03 0.569 617.7 ± 188.7 − 12.18 ± 3.61 0.864 0.782 1.00
0.05 0.15 1.273 673.1 ± 171.4 − 6.30 ± 7.74 0.759 0.795 0.88
0.1 0.3 1.801 699.2 ± 217.7 − 0.74 ± 26.54 1.043 0.835 1.21
0.25 0.75 2.847 692.9 ± 183.5 − 2.29 ± 32.44 0.842 0.758 0.97
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of QDs was more pronounced with  CaCl2 than with NaCl, 
revealing the effect of ion valence on the surface charge 
of QDs. The results of the z-avg. HDs of QDs measured in 
systems with monovalent electrolyte (NaCl) concentra-
tions varying between 0.001 and 3.5 M were between 50.1 
and 122.5 nm. These results are consistent with previous 
findings of PAA modified QDs dispersed in monovalent 
electrolyte solutions. The diameter of PAA-OA-QDs (CdSe/
ZnS) suspended in 0.003 M NaCl solution was 30.8 nm [38], 
and the PAA-QDs (CdTe/CdS) and the ODA-QDs (CdSe/ZnS) 
suspended in monovalent electrolyte KCl solutions with 
concentrations varying between 0.0001 and 0.1 M were 
72–114 nm and 76–175 nm, respectively [47]. When QDs 
were suspended in 0.0001–0.1 M divalent electrolyte  CaCl2 
solutions, the QD diameters ranged from 52.5 to 685.0 nm, 
findings which again are corroborated by previous results 
on the influence of  CaCl2 on QD diameters ranging from 
86 to 674 nm [47, 158].

As modelled by the classical DLVO theory, the QDs 
were less stable when suspended in monovalent and 
divalent electrolyte solutions compared to  diH2O, the 
results of which are corroborated by observed increases 
in the diameters of QD nanoaggregates and the enhanced 
aggregation rates. The attachment efficiency which is a 
function of particle size was also computed for different 
monovalent electrolyte NaCl and divalent electrolyte  CaCl2 
concentrations (Fig. 10). At low NaCl concentrations (0.001 
to 2 M), the increase in the electrolyte concentrations did 
not affect the aggregation rate of QDs which resulted in 
an attachment efficiency (α) equal to zero. At high NaCl 
concentrations (2.5, 3, and 3.5 M), however, each of these 
electrolyte concentrations induced a high aggregation 
rate and a high attachment efficiency. The attachment 
efficiency profile of QDs for the electrolyte NaCl with con-
centrations ranging from 0.001 to 3.5 M was atypical for 
the two regimes—RLA and DLA regimes—that are consist-
ent with the DLVO colloidal theory. The attachment effi-
ciency profile of QDs indicated the absence of distinct DLA 
regimes for the QDs dispersed in suspensions with mono-
valent electrolyte NaCl, thus compounding the difficulty of 
determining the CCC for NaCl. The lack of CCC in the elec-
trolyte NaCl concentration ranges from 0.001 to 3.5 M may 
indicate the absence of a sufficient level of electrolytes 
needed to eliminate the existing energy barrier preventing 
aggregation between the negatively charged QDs. Similar 
findings detailing the failure to develop CCCs in nanopar-
ticles suspended in electrolyte solutions are also available 

for both polyvinylpyrrolidone (PVP)-Ag nanoparticles and 
branched polyethyleneimine (BPEI)-Ag nanoparticles sus-
pended in NaCl solutions [159]. The aggregation kinetics of 
PVP-Ag and BPEI-Ag nanoparticles were not conforming to 
the DLVO theory, and the nanoparticles did not undergo 
aggregation in spite of being exposed to high electrolyte 
concentrations. Further, an increase in the NaCl electrolyte 
concentrations to 8 M for PVP-Ag nanoparticles and 1 M 
for BPEI-Ag nanoparticles failed to create the RLA or fast 
aggregation, indicating the absence of CCC in both the 
PVP-Ag nanoparticles and the BPEI-Ag nanoparticles at the 
investigated ionic strength values.

The aggregation kinetics of QDs in the divalent elec-
trolyte  CaCl2 revealed the existence of both RLA and DLA 
regimes. Within the RLA regime at low  CaCl2 concentra-
tions (i.e., 0.0001 to 0.004 M), the attachment efficiency 
increased with an increase in  CaCl2 concentrations. Under 
these conditions, the increase in the electrolyte concentra-
tion elevated the degree of charge screening of QDs (i.e., 
becoming less negative) and hence reduced the energy 
barrier to aggregation, consequently causing a faster 
rate of aggregation. Once the electrolyte concentration 
reached and exceeded the CCC, the sufficient presence 
of electrolyte in the solution, induced a complete com-
pression of the EDL of QDs to eliminate the energy barrier 
between the particles. Under such DLA conditions, QDs 
undergo a random walk due to Brownian motion to cluster 
and form QD nanoaggregates. The attachment efficiencies 
reached a maximum value of 1 at the CCC and were inde-
pendent of the  CaCl2 concentration once past the CCC. 
As determined from the attachment efficiency profile, the 
CCC for  CaCl2 was 0.004 M in this study.

The results of the aggregation kinetics of QDs indicated 
that the divalent electrolyte  CaCl2 was more efficient in 
destabilizing the QDs than the monovalent electrolyte 
NaCl, a finding that is consistent with the results reported 
previously for other nanoparticles. Specifically, the CCC of 
NaCl and  CaCl2 were 0.12 M and 0.0048 M, respectively, 
for fullerene nanoparticles [131], 0.04 M and 0.002 M, 
respectively, for silver nanoparticles at pH 7.0 [133], and 
0.122 M and 0.0022 M, respectively, for citrate coated 
silver nanoparticles [111]. In the divalent electrolyte sys-
tems, the  CaCl2 was reported to cause aggregation from 
the bridging effects between the particles [160, 161] and 
a screening of the surface charge of the particles [116, 162, 
163]. The adsorption of  Ca2+ is hypothesized as the catalyst 
behind the formation of interparticle bridging flocculation. 
As previously mentioned, QDs have a negatively charged 
surface. Thus, when using  CaCl2 as the electrolyte, 2 mol 
of  Ca2+ is added, which was double that of the per mol 
electrolyte used in NaCl. The divalent ions in the electro-
lyte were observed to promote a greater aggregation of 
QDs than their monovalent counterparts as they placed a 

Fig. 6  The growth of the z-average hydrodynamic diameter (z-avg. 
HD) of QDs suspended in aqueous chloride salt solutions of rep-
resentative monovalent electrolyte NaCl concentrations and the 
absence and presence of SRNOM at 10 mg/L: a 0.01 M, b 0.1 M, c 
2 M, d 2.5 M, e 3 M, and f 3.5 M

◂
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greater level of compression on the EDLs, and increased 
the neutralization of the surface charge of QDs as counter-
ions. Hence, screening of the surface charge resulted in a 
reduction of the electrostatic force of repulsion between 
the particles.

The DLVO theory is useful in analyzing the interaction 
energies of QD nanoaggregates suspended in an elec-
trolyte solution. The effects of type and concentration of 
electrolytes on the DLVO calculations for QD nanoaggre-
gates are shown in the resulting potential energy profiles 
in Figs. 11 and 12. Here, a demonstrable decrease of the 
energy barrier is evident with a diminishing electrostatic 
repulsion and a more significant van der Waals attraction 
with an increase in the concentration of both monovalent 
and divalent electrolytes.

As indicated in the potential energy profile, the intro-
duction of a low concentration of NaCl (0.001 M) resulted 
in a significant compression of the EDL such that the 
electrostatic repulsive energy was rather small (< 10 KBT  ) 
and that the net energy between particles was attractive 
when the distance between particles was less than 5 nm. 
An increase in NaCl concentration caused a rapid decrease 
in the energy barriers between particles. For instance, the 
repulsive energy was less than 5 KBT  in suspension with a 
NaCl concentration of 0.01 M and an EDL that was com-
pletely compressed, which eliminated the repulsive energy 

Fig. 7  The growth of the z-average hydrodynamic diameter (z-avg. 
HDs) of QDs suspended in aqueous chloride salt solutions of rep-
resentative divalent electrolyte  CaCl2 concentrations and the 
absence and presence of SRNOM at 10 mg/L: a 0.001 M, b 0.002 M, 
c 0.003 M, d 0.005 M, e 0.01 M, and f 0.05 M

◂

Fig. 8  Aggregation rates of QDs suspended in aqueous chloride 
salt solutions as a function of the types and concentrations of elec-
trolytes and the absence and presence of the SRNOM at 10 mg/L: 
a Monovalent electrolyte NaCl in both the absence and presence 
of the SRNOM at 10 mg/L, b Divalent electrolyte  CaCl2 in both the 
absence and presence of the SRNOM at 10 mg/L

Fig. 9  Total potential energy versus inter-particle distance accord-
ing to DLVO theory, showing the influence of neutral (pH 7)  diH2O 
for QDs suspended in aqueous solution. Calculation of DLVO theory 
includes the contributions of the van der Waals and electric double 
layer (EDL) interactions. The net energy (Net) shown is the sum of 
EDL repulsion and van der Waals attraction between two approach-
ing particles
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Table 4  Summary of characteristics of QDs measured by DLS in the literature

Nanoparticle Type Solution Chemistry Diameter (nm) Zeta Potential (mV) Aggregation Rate 
(nm/s)

Reference

PAA-OA-QD (CdSe/
ZnS)

0.003 M NaCl, pH = 7 30.8 − 45.8 NM Wang et al. 2014 [Ref. 
38]

PAA-QD (CdTe/CdS) 0.0001 to 0.1 M KCl, 
pH = 7

72–114 − 35 to − 28 NM Quevedo and Tufenkji 
2012 [Ref. 47]

0.0001 to 0.01 M 
 CaCl2, pH = 7

86–447 − 34 to − 3 NM

ODA-QD (CdSe/ZnS) 0.0001 to 0.1 M KCl, 
pH = 7

76–175 − 35 to − 5 NM

0.0001 to 0.01 M 
 CaCl2, pH = 7

257–674 − 20 to − 3 NM

Carboxylated QD 
(CdTe)

0.001 to 0.1 M NaCl, 
pH = 7.8

 > 100 − 45 to − 30 NM Torkzaban et al. 2010 
[Ref. 44]

TGA-QD (CdTe) DI, pH = 5–12 60–100 − 30 NM Zhang et al. 2007 [Ref. 
151]

DI, pH = 3  > 2000 − 20 NM
0.15 M KCl, pH = 5 100 − 20 Stable
0.002 M  CaCl2, pH = 5  > 3000 − 20 9.7

PAA-QD(CdSe/ZnS) 0.005 and 0.5 M NaCl, 
pH = 6.5

416–632 − 28.6 and 0 NM Uyusur et al. 2010 [Ref. 
50]

PAA-QD (CdTe) 0.05 and 0.1 M NaCl, 
pH = 8

45 − 40 and − 30 Stable Torkzaban et al. 2010 
[Ref. 44]; Torkzaban 
et al. 2013 [Ref. 158]

0.005 and 0.01 M 
 CaCl2, pH = 8

200 and 450 − 50 and − 30 0.007 and 0.03

PAA-QD (CdTe/CdS) 0.0001 to 0.1 M KCl, 
pH = 5

59 to 206 − 34 to − 25 NM Quevedo and Tufenkji 
2009 [Ref. 117]; 
Quevedo et al. 2013 
[Ref. 46]

0.0001 to 0.1 M 
KCl + 2 mg/L SRHA, 
pH = 5

46 to 74 − 35 to − 27 NM

0.0001 to 0.1 M 
KCl + 2 mg/L rham-
nolipid, pH = 5

54 to 70 − 29 to − 22 NM

PEG-QD (CdSe/ZnS) 0.0001 to 0.1 M KCl, 
pH = 5

163 to 370 − 22 to − 4 NM

0.0001 to 0.1 M 
KCl + 2 mg/L SRHA, 
pH = 5

48 to 56 − 34 to − 5 NM

0.0001 to 0.1 M 
KCl + 2 mg/L rham-
nolipid, pH = 5

57 to 289 − 16 to − 0.1 NM

SLN-QD (CdSe/ZnS) DI 92.3 − 28.74 NM Liu et al. 2008 [Ref. 
152]

F-68-QD (CdSe) DI 159 − 13.4 NM Guo et al. 2007 [Ref. 
153]

SDS-QD (CdSe) DI 178 − 57.6 NM
CTAB-QD (CdSe) DI 266 59.3 NM
PAA-QD (CdSe/ZnS) DI, pH = 7 463 − 53.9 NM Uyusur et al. 2016 [Ref. 

123]
0.0005 to 0.5 NaCl, 

pH = 6.5
411 to 656 − 27.4 to16.13 NM
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barrier when the NaCl concentration exceeded 0.5 M. For 
 CaCl2, the attractive energy was the dominating contribu-
tor for the net potential energy of all electrolyte concentra-
tions investigated. The correlation between the electro-
static interaction energy and the  CaCl2 concentration was 

positive only at the low electrolyte concentration range. 
For example, the net potential energy between QDs at 
the separation distance of 50 nm increased from 0.01 KBT  
to 3.09 KBT  when the  CaCl2 concentration increased from 
0.001 M to 0.005 M, which was independent of the elec-
trolyte concentrations either at or above CCC. The results 
of the aggregation kinetics of QDs in the  CaCl2 solutions 
support this finding.

4.3  Stability and aggregation kinetics of quantum 
dot nanoparticles as a function of ionic 
strength, electrolyte type, and Suwannee River 
natural organic matter

The presence of SRNOM destabilized the QDs at all NaCl 
concentrations examined (i.e., 0.01 to 3.5 M). The addition 
of SRNOM failed to produce appreciable effects on the 
calculated net potential energy (Fig. 11), and to influence 
the aggregation extent and rates by changing the energy 
barriers between QDs. The results suggested a governing 
role of the steric interactions between the nanoparticles, 
the electrolytes, and the SRNOM in determining the col-
loidal stability and aggregation of QDs under monovalent 
electrolyte conditions. Monovalent cations are known 
to form bridges between molecules [164–166] with the 
subsequent bridging interactions resulting in nanopar-
ticle aggregation. For example, AuNPs coated with MUA 
(11-mercaptoundecanoic acid) strengthened the bridg-
ing interaction between monovalent cations and the car-
boxylate groups on two interacting nanoparticles. This 
interaction, which was stronger than the van der Waals 
attractions, accounted for the aggregation of like-charged 
nanoparticles [166]. In this study, the formation of single 
rod-like complexes [29, 166] occurred between the SRNOM 
molecules and the monovalent cations, which brought 
QDs together by adsorbing concurrently onto at least two 
QDs. This bridging effect may be rational explanation for 
the destabilization of QDs by the SRNOM in the monova-
lent electrolyte.

As shown in Fig.  10, the enhanced aggregation of 
QDs by the SRNOM was also observed in the divalent 
electrolyte system with the van der Waals attraction pre-
dominant in the interaction between QDs (Fig. 12). The 
increase in the magnitude of the net potential energy 
between QDs was obtained by the SRNOM in the divalent 
electrolyte system. Specifically,  CaCl2 concentrations of 
0.003 and 0.005 M respectively caused an increase in the 
net potential energy between QDs at a separation dis-
tance of 10 nm from 13.30 to 20.41  KBT and from 26.63 
to 30.32  KBT in the presence of SRNOM. The increased net 
potential energy may account for the observed enhance-
ment of aggregation of QDs by the SRNOM. Furthermore, 
the  CaCl2 may enhance the aggregation of QDs through 

Fig. 10  Attachment efficiency of QDs suspended in aqueous chlo-
ride salt solutions as a function of the types and concentrations of 
electrolytes and the absence and presence of SRNOM at 10 mg/L: 
a Monovalent electrolyte NaCl in both the absence and presence 
of SRNOM at 10  mg/L, b Divalent electrolyte  CaCl2 in both the 
absence and presence of the SRNOM at 10 mg/L
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the mechanism of divalent cation bridging. The interac-
tion between divalent cation and SRNOM resulted in 
the formation of macromolecule aggregates of SRNOM 
through calcium complexation, aggregates that subse-
quently bridge the QDs and cause the enhanced desta-
bilization. These bridging phenomena are also proposed 
to explain the enhanced aggregation of fullerene nano-
particles by HA [105], hematite nanoparticles by algi-
nate [167], zinc oxide by NOM [34], citrate-coated silver 
nanoparticles by HA [111], graphene oxide nanomaterials 
by NOM [168], titanium oxide by EPS [169], and copper 
nanoparticles by DOC [170]. The degree of aggregation 
formation between QDs through cation-SRNOM bridges 
was superior for  Ca2+ cations compared to  Na+ cations 
due to more effective and strong interactions of  Ca2+ cati-
ons with SRNOM than  Na+ cations.

5  Conclusion

The environmental behavior and toxicological risks of 
nanoparticles are related to their physico-chemical prop-
erties, particularly their surface coating properties, and the 
chemistry of the environment encountered. Although it is 
impossible to characterize the behavior of nanoparticles in 
all possible chemical scenarios found in the environment, 
our study aimed at contributing to the understanding of 
QDs in the presence of salts and organic matter commonly 
encountered in the terrestrial and aquatic environment. 
Results demonstrate that both the types and concentra-
tions of monovalent  (Na+) and divalent  (Ca2+) electrolytes 
will significantly influence the particle size distribution, 
the stability behavior, and aggregation kinetics of QD 
nanoparticles suspended in these aqueous systems. The 
formation of QD nanoaggregates was controlled by the 
valency and concentration of cations. The increase in the 
cation concentrations induced a decrease in the elec-
trostatic repulsion as a result of the enhancement of the 
compression of the EDL. Divalent cations generated larger 
QD nanoaggregates than monovalent cations at the same 
concentrations. Under monovalent  (Na+) solutions, the 
aggregation of QDs was limited in that the steric forces 
generated by the original surface coating of QDs prevailed, 

whereas under divalent  (Ca2+) solutions, the aggregation 
of QDs was enhanced due to the bridging formations 
between the  Ca2+ in solution and the carboxyl group 
located in the surface coating of QDs. The QD suspended 
in divalent  (Ca2+) solutions remained stable at low  Ca2+ 
concentrations (< 0.002 M) or formed nanoaggregates of 
smaller sizes compared to QDs in high  Ca2+ concentrations 
ranging from 0.004 M to 0.1 M.

The changes in solution chemistry exhibited a substan-
tial effect upon the interactions between QDs and SRNOM. 
In the presence of SRNOM, QDs suspended in the mono-
valent (NaCl) and divalent  (CaCl2) electrolyte solutions 
formed electrolyte-SRNOM-QDs’ complexes with higher 
aggregation rates compared to the absence of SRNOM. 
Despite similarities in the effect of the SRNOM on the 
general aggregation trends of QDs between the monova-
lent and divalent electrolytes, each behaved differently in 
terms of the mechanisms that accounted for the enhanced 
aggregation. In the monovalent electrolyte solutions, the 
destabilization induced by the SRNOM was attributed to 
the bridging effect caused by the single rod-like com-
plexes of monovalent  (Na+) cation and the SRNOM. In the 
divalent electrolyte solutions, the destabilization by the 
SRNOM was imputed to the bridging effect of the SRNOM 
aggregates produced through the calcium complexation 
between  Ca2+ cations in solution and the carboxyl group 
on the SRNOM. The resulting aggregation between QDs 
through cation-NOM bridges was superior for  Ca2+ cations 
compared to  Na+ cations due to more effective and strong 
interactions of  Ca2+ cations with NOM than  Na+ cations.

Equations predicting the attachment efficiency indi-
cated the presence of both the RLA and DLA regimes 
only for the divalent  (Ca2+) electrolyte solution in both 
the absence and presence of SRNOM. The experimental 
CCCs of the QDs at pH 7.0 were 0.004 M and 0.003 for the 
divalent  (Ca2+) electrolytes in both the absence and pres-
ence of SRNOM, respectively. The absence of a distinct 
DLA for the monovalent  (Na+) electrolyte solution did not 
allow to determine the CCC of the systems in both the 
absence and presence of SRNOM. It was also determined 
that although classical DLVO theory could simulate the QD 
nanoparticles behavior, certain physico-chemical proper-
ties of QD nanoparticles manifested in non-DLVO behavior 
in systems involving nanoparticles, organic ligands coat-
ing, NOM, and salts. Examples comprise the utilization of 
polymer and organic ligand coatings to alter the surfaces 
of QD nanoparticles in the presence of monovalent elec-
trolytes, which caused steric stabilization and a reduction 
in nanoparticle aggregation. Surface chemistry was also 
determined as most important in controlling the stability 
of QD nanoparticles in aqueous systems.

Although SRNOM was selected to represent NOM in 
aquatic systems in our study, it prevented an assessment 

Fig. 11  Total potential energy versus inter-particle distance accord-
ing to DLVO theory, showing the influence of representative mono-
valent electrolyte NaCl concentrations and the absence and pres-
ence of SRNOM at 10 mg/L for QDs suspended in aqueous chloride 
salt solutions: a 0.01 M, b 0.1 M, c 2 M, d 2.5 M, e 3 M, and f 3.5 M. 
Calculation of DLVO theory includes the contributions of the van 
der Waals and electric double layer (EDL) interactions. The net 
energy (Net) shown is the sum of EDL repulsion and van der Waals 
attraction between two approaching particles
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of the effects of the fractions of NOM such as humic acids 
and fulvic acids. Therefore, the influence of these NOM 
fractionations on the interfacial interactions between 
metal ions and QD nanoparticles, and the mechanism of 
aggregation of QD nanoparticles should be further evalu-
ated in future studies.

Thus, elucidating the stabilization/aggregation, interac-
tion, and transformation of QD nanoparticles in aqueous 
systems of different chemistries will allow the forecast-
ing of exact QD nanoparticle characteristics, aggrega-
tion states, and stability behavior under a broad range of 
environmental settings. Aggregation and sedimentation 
of nanoparticles that are released in the natural and engi-
neered environmental systems have critical effects on the 
fate and transport, reactivity, bioavailability, and toxicity of 
these nanoparticles. Consequently, although the risk from 
QD nanoparticles suspended in water with salts and NOM 
under relevant environmental conditions may be lessened 
as nanoparticles are inclined to aggregation, sedimenta-
tion and/or adsorption onto the surfaces of media encoun-
tered, QDs released in water with high salt concentrations 
and NOM may threaten ecosystems and public health as 
they may settle in the sediments of aquatic systems. Such 
knowledge is essential for evaluating the environmental 
and toxicological risks of exposure to QD nanoparticles.
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