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Abstract 
This paper presents the application of two artificial intelligence (AI) approaches in the prediction of total organic car-
bon content (TOC) in Devonian Duvernay shale. To develop and test the models, around 1250 data points from three 
wells were used. Each point comprises TOC value with corresponding spectral and conventional well logs. The tested AI 
techniques are adaptive neuro-fuzzy interference system (ANFIS) and functional network (FN) which their predictions 
are compared to existing empirical correlations. Out of these two methods, ANFIS yielded the best outcomes with 0.98, 
0.90, and 0.95 correlation coefficients (R) in training, testing, and validation respectively, and the average errors ranged 
between 7 and 18%. In contrast, the empirical correlations resulted in R values less than 0.85 and average errors greater 
than 20%. Out of eight inputs, gamma ray was found to have the most significant impact on TOC prediction. In compari-
son to the experimental procedures, AI-based models produces continuous TOC profiles with good prediction accuracy. 
The intelligent models are developed from preexisting data which saves time and costs.

Article highlights 

•	 In contrast to existing empirical correlation, the AI-
based models yielded more accurate TOC predictions.

•	 Out of the two AI methods used in this article, ANFIS 
generated the best estimations in all datasets that have 
been tested.

•	 The reported outcomes show the reliability of the pre-
sented models to determine TOC for Devonian shale.

Keywords  Total organic carbon · Well logs · Devonian shale · Functional network · Adaptive neuro-fuzzy interference 
system
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TOC	� Total organic carbon content
AI	� Artificial intelligence
ANFIS	� Adaptive neuro-fuzzy interference system
FN	� Functional network
R	� Correlation coefficient
AAPE	� Average absolute percentage error
ρB	� Matter free rock density

ρ	� Bulk density of the formation
RO	� Ratio between the organic matter and organic 

carbon
ρo	� Density of the organic matter
ρmi	� Average bulk density
FR	� Formation resistivity
Δt	� Acoustic transit time
ΔlogR	� Logs separation
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LOM	� Level of maturity
GR	� Gamma-ray
Tmax	� The indicator of maturity
RHOB	� Bulk density
CNP	� Neutron porosity
SP	� Spontaneous potential
K	� Spectrum logs of potassium
Th	� Spectrum logs of thorium
Ur	� Spectrum logs of uranium
ANN	� Artificial neurons network
FL	� Fuzzy logic
SVM	� Support vector machine
GPR	� Gaussian process regression
FB	� Forward–backward
BF	� Backward-forward
BE	� Backward elimination
ES	� Exhaustive search
FS	� Forward selection
Xgiven	� Measured values
XPredicted	� Predicted values

1  Introduction

Oil or natural gas reserves are constantly depleting as a 
result of continued oil and gas exploitation, and the exist-
ing reservoir production levels are substantially decreas-
ing [1–5]. Therefore,  Source rock and unconventional 

reservoirs have increasingly piqued interest [6–9]. Compar-
ing to conventional reserves, unconventional reservoirs are 
tighter, less permeable and more complex, that making 
their exploration more difficult and costly [10]. Significant 
unconventional resource discoveries have been reported 
around the world in recent years, particularly in the Middle 
East, North and South America, and North Africa, contrib-
uting to the global oil reserves [11, 12].

Unlike the conventional reservoirs, unconventional 
resources are in-situ storing and generating; therefore, 
it is essential to quantify their potential for hydrocarbon 
generation. Moreover, unconventional resource charac-
terization, development, and production are complex and 
expensive processes, all of which indicate the necessity of 
assessing their potentials precisely and cost-effectively [7, 
11].

Total organic carbon (TOC) is being utilized to quan-
tify the potentials of hydrocarbon generation, and there-
fore it reflects the quality of the unconventional reser-
voirs [13–16]. Generally, TOC is determined experimentally 
by the rock pyrolysis test [17, 18], and the number of tests 
conducted to quantify TOC is limited, because of the high 
experimental cost. Consequently, obtaining a compre-
hensive TOC assessment for the formation(s) of concern is 
quite challenging, which has a significant impact on res-
ervoir evaluation [19].

Several scholars established empirical TOC correla-
tions (summarized in Table 1) based on well logs and 

Table 1   Different correlations of TOC

References Model Remarks

[25]
TOC(vol.%) =

(�B−�)
1.378

where the densities are in g/cm3

Used data from Devonian shale and predicts TOC in volume percent-
age. The data were taken from seven wells located in Virginia, West 
Virginia, Kentucky and Ohio. The model needs only the organic 
matter free rock density (ρB) and the bulk density of the formation 
(ρ)

[26]
TOC(wt.%) =

[(100�o)−(�−0.9922�mi−0.039)]
[(RO∗�)(�o−1.135�mi−0.675)]

Utilized data from 46 wells in Western Appalachian basin in the 
United States to present a modified model that determines the TOC 
in weight percentage. RO is ratio between the organic matter and 
organic carbon. ρo is the density of the organic matter and ρmi is 
the average bulk density

[27] Δ log R = log10

(

FR

FRbaseline

)

+ 0.02 ×
(

Δt − Δtbaseline
)

TOC = Δ log R × 10(2.297−0.1688×LOM)

where transit time is in µs/ft and resistivity is in ohm.m

Widely used and commonly known as ΔlogR model. Using the forma-
tion resistivity (FR) and acoustic transit time (Δt), logs separation 
(ΔlogR) has to be calculated first. Then from ΔlogR and level of 
maturity (LOM), TOC could be estimated. The case study included 
data from six wells in different locations (ex. California and Colo-
rado)

[28] TOC =
[

�Δ log R + �
(

GR − GRbaseline

)]

× 10(�+�Tmax)

Where α, β, δ, and η are constants
Wang’s Model is a modified ΔlogR model developed using data 

from Devonian shale. To estimate TOC, It uses the gamma-ray (GR), 
ΔlogR, and the indicator of maturity (Tmax). The model have been 
tested in five wells in western Canada

[29] TOC = aΔ log R + b
(

GR − GRbaseline

)

+ c

where a, b and c are constants
Zhao et al. revised Wang’s model and presented a model that doesn’t 

require LOM or Tmax. The authors utilized data from five wells in 
three different basins in western Canada and china (Sichuan Basin 
and Ordos Basin)
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their corresponding laboratory-based TOC values of core 
plugs or drilling cuttings. The obtained models are then 
suggested to be used in determining TOC for other wells 
[20–24].

Out of the models presented, ΔlogR model is very 
common, and many authors presented modifications to 
enhance its TOC predictability [15, 30, 31]. Charsky and 
Herron [32] used data from various formations and wells to 
evaluate the reliability of Schmoker and ∆logR models and 
reported significate variation from the actual TOC values.

Artificial intelligence (AI) systems are capable of produc-
ing highly accurate models and they have been applied 
in various sectors such as healthcare [33], mining [34], 
construction [35] and energy [36]. The accuracy of the 
empirical correlations presented in Table 1 when applied 
to different datasets is a major concern, that’s why AI tech-
niques were used in numerous studies to predict TOC. 
Table 2 highlights the various researches that applied dif-
ferent AI tools for TOC estimation from well-logs. These 
well-logs include bulk density (RHOB), formation resistivity 
(FR), neutron porosity (CNP), gamma-ray (GR), Spontane-
ous potential (SP), sonic transit time (Δt), and spectrum 
logs of potassium (K), thorium (Th) and uranium (Ur). 
Different AI techniques have been utilized, namely arti-
ficial neurons network (ANN), fuzzy logic (FL), adaptive 

neuro-fuzzy interference system (ANFIS), functional net-
work (FN), support vector machine (SVM) and Gaussian 
Process Regression (GPR).

TOC is a significant parameter for evaluating uncon-
ventional reservoirs. To estimate TOC, experimental 
investigation can be employed, but it is time-consum-
ing, costly, and does not provide consistent information of 
TOC against depth. Alternatively, TOC can be determined 
using empirical models, however, the accuracy and 
the generalization associated with these correlations are 
major concerns. The objective of this paper is to test the 
effectiveness of two AI approaches in estimating the TOC 
in Devonian shale formations from logging data. These 
well-logs consist of bulk density, resistivity, sonic transient 
time, bulk gamma-ray, spectral GR logs of Th, Ur, and K and 
neutron log porosity.

The following section presents the methodology used 
to develop the AI models, including the description of the 
datasets, data preprocessing, description of the utilized AI 
methods, tests procedure and the different stages in the 
model development. This section is followed by the results 
and discussion, which reports the outcomes of different 
methods on different datasets and presents a comparison 
with existing correlations and shows the results of sensitiv-
ity analysis of different sets of inputs.

Table 2   Different researches that utilize AI techniques in TOC prediction

References Data source/s AI tool/s Inputs Data points R2

[37] Kangan-Dalan Formation FL, ANN GR, CNP, FR, RHOB, Δt 124 0.85
[38] Gadvan Formation ANN, FL CNP, FR, RHOB, Δt 2875 0.78–0.99
[39] Kazhdomi and Kangan-Dalan Formations ANN GR, FR, Δt, K, Th 78 0.89
[40] Kazhdomi and Kangan-Dalan Formations ANN GR, CNP, FR, Δt, K, Th 200 NA
[41] Jiumenchong formation SVM GR, CNP, FR, RHOB, Δt, K, Ur, Th 31 0.69
[42] Sichuan Basin ANN GR, CNP, FR, RHOB, Δt, K, Ur, Th 185 0.87–0.91
[13] Barnett and Devonian shale formations ANN GR, Δt, FR, RHOB

GR, FR, RHOB, Δt
442 0.89- 0.93

[43] Ordos basin and Canning basin GPR GR, CNP, FR, RHOB, Δt, K, Ur, Th NA NA
[44] Barnett shale ANN GR, FR, RHOB, Δt 442 0.93
[19] Kazhdumi formation FL GR, CNP, FR, RHOB, Δt, K, Ur, Th 31 0.94
[45] NA ANN FR, Δt 70 0.98
[46] Tonghua Basin ANN, SVM GR, CNP, FR, RHOB, Δt, SP, K, Ur, Th 215 0.9–0.93
[47] Ras Qattara and Khatatba formations ANN GR, CNP, FR, RHOB, Δt 54 0.96
[48] Beibu Gulf basin SVM GR, FR, RHOB, Δt, SP 18 0.75
[14] Shahejie Formation ANN GR, CNP, FR, RHOB, Δt 125 0.83
[23] Barnett shale FL GR, FR, RHOB, Δt 645 0.91
[49] Barnett shale ANFIS, FN, SVM GR, FR, RHOB, Δt  + 800 0.82–0.87
[50] Duvernay and Barnett shales ANN GR, FR, RHOB, Δt 460 0.98
[22] Devonian and Barnett shales FN, SVM GR, FR, RHOB, Δt  + 500 0.74–0.77



Vol:.(1234567890)

Research Article	 SN Applied Sciences            (2022) 4:16  | https://doi.org/10.1007/s42452-021-04899-5

2 � Methodology

In this study, two AI techniques, the adaptive neuro-
fuzzy interference system (ANFIS) and the functional 
network (FN) were used to estimate the TOC from eight 
well-logs information.

2.1 � Data description

Three different wells’ TOC experimental data, as well as 
their corresponding well logs, were obtained. The AI 
models were trained, tested, and validated using 891, 
291, and 82 data points from Well-I, Well-II, and Well-III, in 
order. All of these wells are in source rock rich in organic 
liquids known as Devonian Duvernay shale. This basin is 
located in Canada, Alberta (Fig. 1), and has oil reserves 
above 60 billion barrels and gas reserves above 400 tril-
lion cubic feet [51, 52]. Table 3 shows the statistical prop-
erties of the Well-I dataset.

2.2 � Well logs

In well’s logging, the in-situ properties of rocks around the 
wellbore are indirectly estimated from electric, acoustic 
and nuclear indicators. The interpretations of these indi-
cators reflect the existence of hydrocarbon, petrophysical 
properties, and the lithology of the formation [54, 55]. In 
this study the following well logs records were used:

Formation resistivity (FR) is a measure of electrical resis-
tivity in three increasing depths from the well which is 
mainly interpreted to know the fluids’ saturations and 
hence the existence of hydrocarbon [56, 57].

Sonic log is a measure of the time required for a sound 
wave to travel for a predetermined distance, which 
depends on the matrix elasticity and porosity [58], there-
fore, it is used in the identification of lithology, fractures 
and porosity.

Density log record the bulk density around the well, this 
density measure covers the matrix and the pores filled with 
fluid, which can be used to quantify the porosity fraction.

Neutron log is a log rely on a neutron source to measure 
the hydrogen index and consequently the porosity of the 
formation.

Gamma-ray log measures the natural gamma radiations 
and thus is used to distinguish shales from other sedimen-
tary rocks.

Spectral gamma-ray log is a sophisticated measure for 
gamma-ray that uses the energy of gamma rays and iden-
tifies the elements that emitted them.

2.3 � Samples testing

To determine the TOC of drilling cuttings from several 
wells, Rock–Eval 6 was used. Experimental procedures -fol-
lowed what was presented by Chen et al. [59]- are shown 
in Fig. 2.

2.4 � Data preprocessing

In the first step, outliers, unrealistic and incomplete data 
points were removed from the datasets that were used Fig. 1   Duvernay shale distribution in central Alberta [53]

Table 3   Statistics of Well-I data

Parameter FR (Ω.m) Δt (μsec/ft) RHOB (g/cm3) CNP GR (°API) Ur (wt%) Th (ppm) K (ppm) TOC (wt%)

CC with TOC 0.35 0.20  − 0.35 0.08 0.62 0.27 0.22 0.56 1.00
Minimum 3.71 51.0 2.39 0.019 22.9 1.39 1.97 0.130 0.76
Maximum 1675 96.6 2.77 0.346 298 22.6 17.0 4.06 5.66
Mean 110 77.9 2.545 0.174 95.5 6.16 9.01 1.51 2.78
Standard Deviation 176 8.56 0.075 0.052 38.9 3.16 2.517 0.607 1.30
Kurtosis 21.8 0.227  − 0.465 0.984 3.43 6.81 0.315 1.14  − 1.08
Skewness 3.98  − 0.630 0.436  − 0.127 0.837 2.13  − 0.135 0.554 0.181
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to build the models. Using a built-in function in Mat-
lab, any data points with a member that has a value that 
is far from the average with at least triple the standard 
deviation were designated as outliers. Figure 3 shows the 
criteria for detecting outliers.

2.5 � AI methods

In this work, two AI approaches were used, Adaptive 
neuro-fuzzy inference system (ANFIS) and functional 
network (FN). Functional Network was introduced in the 
1990s as an alternative to ANN [60, 61]. FN uses both 
domain information and data knowledge, it uses adapt-
able generalized functional models that change with the 
learning process [62]. The Functional network contains 
different elements, such as an input layer, an output layer 
and a set of intermediate layers, layers of neurons and 
directed links. Castillo et al. (2000) [63] summarized the 
difference between ANN and FN as following: in FN, the 
neuronal functions are multi-argument and can be arbi-
trary. Figure 4 shows the difference between ANN and FN 
structures.

Several successful applications of FN related to the oil 
industry were reported in the literature [64–66]. There are 
various feature selection techniques associated with the 
functional network such as [67, 68]:

Forward selection starts with minimum variables and 
adding features.

Backward elimination starts with all features and then 
reduces them.

Exhaustive search examine every point which signifi-
cantly increases the computational time.

Adaptive neuro-fuzzy inference system (ANFIS) was 
developed in the 1990s and integrate the principles 
of neural networks and fuzzy logic (FL) [69, 70]. In this 
method, ANN is used to set the fuzzy rules in FL [71]. This 
integration of the two methods provides an improved 
performance [72]. ANFIS has various reported applications 

Fig. 2   TOC test procedures

Fig. 3   Outliers’ detection

Fig. 4   a ANN structure against 
b FN structure [63]
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in the oil industry [64, 73]. ANFIS structure combines the 
fuzzy inference system and a neural network as presented 
in Fig. 5.

2.6 � Models’ development

Well-I’s dataset which contains 891 data points with wide 
ranges of values as displayed in Fig. 6, was used in models 
training and optimization. The impacts of various param-
eters inside the algorithms were examined to optimize the 
models.

To determine the best models, different runs were per-
formed in each approach. This was accomplished by exe-
cuting the AI runs inside multiple for-loops in MATLAB for 
each machine learning approach. In FN, five methods were 
used: forward–backward (FB), backward-forward (BF), 
backward elimination (BE), exhaustive search (ES), and 
forward selection (FS). Three types were used with each 
of these methods, one linear and two non-linear. While in 
ANFIS, epochs size and cluster radiuses were tested.

The correlation coefficient (R) and the average abso-
lute percentage error (AAPE), were utilized as evaluation 
criteria for the developed models using Eqs. (1) and (2) 
respectively:

where N is the size of dataset, Xgiven and XPredicted are the 
measured and the AI-predicted TOC values respectively.

(1)R =

�

N
∑N

i=1

�

Xgiveni × XPredictedi
�

�

−

�

∑N

i=1
Xgiveni ×

∑N

i=1
XPredictedi

�

�

�

N
∑N

i=1

�

Xgiveni
�2

−

�

∑N

i=1
Xgiveni

�2
��

N
∑N

i=1
(X )2 −

�

∑N

i=1
XPredictedi

�2
�

(2)AAPE =

∑N

i=1

Xgiveni−XPredictedi

Xgiveni
× 100%

N

With the datasets from Well-II (291 data points) and 
Well-III (82 data points), the generalization of the pro-
duced models was internally and externally tested. Simi-
lar to Well-I, these two wells are located in the same field. 
The Schmoker, Zhao et al., and logR models were used to 
compare the performance of AI-based models.

3 � Results and discussion

Eight conventional and spectral well logs data were used 
to train AI models for TOC predictions. The training dataset 
contained 891 Well-I data points, while the testing dataset 
contained 291 Well-III data points. The outcomes of each 
technique are presented in this section.

Different methods of FN have been applied, and the 
best model was obtained when the Forward–backward 
method and non-linear type were used. The model yielded 
R values of 0.902 and 0.879 in training and testing respec-
tively, with AAPE values ranging between 18.9% and 
24.4%, as shown in Fig. 7. In Fig. 7, it is obvious that many 
points were far from the 45° line.

Using ANFIS, various epochs size and cluster radiuses 
were tested. The estimation yielded from this method was 
significantly better than FN. The correlation coefficients 

ranged between 0.899 and 0.983, while the AAPE values 
were 7.3 and 17.9 in training and testing respectively as 
shown in Fig. 8. This model has been achieved with 0.25 
cluster radios and 100 iterations.

Several runs have been made in each method to 
achieve the reported results, each run test different param-
eters/methods inside the algorithms. Multiple for loops 
in Matlab have been used to test a wide range of possi-
ble combinations of algorithms’ parameters while report-
ing the R and AAPE. Figures 9 and 10 present the results 
of different iterations for the ANFIS and FN respectively. 
They also indicate the chosen iterations as the best results 
achieved based on the correlation coefficient and AAPE. 
The optimized parameters for each method are reported 
in Table 4.

The two techniques produced a relatively good level 
of accuracy in predicting Devonian shale’s TOC during 
training and testing, as indicated in the previous results. 
Dataset from Well-III has been hidden away from the AI 
tools  throughout models’ development stages  as an 
additional check to guarantee that the new models Fig. 5   ANFIS structure [74]
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Fig. 6   The well-logs and TOC used to train the models
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Fig. 7   Cross-plots of the FN-predicted and measured TOC for a the training and b the testing datasets

Fig. 8   Cross-plots of the ANFIS-predicted and measured TOC for a the training and b the testing datasets

Fig. 9   Results of different iteration in ANFIS
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were generalizable. The outcomes of the two AI algo-
rithms were contrasted to the available correlations, 
namely Schmoker, Zhao et al., and ΔlogR models.

As shown in Fig. 11 that the ANFIS-based predictions 
were the most accurate with an AAPE of only 10.3% and 
a high R of 0.95. FN model was less accurate than ANFIS; 
however, both were better than the other three correla-
tion with R equals 0.87 and AAPE values range between 
16 and 20%. Zhao et al. correlation results were close to 
the FN model, and slightly better than ΔlogR method, 
with an AAPE value around 20% and R of 0.84. While 
Schmoker’s model yielded the least accurate results. 
Standing from this comparison, the AI-based models, 
especially the ANFIS, outperformed the different exist-
ing correlations.

4 � Sensitivity of the inputs

To examine the significance of each input parameter in 
TOC prediction, various sets of inputs were assessed. 
Seven sets were tested, the simplest one contains only 
the conventional well logs except of the GR, and the 
most comprehensive consist of all available well logs, 
as shown in Table 5.

The outcomes of different input sets are reported 
in Table 5. The best performance was achieved in Set 
1 where all eight parameters were included, however, 
it has a significantly higher computational cost. Set 
6 and Set 4 performances were followed, those sets 
excluded the sonic transient time and porosity respec-
tively. This confirms the low correlation coefficient of 

Fig. 10   Results of different iteration in FN

Table 4   Optimized parameters of the AI algorithms

ANFIS optimized parameters

Clustering type Subtractive Clustering
Fuzzy interference system Sugeno
Input membership function Gaussian: f = e

−(x−c)2

2�2

Where c is the mean 
and σ is the standard 
deviation

Output membership function Linear
Cluster radius 0.25
Epochs size 100

FN optimized parameters

Method Forward–backward (FB)
Type Nonlinear



Vol:.(1234567890)

Research Article	 SN Applied Sciences            (2022) 4:16  | https://doi.org/10.1007/s42452-021-04899-5

Fig. 11   AI-based against empirical correlations TOC prediction of Well-III



Vol.:(0123456789)

SN Applied Sciences            (2022) 4:16  | https://doi.org/10.1007/s42452-021-04899-5	 Research Article

these two parameters with TOC as shown in Table 3. The 
least favorable case was Set 3 that contains only four 
variables. According to the results shown in Table 6, The 
GR and spectral GR have a great impact on the predic-
tion of TOC, while the porosity and sonic transient time 
showed the least effect. It’s noticeable that for all cases, 
ANFIS outperformed FN, however, the former has slightly 
higher computational time.

5 � Models’ limitations

The data in this study were acquired from wells in the same 
area, and the outcomes were restricted to Devonian shale. 
Therefore, the models’ performance cannot be assured if 
they were utilized in another type of formation or with 
data ranges that are different from  those used in this 
research.

6 � Conclusions

Using artificial intelligence techniques and over 1250 
data points, two models for TOC prediction from eight 
well logging information were established in this study. 
Two artificial intelligence techniques were employed, 
adaptive neuro-fuzzy interference system (ANFIS) and 
Functional network (FN). The following is a summary of 
the outcomes presented in this paper:

•	 Out of the two AI algorithms utilized in this study, 
ANFIS yielded the best match in training and testing 
datasets with correlation coefficients of 0.98 and 0.90 
and AAPE values of 7% and 18% for training and testing 
respectively.

•	 Data from a different well was hidden entirely from the 
AI tools and used to verify the built models, the ANFIS 
model successfully predicted TOC with a 0.95 correla-
tion coefficient and 10% AAPE.

•	 The presented models were contrasted to three vari-
ous empirical correlations. The empirical correlations 
yielded less favorable results with correlation coeffi-
cients under 0.85 and AAPE above 20%.

The presented models accurately predicted TOC 
from well-logs such as CNP, RHOB, GR, t, FR, K, Th, and 
Ur logs, allowing for continuous TOC profiles with depth 
without the requirement for core analysis or extra well 
interventions. To achieve reliable results, we propose 
using developed models with input parameters within 

Table 5   Studied input sets

No Contain Inputs

1 All logs GR, CNP, FR, RHOB, Δt, K, Ur, Th
2 Excluding spectral GR GR, CNP, FR, RHOB, Δt
3 Excluding GR and spectral GR CNP, FR, RHOB, Δt
4 Excluding porosity GR, FR, RHOB, Δt, K, Ur, Th
5 Excluding density GR, CNP, FR, Δt, K, Ur, Th
6 Excluding sonic transient time GR, CNP, FR, RHOB, K, Ur, Th
7 Excluding resistivity GR, CNP, RHOB, Δt, K, Ur, Th

Table 6   Outcomes of different 
sets

Inputs sets no R AAPE (%) RMSE CPU time (sec.)

Train. Test. Valid Train. Test. Valid. Train. Test. Valid.

ANFIS
1 0.98 0.90 0.95 7.3 18.0 10.3 0.24 0.61 0.33 57.4
2 0.90 0.82 0.87 17.2 23.8 16.9 0.57 0.80 0.55 8.8
3 0.84 0.72 0.88 24.4 37.1 16.9 0.72 0.98 0.52 8.3
4 0.96 0.89 0.91 10.7 18.9 11.5 0.38 0.65 0.47 38.7
5 0.94 0.88 0.92 13.4 19.9 12.9 0.46 0.67 0.42 25.9
6 0.97 0.85 0.91 9.7 21.5 13.5 0.32 0.75 0.44 40.7
7 0.95 0.84 0.96 11.4 21.9 9.7 0.39 0.77 0.33 27.5

FN
1 0.90 0.88 0.87 18.9 24.4 20.1 0.56 0.67 0.51 50.4
2 0.84 0.84 0.88 23.7 27.4 17.8 0.70 0.74 0.54 5.2
3 0.74 0.73 0.86 31.7 37.9 19.2 0.88 0.95 0.60 5.0
4 0.87 0.86 0.94 21.2 26.4 13.2 0.63 0.72 0.40 39.1
5 0.86 0.87 0.89 22.3 24.8 15.9 0.66 0.69 0.51 17.5
6 0.89 0.87 0.87 19.3 25.3 19.6 0.60 0.68 0.53 16.5
7 0.88 0.84 0.93 21.5 27.1 15.0 0.63 0.75 0.40 16.8
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the same model’s ranges. More data will be collected in 
future work to further validate the established models, 
and more machine learning approaches will be used.
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able upon request.

Code availability  Available upon request.

Declarations 

Conflict of interest  The authors declare that there is no conflict of in-
terest regarding the publication of this paper. This work is supported 
by the start-up fund (SF18063), College of Petroleum Engineering 
and Geosciences (CPG), KFUPM.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Tang H, Sun Z, He Y, Chai Z, Hasan AR, Killough J (2019) Investi-
gating the pressure characteristics and production performance 
of liquid-loaded horizontal wells in unconventional gas reser-
voirs. J Pet Sci Eng 176:456–465. https://​doi.​org/​10.​1016/j.​petrol.​
2019.​01.​072

	 2.	 Zhao P, Ostadhassan M, Shen B, Liu W, Abarghani A, Liu K, Luo 
M, Cai J (2019) Estimating thermal maturity of organic-rich shale 
from well logs: Case studies of two shale plays. Fuel 235:1195–
1206. https://​doi.​org/​10.​1016/j.​fuel.​2018.​08.​037

	 3.	 Ng CSW, Ghahfarokhi AJ, Amar MN, Torsæter O (2021) Smart 
proxy modeling of a fractured reservoir model for production 
optimization: implementation of metaheuristic algorithm and 
probabilistic application. Nat Resour Res 30:2431–2462. https://​
doi.​org/​10.​1007/​s11053-​021-​09844-2

	 4.	 Amar MN, Ghahfarokhi AJ, Ng CSW, Zeraibi N (2021) Optimiza-
tion of WAG in real geological field using rigorous soft comput-
ing techniques and nature-inspired algorithms. J Pet Sci Eng 
206:109038. https://​doi.​org/​10.​1016/j.​petrol.​2021.​109038

	 5.	 Amar MN, Zeraibi N, Jahanbani Ghahfarokhi A (2020) Apply-
ing hybrid support vector regression and genetic algorithm 
to water alternating CO 2 gas EOR. Greenh Gases Sci Technol 
10:613–630. https://​doi.​org/​10.​1002/​ghg.​1982

	 6.	 Wu Y, Tahmasebi P, Yu H, Lin C, Wu H, Dong C (2020) Pore-scale 
3D dynamic modeling and characterization of shale samples: 

considering the effects of thermal maturation. J Geophys Res 
Solid Earth. https://​doi.​org/​10.​1029/​2019J​B0183​09

	 7.	 Zhu L, Zhang C, Zhang C, Zhang Z, Zhou X, Liu W, Zhu B (2020) 
A new and reliable dual model- and data-driven TOC predic-
tion concept: A TOC logging evaluation method using multiple 
overlapping methods integrated with semi-supervised deep 
learning. J Pet Sci Eng 188:106944. https://​doi.​org/​10.​1016/j.​
petrol.​2020.​106944

	 8.	 Nait Amar M, Larestani A, Lv Q, Zhou T, Hemmati-Sarapardeh 
A (2021) Modeling of methane adsorption capacity in shale 
gas formations using white-box supervised machine learning 
techniques. J Pet Sci Eng. https://​doi.​org/​10.​1016/j.​petrol.​2021.​
109226

	 9.	 Nait Amar M (2020) Modeling solubility of sulfur in pure hydro-
gen sulfide and sour gas mixtures using rigorous machine learn-
ing methods. Int J Hydrogen Energy 45:33274–33287. https://​
doi.​org/​10.​1016/j.​ijhyd​ene.​2020.​09.​145

	10.	 Zou CN, Tao SZ, Bai B, Yang Z (2015) Differences and relations 
between unconventional and conventional oil and gas. China 
Pet Explor 20:1–16

	11.	 Kumar S, Das S, Bastia R, Ojha K (2018) Mineralogical and mor-
phological characterization of Older Cambay Shale from North 
Cambay Basin, India: Implication for shale oil/gas development. 
Mar Pet Geol 97:339–354. https://​doi.​org/​10.​1016/j.​marpe​tgeo.​
2018.​07.​020

	12.	 Rani S, Padmanabhan E, Prusty BK (2019) Review of gas adsorp-
tion in shales for enhanced methane recovery and CO2 storage. 
J Pet Sci Eng 175:634–643. https://​doi.​org/​10.​1016/j.​petrol.​2018.​
12.​081

	13.	 Mahmoud AA, Elkatatny S, Mahmoud M, Abouelresh M, Abdul-
raheem A, Ali A (2017) Determination of the total organic car-
bon (TOC) based on conventional well logs using artificial neural 
network. Int J Coal Geol 179:72–80. https://​doi.​org/​10.​1016/j.​
coal.​2017.​05.​012

	14.	 Wang H, Wu W, Chen T, Dong X, Wang G (2019) An improved 
neural network for TOC, S1 and S2 estimation based on conven-
tional well logs. J Pet Sci Eng 176:664–678. https://​doi.​org/​10.​
1016/j.​petrol.​2019.​01.​096

	15.	 Yang S-C, Wang N, Li M-R, Yu J (2013) The logging evaluation of 
source rocks of triassic Yanchang formation in Chongxin area, 
Ordos Basin. Nat Gas Geosci 24:470–476

	16.	 Ma L, Taylor KG, Dowey PJ, Courtois L, Gholinia A, Lee PD (2017) 
Multi-scale 3D characterisation of porosity and organic matter 
in shales with variable TOC content and thermal maturity: Exam-
ples from the Lublin and Baltic Basins, Poland and Lithuania. Int 
J Coal Geol 180:100–112. https://​doi.​org/​10.​1016/j.​coal.​2017.​08.​
002

	17.	 Carvajal-Ortiz H, Gentzis T (2015) Critical considerations when 
assessing hydrocarbon plays using rock-eval pyrolysis and 
organic petrology data: data quality revisited. Int J Coal Geol 
152:113–122. https://​doi.​org/​10.​1016/j.​coal.​2015.​06.​001

	18.	 Hazra B, Dutta S, Kumar S (2017) TOC calculation of organic mat-
ter rich sediments using Rock-Eval pyrolysis: critical considera-
tion and insights. Int J Coal Geol 169:106–115. https://​doi.​org/​
10.​1016/j.​coal.​2016.​11.​012

	19.	 Bolandi V, Kadkhodaie A, Farzi R (2017) Analyzing organic rich-
ness of source rocks from well log data by using SVM and ANN 
classifiers: a case study from the Kazhdumi formation, the Per-
sian Gulf basin, offshore Iran. J Pet Sci Eng 151:224–234. https://​
doi.​org/​10.​1016/j.​petrol.​2017.​01.​003

	20.	 Chen Y, Jiang S, Zhang D, Liu C (2017) An adsorbed gas estima-
tion model for shale gas reservoirs via statistical learning. Appl 
Energy 197:327–341. https://​doi.​org/​10.​1016/j.​apene​rgy.​2017.​
04.​029

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.petrol.2019.01.072
https://doi.org/10.1016/j.petrol.2019.01.072
https://doi.org/10.1016/j.fuel.2018.08.037
https://doi.org/10.1007/s11053-021-09844-2
https://doi.org/10.1007/s11053-021-09844-2
https://doi.org/10.1016/j.petrol.2021.109038
https://doi.org/10.1002/ghg.1982
https://doi.org/10.1029/2019JB018309
https://doi.org/10.1016/j.petrol.2020.106944
https://doi.org/10.1016/j.petrol.2020.106944
https://doi.org/10.1016/j.petrol.2021.109226
https://doi.org/10.1016/j.petrol.2021.109226
https://doi.org/10.1016/j.ijhydene.2020.09.145
https://doi.org/10.1016/j.ijhydene.2020.09.145
https://doi.org/10.1016/j.marpetgeo.2018.07.020
https://doi.org/10.1016/j.marpetgeo.2018.07.020
https://doi.org/10.1016/j.petrol.2018.12.081
https://doi.org/10.1016/j.petrol.2018.12.081
https://doi.org/10.1016/j.coal.2017.05.012
https://doi.org/10.1016/j.coal.2017.05.012
https://doi.org/10.1016/j.petrol.2019.01.096
https://doi.org/10.1016/j.petrol.2019.01.096
https://doi.org/10.1016/j.coal.2017.08.002
https://doi.org/10.1016/j.coal.2017.08.002
https://doi.org/10.1016/j.coal.2015.06.001
https://doi.org/10.1016/j.coal.2016.11.012
https://doi.org/10.1016/j.coal.2016.11.012
https://doi.org/10.1016/j.petrol.2017.01.003
https://doi.org/10.1016/j.petrol.2017.01.003
https://doi.org/10.1016/j.apenergy.2017.04.029
https://doi.org/10.1016/j.apenergy.2017.04.029


Vol.:(0123456789)

SN Applied Sciences            (2022) 4:16  | https://doi.org/10.1007/s42452-021-04899-5	 Research Article

	21.	 Daigle H, Hayman NW, Kelly ED, Milliken KL, Jiang H (2017) 
Fracture capture of organic pores in shales. Geophys Res Lett 
44:2167–2176. https://​doi.​org/​10.​1002/​2016G​L0721​65

	22.	 Mahmoud AA, Elkatatny S, Ali A, Abdulraheem A, Abouelresh M 
(2020) Estimation of the total organic carbon using functional 
neural networks and support vector machine. In: Proceedings 
of the Day 3 Wed, January 15, 2020, IPTC

	23.	 Mahmoud AA, Elkatatny S, Ali A, Abouelresh M, Abdulraheem A 
(2019) New robust model to evaluate the total organic carbon 
using fuzzy logic. In: Proceedings of the Day 4 Wed, October 16, 
2019, SPE

	24.	 Mathia EJ, Rexer TFT, Thomas KM, Bowen L, Aplin AC (2019) Influ-
ence of clay, calcareous microfossils, and organic matter on the 
nature and diagenetic evolution of pore systems in mudstones. 
J Geophys Res Solid Earth 124:149–174. https://​doi.​org/​10.​1029/​
2018J​B0159​41

	25.	 Schmoker JW (1979) Determination of organic content of appa-
lachian devonian shales from formation-density logs: GEOLOGIC 
NOTES. Am Assoc Pet Geol Bull. https://​doi.​org/​10.​1306/​2F918​
5D1-​16CE-​11D7-​86450​00102​C1865D

	26.	 Schmoker JW (1980) Organic content of Devonian shale in west-
ern Appalachian basin. Am Assoc Pet Geol Bull 64:2156–2165

	27.	 Passey QR, Creaney S, Kulla JB, Morett FJ, Stroud JD (1990) A 
practical model for organic richness from porosity and resistivity 
logs. Am Assoc Pet Geol Bull 74:1777–1794. https://​doi.​org/​10.​
1306/​0C9B2​5C9-​1710-​11D7-​86450​00102​C1865D

	28.	 Wang P, Chen Z, Pang X, Hu K, Sun M, Chen X (2016) Revised 
models for determining TOC in shale play: example from Devo-
nian Duvernay Shale, Western Canada Sedimentary Basin. Mar 
Pet Geol 70:304–319. https://​doi.​org/​10.​1016/j.​marpe​tgeo.​2015.​
11.​023

	29.	 Zhao P, Ma H, Rasouli V, Liu W, Cai J, Huang Z (2017) An improved 
model for estimating the TOC in shale formations. Mar Pet Geol 
83:174–183. https://​doi.​org/​10.​1016/j.​marpe​tgeo.​2017.​03.​018

	30.	 Passey QR, Bohacs KM, Esch WL, Klimentidis R, Sinha S (2010) 
From oil-prone source rock to gas-producing shale reservoir – 
geologic and petrophysical characterization of unconventional 
shale-gas reservoirs. In: Proceedings of the All Days, SPE

	31.	 Wang J, Gu D, Guo W, Zhang H, Yang D (2019) Determination of 
total organic carbon content in shale formations with regression 
analysis. J Energy Resour Technol. https://​doi.​org/​10.​1115/1.​
40407​55

	32.	 Charsky A, Herron S (2013) Accurate, direct total organic carbon 
(TOC) log from a new advanced geochemical spectroscopy tool: 
comparison with conventional approaches for TOC estimation. 
In: Proceeding of the AAPG annual convention and exhibition, 
Pittsburg, Pennsylvania, 19–22 May

	33.	 Davenport T, Kalakota R (2019) The potential for artificial intel-
ligence in healthcare. Futur Healthc J 6:94–98. https://​doi.​org/​
10.​7861/​futur​ehosp.6-​2-​94

	34.	 Jung D, Choi Y (2021) Systematic review of machine learning 
applications in mining: exploration, exploitation, and reclama-
tion. Minerals 11:148. https://​doi.​org/​10.​3390/​min11​020148

	35.	 Sacks R, Girolami M, Brilakis I (2020) Building information mod-
elling, artificial intelligence and construction tech. Dev Built 
Environ 4:100011. https://​doi.​org/​10.​1016/j.​dibe.​2020.​100011

	36.	 Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, Chen H 
(2021) Artificial intelligence in sustainable energy industry: Sta-
tus Quo, challenges and opportunities. J Clean Prod 289:125834. 
https://​doi.​org/​10.​1016/j.​jclep​ro.​2021.​125834

	37.	 Kadkhodaie-Ilkhchi A, Rahimpour-Bonab H, Rezaee M (2009) A 
committee machine with intelligent systems for estimation of 
total organic carbon content from petrophysical data: An exam-
ple from Kangan and Dalan reservoirs in South Pars Gas Field, 
Iran. Comput Geosci 35:459–474. https://​doi.​org/​10.​1016/j.​
cageo.​2007.​12.​007

	38.	 Khoshnoodkia M, Mohseni H, Rahmani O, Mohammadi A (2011) 
TOC determination of Gadvan Formation in South Pars Gas field, 
using artificial intelligent systems and geochemical data. J Pet 
Sci Eng 78:119–130. https://​doi.​org/​10.​1016/j.​petrol.​2011.​05.​
010

	39.	 Alizadeh B, Najjari S, Kadkhodaie-ilkhchi A (2012) Artificial neu-
ral network modeling and cluster analysis for organic facies and 
burial history estimation using well log data: a case study of 
the South Pars. Comput Geosci 45:261–269. https://​doi.​org/​10.​
1016/j.​cageo.​2011.​11.​024

	40.	 Sfidari E, Kadkhodaie-Ilkhchi A, Najjari S (2012) Comparison of 
intelligent and statistical clustering approaches to predicting 
total organic carbon using intelligent systems. J Pet Sci Eng 
86–87:190–205. https://​doi.​org/​10.​1016/j.​petrol.​2012.​03.​024

	41.	 Tan M, Song X, Yang X, Wu Q (2015) Support-vector-regression 
machine technology for total organic carbon content prediction 
from wireline logs in organic shale: a comparative study. J Nat 
Gas Sci Eng 26:792–802. https://​doi.​org/​10.​1016/j.​jngse.​2015.​
07.​008

	42.	 Shi X, Wang J, Liu G, Yang L, Ge X, Jiang S (2016) Application of 
extreme learning machine and neural networks in total organic 
carbon content prediction in organic shale with wire line logs. 
J Nat Gas Sci Eng 33:687–702. https://​doi.​org/​10.​1016/j.​jngse.​
2016.​05.​060

	43.	 Yu H, Rezaee R, Wang Z, Han T, Zhang Y, Arif M, Johnson L (2017) 
A new method for TOC estimation in tight shale gas reservoirs. 
Int J Coal Geol 179:269–277. https://​doi.​org/​10.​1016/j.​coal.​2017.​
06.​011

	44.	 Mahmoud AA, ElKatatny S, Abdulraheem A, Mahmoud M, Omar 
Ibrahim M, Ali A (2017) New technique to determine the total 
organic carbon based on well logs using artificial neural net-
work (White Box). In: Proceedings of the Day 3 Wed, April 26, 
2017. SPE

	45.	 Alizadeh B, Maroufi K, Heidarifard MH (2018) Estimating source 
rock parameters using wireline data: an example from Dezful 
Embayment, South West of Iran. J Pet Sci Eng 167:857–868. 
https://​doi.​org/​10.​1016/j.​petrol.​2017.​12.​021

	46.	 Wang P, Peng S, He T (2018) A novel approach to total organic 
carbon content prediction in shale gas reservoirs with well logs 
data, Tonghua Basin, China. J Nat Gas Sci Eng 55:1–15. https://​
doi.​org/​10.​1016/j.​jngse.​2018.​03.​029

	47.	 Shalaby MR, Jumat N, Lai D, Malik O (2019) Integrated TOC pre-
diction and source rock characterization using machine learn-
ing, well logs and geochemical analysis: case study from the 
Jurassic source rocks in Shams Field, NW Desert, Egypt. J Pet Sci 
Eng 176:369–380. https://​doi.​org/​10.​1016/j.​petrol.​2019.​01.​055

	48.	 Rui J, Zhang H, Zhang D, Han F, Guo Q (2019) Total organic 
carbon content prediction based on support-vector-regres-
sion machine with particle swarm optimization. J Pet Sci Eng 
180:699–706. https://​doi.​org/​10.​1016/j.​petrol.​2019.​06.​014

	49.	 Mahmoud AA, Elkatatny S, Ali AZ, Abouelresh M, Abdulraheem 
A (2019) Evaluation of the total organic carbon (TOC) using dif-
ferent artificial intelligence techniques. Sustainability 11:5643. 
https://​doi.​org/​10.​3390/​su112​05643

	50.	 Elkatatny S (2019) A self-adaptive artificial neural network 
technique to predict total organic carbon (TOC) Based on well 
logs. Arab J Sci Eng 44:6127–6137. https://​doi.​org/​10.​1007/​
s13369-​018-​3672-6

	51.	 Creaney S, Allan J, Cole KS, Fowler MG, Brooks PW, Osadetz K, 
Macqueen RW, Snowdon L, Riediger CL (1994) Petroleum gener-
ation and migration in the western Canada Sedimentary Basin. 
In: Geological Atlas of the Western Canada Sedimentary Basin, 
Canadian Society of Petroleum Geologists and Alberta Research 
Council, 1994. pp 455–468

	52.	 Rokosh CD, Lyster S, Anderson SDA, Beaton AP, Berhane H, Braz-
zoni T, Chen D, Cheng Y, Mack T, Pana C et al (2012) Summary 

https://doi.org/10.1002/2016GL072165
https://doi.org/10.1029/2018JB015941
https://doi.org/10.1029/2018JB015941
https://doi.org/10.1306/2F9185D1-16CE-11D7-8645000102C1865D
https://doi.org/10.1306/2F9185D1-16CE-11D7-8645000102C1865D
https://doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D
https://doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D
https://doi.org/10.1016/j.marpetgeo.2015.11.023
https://doi.org/10.1016/j.marpetgeo.2015.11.023
https://doi.org/10.1016/j.marpetgeo.2017.03.018
https://doi.org/10.1115/1.4040755
https://doi.org/10.1115/1.4040755
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.3390/min11020148
https://doi.org/10.1016/j.dibe.2020.100011
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1016/j.cageo.2007.12.007
https://doi.org/10.1016/j.cageo.2007.12.007
https://doi.org/10.1016/j.petrol.2011.05.010
https://doi.org/10.1016/j.petrol.2011.05.010
https://doi.org/10.1016/j.cageo.2011.11.024
https://doi.org/10.1016/j.cageo.2011.11.024
https://doi.org/10.1016/j.petrol.2012.03.024
https://doi.org/10.1016/j.jngse.2015.07.008
https://doi.org/10.1016/j.jngse.2015.07.008
https://doi.org/10.1016/j.jngse.2016.05.060
https://doi.org/10.1016/j.jngse.2016.05.060
https://doi.org/10.1016/j.coal.2017.06.011
https://doi.org/10.1016/j.coal.2017.06.011
https://doi.org/10.1016/j.petrol.2017.12.021
https://doi.org/10.1016/j.jngse.2018.03.029
https://doi.org/10.1016/j.jngse.2018.03.029
https://doi.org/10.1016/j.petrol.2019.01.055
https://doi.org/10.1016/j.petrol.2019.06.014
https://doi.org/10.3390/su11205643
https://doi.org/10.1007/s13369-018-3672-6
https://doi.org/10.1007/s13369-018-3672-6


Vol:.(1234567890)

Research Article	 SN Applied Sciences            (2022) 4:16  | https://doi.org/10.1007/s42452-021-04899-5

of Alberta’s Shale-and siltstone-hosted hydrocarbon resource 
potential. In: ERCB/AGS Open File Report

	53.	 Pengwei W, Zhuoheng C, Zhijun J, Yingchun G, Xiao C, Jiao J, 
Ying G (2019) Optimizing parameter “total organic carbon con-
tent” for shale oil and gas resource assessment: taking west can-
ada sedimentary basin devonian duvernay shale as an example. 
Earth Sci 44:504–512. https://​doi.​org/​10.​3799/​dqkx.​2018.​191

	54.	 Haldar SK (2018) Exploration geophysics. Mineral exploration. 
Elsevier, Amsterdam, pp 103–122

	55.	 Zhuang H, Han Y, Sun H, Liu X (2020) Introduction. Dynamic well 
testing in petroleum exploration and development. Elsevier, 
Amsterdam, pp 1–30

	56.	 Asquith G, Krygowski D (2006) Basic well log analysis. Second 
Ed. AAPG, ISBN 9780891816676

	57.	 Evenick JC (2019) Introduction to well logs and subsurface 
maps. 2nd Ed. PennWell Books, ISBN 9781593706487

	58.	 Tixier M, Alger RP, Doh CA (1959) Sonic Logging. Trans AIME 
216:106–114. https://​doi.​org/​10.​2118/​1115-G

	59.	 Chen Z, Jiang C, Lavoie D, Reyes J (2016) Model-assisted Rock-
Eval data interpretation for source rock evaluation: examples 
from producing and potential shale gas resource plays. Int J Coal 
Geol 165:290–302. https://​doi.​org/​10.​1016/j.​coal.​2016.​08.​026

	60.	 Castillo E (1998) Functional networks. Neural Process Lett 7:151–
159. https://​doi.​org/​10.​1023/A:​10096​56525​752

	61.	 Castillo E, Cobo A, Gutiérrez JM, Pruneda RE (1999) Functional 
networks with applications. Springer, Boston

	62.	 Castillo E, Gutiérrez JM, Hadi AS, Lacruz B (2001) Some applica-
tions of functional networks in statistics and engineering. Tech-
nometrics 43:10–24. https://​doi.​org/​10.​1198/​00401​70015​24042​
82

	63.	 Castillo E, Cobo A, Gutiérrez JM, Pruneda E (2000) Functional 
networks: a new network-based methodology. Comput Civ 
Infrastruct Eng 15:90–106. https://​doi.​org/​10.​1111/​0885-​9507.​
00175

	64.	 Tariq Z, Mahmoud M, Abdulraheem A (2019) Method for esti-
mating permeability in carbonate reservoirs from typical log-
ging parameters using functional network. In: 52nd US Rock 
Mechanics/Geomechanics Symposium. p 6

	65.	 Tariq Z, Mahmoud MA, Abdulraheem A, Al-Shehri DA (2018) On 
utilizing functional network to develop mathematical model 
for poisson’s ratio determination. In: 52nd US Rock Mechanics/
Geomechanics Symposium. p 6

	66.	 Tariq Z (2018) An intelligent functional network approach to 
develop mathematical model to predict sonic waves travel time 
for carbonate rocks. In: SPE Kingdom of Saudi Arabia Annual 
Technical Symposium and Exhibition. p 16

	67.	 Narisetty NN (2020) Bayesian model selection for high-dimen-
sional data. pp 207–248

	68.	 Hang H-M, Chou Y-M (1995) Motion estimation for image 
sequence compression**This work was supported in part by 
the NSC Grant 83–0408-E009012. Handbook of Visual Commu-
nications. Elsevier, Amsterdam, pp 147–188

	69.	 Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference 
system. IEEE Trans Syst Man Cybern 23:665–685. https://​doi.​org/​
10.​1109/​21.​256541

	70.	 Jang J-SR (1991) Fuzzy modeling using generalized neural 
networks and kalman filter algorithm. In: Proceedings of the 
9th national conference on artificial intelligence, CA, USA pp 
762–767

	71.	 Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-
fuzzy logic-genetic algorithm for grade estimation. Comput 
Geosci 42:18–27. https://​doi.​org/​10.​1016/j.​cageo.​2012.​02.​004

	72.	 Abraham A (2005) Adaptation of fuzzy inference system using 
neural learning. Fuzzy systems engineering. Springer, Berlin, pp 
53–83

	73.	 Shahriar K, Owladeghaffari H (2007) Analysis of Permeability 
Using BPF, ANFIS and SOM. In: 1st Canada-US Rock Mechanics 
Symposium, p 5

	74.	 Frizzo Stefenon S, Zanetti Freire R, dos Santos Coelho L, Meyer 
LH, Bartnik Grebogi R, Gouvêa Buratto W, Nied A (2020) Electri-
cal insulator fault forecasting based on a wavelet neuro-fuzzy 
system. Energies 13:484. https://​doi.​org/​10.​3390/​en130​20484

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3799/dqkx.2018.191
https://doi.org/10.2118/1115-G
https://doi.org/10.1016/j.coal.2016.08.026
https://doi.org/10.1023/A:1009656525752
https://doi.org/10.1198/00401700152404282
https://doi.org/10.1198/00401700152404282
https://doi.org/10.1111/0885-9507.00175
https://doi.org/10.1111/0885-9507.00175
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/21.256541
https://doi.org/10.1016/j.cageo.2012.02.004
https://doi.org/10.3390/en13020484

	Utilization of adaptive neuro-fuzzy interference system and functional network in prediction of total organic carbon content
	Abstract 
	Article highlights 
	1 Introduction
	2 Methodology
	2.1 Data description
	2.2 Well logs
	2.3 Samples testing
	2.4 Data preprocessing
	2.5 AI methods
	2.6 Models’ development

	3 Results and discussion
	4 Sensitivity of the inputs
	5 Models’ limitations
	6 Conclusions
	References




