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Abstract
Diabetes mellitus (DM) is the most predominant group of metabolic disorders wreaking havoc on the wellbeing of man, 
with type 2 diabetes mellitus (type 2 DM) accounting for most DM related cases. This study, hence, investigated the 
antidiabetic potential of Gongronema latifolium leaf fractionated compounds against proteins implicated in different 
molecular pathways related to the onset and progression of type 2 DM. A total of fifteen proteins that can act as type 2 
DM therapeutic targets were identified from the literature and downloaded/modelled using respective repositories. After 
docking the compounds with the fifteen proteins, glycogen synthase kinase 3 beta (GSK 3β), glucagon-like peptide-1 
receptor (GLP-1R) and human aldose reductase were chosen as the ideal targets due to their high binding affinities 
with the compounds. Subsequent in silico analysis like binding free energy, ADMET predictions using different servers, 
and machine-learning predictive models (QSAR) using kernel partial least square regression were employed to identify 
promising compounds against the three targets. The eleven identified compounds (Luteonin, Kampferol, Robinetin, 
Gallocatechin, Baicalin, Apigenin, Genistein, Rosmaric acid, Chicoric acid and Naringenin) formed stable complexes with 
the proteins, showed moderation for toxicity, drugability, GI absorptions and drug-drug interactions, though structure 
modifications may be needed for lead optimization. The predictive QSAR models with reliable correlation coefficient 
 (R2) showed the potency of the compounds to act as inhibitors (pIC50) of aldose reductase and GSK 3β, and act as ago-
nists (pEC50) of GLP-1R. Thus, this study experimental framework can be used to design compounds that can modulate 
proteins related to type 2 DM without inducing off-target effects.
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1 Introduction

After many years of medical progress in finding cure/
therapeutics for multi-factorial chronic health diseases 
like diabetes mellitus (DM), the incidence of people liv-
ing with DM remains as prevalent as ever, and it contin-
ues to make a major contribution to the reduction in life 
expectancy around the globe [1, 2]. A statistical report 
on diabetes compiled by WHO showed that the number 
of patients with diabetes has increased fourfold since 
the early 1980s to about 422 million people, and this 
figure is forecasted to hit 693 million in the next four 
decades [2–4]. DM is a group of pathological diseases 
presented with insulin deficiency due to β-cell destruc-
tion or gradual loss of β-cell insulin secretion as major 
clinical features. Type 1 diabetes mellitus (type 1 DM) 
and type 2 diabetes mellitus (type 2 DM) are the major/
prevalent types of diabetes, with T2DM contributing 
90–95% of diabetes-related cases [1]. Complications of 
diabetes are prevalent among people living with type 1 
DM and type 2 DM which are responsible for alarming 
death rates; complications such as stroke, diabetic ulcer, 
diabetic nephropathy, retinopathy and neuropathy, car-
diovascular diseases have higher prevalence [5, 6].

Presently, there is no effective cure for DM. however, 
DM can be managed and controlled through several 
therapies which may require lowering the blood level 
of sugar or delaying the onset or progression of its com-
plications [7]. There are several FDA approved drugs that 
act as first-line pharmacotherapy for T2DM. The orally 
available Metformin is the most common antidiabetic 
drug, which functions by alleviating blood glucose levels 
and modulating insulin sensitivity of tissues [8]. How-
ever, Metformin like other antidiabetic drugs is often 
accompanied by moderate to severe side effects [9]. 
The use of drug monotherapy for controlling the glucose 
level in patients living with diabetes has proven unsuc-
cessful; therefore therapies involving the combination of 
different antidiabetic drugs that act on protein targets 
in molecular pathways involved in diabetes progression 
have provided more satisfactory results [10–12]. The 
major problems posed by this combinational approach 
are unwanted side effects, drug-drug interactions, hepa-
totoxicity and another type of toxicities [13].

A less toxic and more effective therapy is the com-
bination of the active components into a single mole-
cule/compound that could selectively modulate differ-
ent diabetes target proteins and pathways with proven 
efficacy and safety relative to single target drugs. The 
multi-target ligand drug design strategy prioritizes the 
selection of suitable targets implicated in a disease state, 
with the relative potency of the compound towards 

each receptor [14]. In recent years, the Computational 
pipeline is one of the screening methods proposed as 
an interesting route for multi target-based drug design, 
which allows high-throughput virtual screening (HTVS) 
of diverse compounds against several targets of interest 
through molecular docking studies, quantitative struc-
ture–activity relationship (QSAR) and other machine 
learning methods.

This study thus employs different computational tools 
to identify multi-target ligands from characterized com-
pounds of Gongronema latifolium against selective targets 
for combating the ill-effect of type 2 DM. Their choice as 
therapeutic targets was based on the most studied type 2 
DM related proteins [15].

2  Materials and methods

2.1  Retrieval of respective diabetes protein targets

A total of 15 (fifteen) proteins implicated in the onset, pro-
gression and pathogenesis of diabetes and its complica-
tions were collected from literature and downloaded from 
the protein database, other proteins without crystal struc-
tures were modelled using the SWISS homology modelling 
server. The human pancreatic alpha-amylase (PDB: 1B2Y), 
glycogen synthase kinase 3 beta (PDB ID:1UV5), human 
DPP-IV (PDB ID: 3BJM), PPAR- gamma (PDB ID:5U5L), gluca-
gon-like peptide-1 (GLP-1) receptor (PDB ID: 6×1a), human 
glutamine-fructose-6-phosphate transaminase 1 (PDB ID: 
2V4M), insulin receptor kinase (PDB ID: 1GAG), human 
aldose reductase (PDB ID; 2R24), alpha-glucosidase (PDB 
ID: 5ZCB), 11beta-hydroxysteroid dehydrogenase type 1 
(PDB ID: 3CH6), human diacylglycerol O-acyltransferase 1 
(PDB ID: 6VZ1), protein Tyrosine Phosphatase 1B (PDB ID: 
2CM3). These crystal PDB structures were chosen because 
they had a significant resolution of 2.00 Å or more. The 
three-dimensional structure of other proteins not depos-
ited in the protein databank repository which include 
sodium-glucose cotransporter-2 (SGLT-2), G protein-cou-
pled receptors-120 (GPR120), G protein-coupled recep-
tors-119 (GPR1190 were modelled by utilizing their fasta 
sequence.

2.2  Protein preparation and grid generation

The protein crystal structures were prepared using the 
Schrödinger protein preparation wizard to add missing 
hydrogen atoms, optimize hydrogen bonds, delete water 
molecules, and create disulfide bridges if necessary, fill 
missing side chain via Prime refinement, and minimize 
the structures using the OPLS3 force field. The grid files 
for defining the protein binding pockets were generated 
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by picking the co-crystal ligand within the protein bind-
ing pockets. The active sites of modelled proteins were 
predicted by Sitemap before generating the grid file.

2.3  Ligand library and preparation

Different phytochemical fractions of Gongronema latifo-
lium leaf have been isolated using a gas chromatographic 
flame Ionization detector [16]. Therefore, this study built 
a manually curated library by downloading the 2D struc-
ture of the compounds from the Pubchem chemical data-
base. The ligand library contains thirty-nine (39) Alkaloids, 
thirty-eight (38) flavonoids, twenty-five (25) Terpenes, nine 
(9) total phenolics, eight (8) carotenoids, six (6) Hydroxy-
cinnamic acids, seven (7) saponins and seven (7) Sterols, 
and was minimized using ligprep panel.

2.4  Molecular docking studies

Molecular docking studies were performed by docking 
the prepared compounds of Gongronema latifolium leaf 
with retrieved diabetes implicated proteins. Firstly, glide 
high throughput virtual screening (HTVS) was assigned 
as the scoring algorithm to screen the 134 compounds, 
the top 10% ranked compounds were selected for extra 
precision (XP) docking as a scoring algorithm to perform 
more expensive docking simulation with the proteins [17].

2.5  Employment of PRIME MM‑GBSA for binding 
free energy calculation

The compound-protein complexes were evaluated for 
their stability via a post docking analysis tool called Prime 
MM-GBSA by taking a maestro pose viewer file. The major 
contributors for the stability complex are ligand binding 
energies and ligand strain energies [18].

2.6  ADME/T prediction

The selected hit compounds were screened for toxicity 
and drug-likeness using SwissADME and ADMETsar online 
server. The parameters for filtering the compounds include 
Lipinski rule of five (RO5), gastrointestinal (GI) absorption, 
inhibition of CYP450 isoenzymes, hepatotoxicity, eye irrita-
tion and corrosion, biodegradation etc.

2.7  Predictive QSAR modelling

The top criterion for building a predictive quantitative 
structure–activity relationship (QSAR) model is retrieving 
experimental compounds with known biological activities 
against the desired drug target. Therefore, the chemical 
and bioactivity (IC50) profile of a given set of experimental 

data sets of GSK-3β and Aldose reductase from ChEMBL 
database. Also, the agonists of GLP-1 alongside their EC50 
were retrieved from ChEMBL database by blasting the PDB 
fasta sequence of GLP-1R. The predictive models were 
generated by AutoQSAR modelling which calculated the 
topological and physicochemical descriptors, in addition 
to the binary fingerprints.

3  Results and discussion

Polypharmacology is an exciting approach in drug devel-
opment and discovery and has gained increased recogni-
tion over combinational therapies in the last two decades 
[19]. Complex diseases such as diabetes require a more 
modern treatment because they are implicated in several 
molecular pathways, therefore identifying efficacious small 
molecules capable of modulating a network of interact-
ing proteins implicated in diabetes with little or no side 
effect is a legendary magic bullet than the combination 
of multiple drugs [20].

3.1  Molecular docking studies

Molecular docking is an exciting technique in computer-
aided drug design that employs a computer algorithm 
(e.g. Glide) to find the best ligand that fits into the bind-
ing pocket of a receptor at the atomic and sub-atomic 
levels, thereby simulating intermolecular interaction 
between them [21, 22]. Recent studies have shown the 
antidiabetic properties of Gongronema latifolium in rat 
model [23–25]. In order to investigate the binding capac-
ity of the bioactive compound in Gongronema latifolium 
leaf on proteins related to diabetes in humans, the frac-
tions of Gongronema latifolium leaf consisting of different 
phytochemicals were docked with fifteen protein targets 
associated with type 2 DM to discover the possible hit 
compounds. The results of the compounds docking scores 
against different proteins implicated in different diabetes 
molecular pathways are shown in Table S1. After analyzing 
the results, the compounds had more favourable binding 
affinities with a number of proteins. However, this study 
identified the top three interacting proteins which are 
GLP-1R, GSK-3β and aldose reductase. The compounds 
with good docking scores against the three top-ranked 
proteins were sorted out. They are Quercetin, Luteonin, 
Kampferol, Robinetin, Gallocatechin, Baicalin, Apigenin, 
Genistein, Rosmaric acid, Chicoric acid and Naringenin; 
the three-dimensional structure of the compounds is 
illustrated in Fig. 1. The selected small molecular weight 
compounds showed varied binding affinities with the pro-
teins (Table 1). Compounds Quercetin, Chicoric acid and 
Gallocatechin with lowest binding energy against GLP-1 
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receptor recorded docking scores of − 12.860 kcal  mol−1

, − 12.339 kcal  mol−1 and − 11.888 kcal  mol−1. Quercetin, 
Chicoric acid, Luteonin and Baicalin had highest binding 
affinities with GSK-3β, exhibiting docking scores of − 13.
138 kcal   mol−1, − 11.839 kcal   mol−1, − 11.236 kcal   mol−1 
and − 11.22 kcal  mol−1, respectively. Also, the results from 
the docked compounds with aldose reductase showed 
that the docking scores ranged from − 10.220 to − 15.385 
(kcal/mol) as seen in Table 1. Impressively, Rosmaric acid, 
Chicoric acid had an incredible binding affinity and low-
est binding energy with a glide XP docking scores of 
15.385 kcal  mol−1 and − 14.522 kcal  mol−1. The antidiabetic 
properties of the compounds with a good docking score 
(Table 1) selected as hits have been reported in several 
studies [26–28]. This demonstrates their therapeutics in 
alleviating diabetes by modulating different molecular 
pathways.

3.2  Prime MM‑GBSA

Calculation of ligand-bound protein stability complexes 
are known as binding free energy is one of the most reli-
able post-docking analysis techniques for confirming the 
docking score results. A negative value denotes favourable 
results. The results of the binding free energy calculated 

for the compounds in complex with GSK3β, GLP-1R and 
aldose reductase are enlisted in Tables S2–S4. All of the 
compounds formed stable stability with the protein tar-
gets. Naringenin formed the most stability with GSK3β 
(− 57.793 kcal  mol−1), Kampferol, Quercetin and Luteonin 
had ΔG binding scores of − 62.616 kcal  mol−1, − 62.400 kc
al  mol−1 and − 62.122 kcal  mol−1 with aldose reductase. In 
addition, Chicoric acid had the most stability with GLP-
1R (− 62.0383 kcal  mol−1). The major contributors to the 
binding free energy are Coulomb energy, covalent energy, 
van der Waals energy, hydrogen bonding and lipophilic 
binding.

3.3  Interacting profiles

GLP-1, a glucose-dependent hormone, is known for its 
role in insulin secretion through the enhancement of beta-
pancreatic cells to secrete insulin upon binding to Gluca-
gon-like peptide-1 Receptor (GLP-1R) [29, 30]. To analyze 
the backbone, aromatic, side chain and hydrophobic 
interactions of the compounds with the receptor, Ligprep 
module of Schrödinger was employed. Pi-pi stacking and 
hydrogen bonding were the major intermolecular interac-
tions between the compounds and GLP-1R (Table 1). The 
residue Phe381 made major intermolecular contacts with 

Fig. 1  Three dimensional 
structure of top ranked com-
pounds against the diabetes 
protein targets



Vol.:(0123456789)

SN Applied Sciences            (2022) 4:14  | https://doi.org/10.1007/s42452-021-04880-2 Research Article

the compounds by forming Pi-pi stacking with the com-
pounds phenyl rings. In addition, residues Thr207, Ser31, 
Lys197 Gln234 and Gln221 made most of the hydrogen 
interactions with the compounds (Fig. 2). The rich hydro-
gen bond donor and acceptor as a mode of interaction 
between the compounds and GLP-1R may contribute to 
the compounds high docking scores. Similar amino acid 
interactions are seen in potential GLP-R receptor agonists 
for simulating insulin secretion from Phyllanthus emblica 
phytocompounds [31].

GSK-3β, a target for beta cell regenerative therapies, 
is one of the protein kinases implicated in the patho-
genesis of several diseases including type 2 DM [32]. The 
GSK-3β binding site of small molecule inhibitors comprises 
hydrophilic amino acid residues Lys85, Asp200, and Glu51 
known for ligand-ATP recognition [32]. While Querce-
tin and Luteonin formed H-bond interaction with Lys85, 
Genistein and Naringenin were observed to make inter-
molecular interaction with Asp200 via hydrogen bonds. 
The compounds Naringenin, Quercetin, Luteonin and Ros-
maric acid have the most hydrogen donor and acceptor 
contact with the residues within the binding pockets of 
GSk-3β. Recognition of residues Val135, Gln185, Lys183, 
Ile62, Asn186 and Arg141 and Asp133 as a medium of 

hydrogen bonding with a range of GSk-3β inhibitors has 
been observed in different studies [33–35]. This study also 
showed similar interactions by the selected hits (Table 1, 
Fig. 3), in addition to polar interactions with residues such 
as Pro136 Thr138, Val70, Leu132 and Asn186 [36].

A number of structural diverse compounds either 
from natural origin or chemically synthesized molecules 
have demonstrated potency against aldose reductase in 
in vitro and in silico experiments [37, 38]. Plants bioactive 
compounds exhibiting substantial inhibitory attributes 
against aldose reductase are classified into flavonoids, tan-
nins, phenolics, alkaloids, terpenoids chemical groups—
interestingly the investigated Gongronema latifolium leaf 
compounds fall into these categories of chemical groups. 
In addition, these compounds showed very high docking 
scores with aldose reductase than other target proteins 
(Table S1). The interacting profiles of the compounds with 
aldose reductase showed that intermolecular interactions 
were formed mainly by residues Gln183, Trp219, Trp111, 
Trr48, Asn160, Cys298, Asp43, Ile260, Hip110, Asn150 
and Asp43 (Table 1, Fig. 4). However, a distinct molecu-
lar interaction with Trp111 by all the compounds either 
via hydrogen interaction of pi-pi stacking was observed. 
The compounds interactions with the active site residues 

Table 1  Docking score and interacting profiles of the hit compounds

Entry name Docking score Interacting residues/no of H-bond

GLP-1 GSK-3β Aldose reductase GLP-1 GSK-3β Aldose reductase

Quercetin  − 12.860  − 13.138  − 11.687 Thr207, Phe381, Trp33, 
Gln221—[3 H-bonds]

Ile62, Val135, Lys85—[4H 
bonds]

Trp79, Trp111

Luteonin  − 11.505  − 11.236  − 11.405 Thr207, Phe381, Lys197, 
Trp33, Gln221—[2 
H-bonds]

Lys85, Ile62, Val135—[4H 
bonds]

Trp111, Trp79—[1 H bond]

Kampferol  − 9.651  − 7.541  − 11.421 Tp33, Thr207, Phe381, 
Trp203, Phe385, 
Lys197—[2 H-bonds]

No interaction Trp111, Trp20, Leu300—[1 
H bond]

Robinetin  − 11.353  − 10.824  − 12.196 Thr207, Trp33, Phe381, 
Gln221—[2 H-bonds]

Val135, Gln185, Ile62—[4 
H bonds]

Trp111

Gallocatechin  − 11.888  − 7.856  − 11.676 Gln221, Ser31, Trp33—3 
Hbonds

No interaction Trp111

Baicalin  − 9.954  − 11.225  − 13.229 Lys197, Gln37, Thr207—
[2H bonds]

Asn64, Val135, Asp133—
[3 H bonds]

Gln183, Trp219, Trp111—
1[H-bond]

Apigenin  − 9.549  − 10.082  − 11.005 Gln221, Lys297, 
Phe381—[2 H-bonds]

Ile62, Val135—[2 H 
bonds]

Trp111, Trp20

Genistein  − 9.081  − 7.924  − 10.220 Phe281 Ile62, Pro136, Asp200—[3 
H bonds]

Trp111—[1H bond]

Rosmaric acid  − 10.159  − 10.654  − 15.385 Trp297, Arg299, Phe230, 
Trp33, Phe381, Lys197, 
Thr298—[2H bonds]

Asn64, Thr138, Val135—
[4H bonds]

Trr48, Asn160, Cys298, 
Asp43, Ile260, Trp111—[8 
Hbonds]

Chicoric acid  − 12.339  − 11.839  − 14.522 Ser31, Gln234, Lys197, 
Arg299, Gln234, 
Phe230—[4 H bonds]

Asp133, Val135—[2 H 
bonds]

Trp111, Hip110, Asn150, 
Asp43—[4H bonds]

Naringenin  − 9.751  − 11.073  − 11.256 Lys197, Gln221—2 
H-bonds

Val135, Ile62, Asp200—
[4H bonds]

Trp111, Trp20
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Fig. 2  Two dimensional interactions of a Quercetin, b Luteonin, c Kampferol, d Robinetin, e Gallocatechin, f Baicalin, g Apigenin, h Gen-
istein, i Rosmaric acid, j Chicoric acid, k Naringenin with residues at the binding pocket of GLP-1



Vol.:(0123456789)

SN Applied Sciences            (2022) 4:14  | https://doi.org/10.1007/s42452-021-04880-2 Research Article

Fig. 3  Two dimensional interactions of a Quercetin, b Luteonin, c Kampferol, d Robinetin, e Gallocatechin, f Baicalin, g Apigenin, h Gen-
istein, i Rosmaric acid, j Chicoric acid, k Naringenin with residues at the binding pocket of GSK-3β
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Fig. 4  Two dimensional interactions of a Quercetin, b Luteonin, c Kampferol, d Robinetin, e Gallocatechin, f Baicalin, g Apigenin, h Gen-
istein, i Rosmaric acid, j Chicoric acid, k Naringenin with residues at the binding pocket of Aldose reductase
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were similar to zenaresta, an FDA approved drug for aldose 
reductase inhibitor, which occupies nearly the hydropho-
bic region of the binding pocket and elicits conformational 
changes [39].

3.4  Analysis of in silico ADMET prediction

All the eleven selected compounds showing the differ-
ent degrees of binding affinities with the protein targets 
were screened for their pharmacokinetics, drug-likeness, 
and toxicity. This prediction is crucial in drug discovery 
and development because it eliminates drugs or potential 
drug candidates with unwanted side effects and off-target 
effects. To cross-check the properties of the compounds 
in the biological environment, ADMETsar and SwissADME 
servers built using different machine learning-based 
methods are used for the prediction. The physicochemical 

properties of the compounds showed that they are low 
molecular weight compounds (270.24–445.35 KDA), with 
total polar surface area (TPSA) ranging between 90.9 and 
213.78. Lipinski rule of five (RO5) is a ssrule formulated 
by Christopher Lipinski and colleagues for determining 
the oral bioavailability of active drug substances [40]. All 
of the compounds except for Chicoric acid and Baicalin 
were in accordance with RO5, and this correlates with 
the compounds high GI absorption as listed in Table 2. 
Furthermore, the compounds pharmacokinetics prop-
erties were calculated. Four of the principal isoenzymes 
(CYP1A2, CYP2C19, CYP2C9 and CYP2D6) of cytochrome 
p450 are responsible for drug metabolism and determi-
nant of drug interactions that can lead to drug toxicities 
were considered [41]. The server returns “Yes” if it’s an 
inhibitor of investigated CYP or returns “No” if otherwise. 

Table 2  ADME/TOX predictions of the selected compounds

Entry name MW PSA GI Absorption Lipinski CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

(A) ADME predictions by SwissADME
Quercetin 302.24 131.36 High Yes; 0 viola-

tion
Yes No No Yes

Luteonin 286.24 111.13 High 0 Yes No No Yes
Kampferol 286.24 111.13 High 0 Yes No No Yes
Robinetin 302.24 131.36 High 0 Yes No No Yes
Gallocatechin 306.27 130.61 High 0 No No No No
Baicalin 445.35 189.95 Low 1 No No No No
Apigenin 270.24 90.9 High 0 Yes No No Yes
Genistein 270.24 90.9 High 0 Yes No No Yes
Rosmaric acid 359.31 147.35 Low 0 No No No No
Chicoric acid 472.36 213.78 Low 1 No No No No
Naringenin 272.25 86.99 High 0 Yes No No No
(B) Toxicity Prediction by ADMETsar
Compounds 

name
carcinogenic-

ity
Eye corrosion Eye irritation Ames 

mutagen-
esis

Hepatotoxic-
ity

Biodegrada-
tion

Acute oral 
toxicity

Aromatase 
binding

Quercetin  −  −  +  +  −  − Class II  + 
Luteonin  −  −  +  −  +  − Class II  + 
Kampferol  −  −  +  +  +  − Class II  + 
Robinetin  −  −  +  −  +  − Class II  + 
Gallocatechin  −  −  +  −  +  − Class IV  + 
Baicalin  −  −  −  −  +  − Class IV  − 
Apigenin  −  −  +  −  +  − Class III  + 
Genistein  −  −  +  −  +  − Class II  + 
Rosmaric acid  −  −  +  −  +  − Class III  − 
Chicoric acid  −  −  −  −  +  − Class III  − 
Naringenin  −  −  +  −  +  − Class II  + 
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Gallocatechin, Baicalin, Rosmaric acid and Rosmaric acid 
showed the cleanest profiles against the isoenzymes. 
Other compounds are substrates for either CYP1A2 or 
CYP2D6.

The in silico prediction tool for toxicity offers a fast 
and reliable method of investigating compounds toxicity 
before further experimental validation through preclini-
cal and clinical testing. Toxicity prediction showed that 
the compounds are non-carcinogens, biodegradable and 
do not induce eye corrosion. However, they can induce 
a significant level of hepatotoxicity, which may be dose-
dependent as they showed different classes of acute oral 
toxicity (Table 2). In addition, a large number of the com-
pounds had the potential to cause eye irritation and bind 
to aromatase. Overall, the compounds showed significant 
moderation for ADMET, though structural modifications 
may be required to optimize the molecules.

3.5  QSAR prediction

The predictive models for calculating the bioactivities of 
the compounds against the functional proteins are shown 
in Table 3. The models were constructed using kernel par-
tial least squares regression with binary fingerprint (radial, 
molprint2d as descriptors). The statistical models showed 
a reliable correlation coefficient  (R2) of 0.8467, 0.8600 and 
0.7537 for GSK-3, aldose reductase and GLP-1R. [42]. The 
compounds had significantly predicted pIC50 (inhibitory 
activities) against GSK-3 and aldose reductase, recording 

pIC50 between the range of 6.762 and 5.661 (Table 4). The 
potency of the compounds to act as GLP-1R agonists is 
also demonstrated through their pEC50. Overall, the plant 
compounds selected as hits can act as inhibitors of GSK-3 
and aldose reductase while showing moderation to acti-
vate GLP-1 receptors, thereby stimulating the secretion 
of insulin in the beta-pancreatic cells. The scatter plots 
containing both test and training set for the construction 
of predictive models are shown in Fig. 5. Details of Auto-
QSAR predicted activities compared with the observed 
activities for the investigated proteins are listed in Tables 
S6–S8.

Table 3  Best model generated 
for GSK-3β, Aldose reductase 
and GLP-1

S/n Model code Score S.D R2 RMSE Q2

Best model generated for GSK-3β
1 Kpls_desc_38 0.8224 0.5505 0.8467 0.5366 0.8069
Best model generated for Aldose reductase

Kpls_radial_4 0.8448 0.4768 0.8600 0.4660 0.8466
Best model generated for GLP-1R
1 Kpls_molprint2d_20 0.7592 0.3092 0.7537 0.2763 0.7481

Table 4  Predicted activities of the compounds against the three 
protein targets

Entry name GLUT1 Aldose reductase GLP-1R

Quercetin 6.762 5.736 5.403
Luteonin 6.790 5.714 5.093
Kampferol 6.491 5.684 4.982
Robinetin 6.736 5.815 5.004
Gallocatechin 6.499 6.015 5.004
Baicalin 6.808 5.774 4.875
Apigenin 6.454 5.661 5.113
Genistein 6.379 5.697 5.403
Rosmaric acid 6.658 6.120 4.768
Chicoric acid 6.808 6.015 4.475
Naringenin 6.312 5.815 5.125
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4  Conclusion

This study investigated the therapeutic potential of chemi-
cal constituents of Gongronema latifolium leaf against fif-
teen proteins related to type 2 DM. The docking scores of 
the compounds denote that they have high binding affini-
ties with the proteins. However, the compounds showed 
more promising features with aldose reductase, GLP-1 
and GSK 3β. The selected compounds with high docking 
scores interacted with amino acid residues crucial for the 
protein inhibitions or activation formed stable complexes 
upon binding with the proteins and showed moderation 
for ADMET parameters. In addition, the constructive pre-
diction model showed considerable bioactivities of the 
molecules against aldose reductase, GLP-1 and GSK 3β. 
This study demonstrated the antidiabetic potential of 
fractionated compounds Gongronema latifolium leaf in 
slowing down or alleviating type 2 DM, therefore further 
experimental analysis are needed to confirm the therapeu-
tic properties of these compounds.
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