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Abstract
Wood extractives usually do not exceed five percent of dry wood mass but can be a serious issue for pulping as well as for 
the pulp itself. They cause contamination and damages to process equipment and negatively influence pulp quality. This 
paper addresses not only the extractives-related problems but also different solutions for these issues. It is an extensive 
review of different technologies for removing wood extractives, starting with methods prior to pulping. Several wood 
yard operations like debarking, knot separation, and wood seasoning are known to significantly decreasing the amount 
of wood extractives. Biological treatment has also been proven as a feasible method for reducing the extractives content 
before pulping, but quite hard to handle. During pulping, the extractives reduction efficiency depends on the pulping 
method. Mechanical pulping removes the accessory compounds of wood just slightly, but chemical pulping, on the other 
hand, removes them to a large extent. Organosolv pulping even allows almost complete removal of wood extractives. 
The residual extractives content can be significantly reduced by pulp bleaching. Nevertheless, different extraction-based 
methods have been developed for removing wood extractives before pulping or bleaching. They range from organic-
solvent-based extractions to novel processes like supercritical fluid extractions, ionic liquids extractions, microwave 
technology, and ultrasonic-assisted extraction. Although these methods deliver promising results and allow utilization 
of wood extractives in most cases, they suffer from many drawbacks towards an economically viable industrial-scale 
design, concluding that further research has to be done on these topics.
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Abbreviations
ASE  Accelerated solvent extraction
COD  Chemical oxygen demand
CTMP  Chemi-thermomechanical pulp
CTO  Crude tall oil
D (bleaching)  Chlorine dioxide (bleaching)
E (bleaching)  Alkaline extraction (bleaching)
ECF (bleaching)  Elemental chlorine-free (bleaching)
EDTA  Ethylenediaminetetraacetic acid
FT-IR  Fourier-transform infrared 

spectroscopy
FT-NIR  Fourier-transform near-infrared 

spectroscopy
FT-RAMAN  Fourier-transform RAMAN 

spectroscopy
GC  Gas chromatography
GWP  Groundwood pulp
HPLC  High-performance liquid 

chromatography
HW  Hardwood
ILs  Ionic liquids
MW  Microwave
O (bleaching)  Oxygen (bleaching)
P (bleaching)  Hydrogen peroxide (bleaching)
PHWE  Pressurized hot-water extraction
RMP  Refined mechanical pulp
SC-CO2  Supercritical extraction with carbon 

dioxide
SCE  Supercritical extraction
SD  Standard deviation
SW  Softwood

TCF (bleaching)  Totally chlorine-free (bleaching)
TDS  Total dissolved solids
TMP  Thermomechanical pulp
UEA  Ultrasonic-assisted extraction
VOC  Volatile organic compounds
Z (bleaching)  Ozone (bleaching

1  General introduction

Wood has been used from prehistory on and therefore 
rated among the oldest materials of humanity. In the 
beginning, wood was just used as fuel wood for simple 
cooking and heating purposes. Over time, wood has 
become more important as a building material, and since 
the industrial revolution, wood has also been intensively 
used for different industrial purposes [1, 2]. Nowadays, 
there is still a broad range of wood usages even in highly 
developed countries—from the initial use as fuel wood, 
i.e., wood pellets, through to high-performance materials 
for various applications, like wood polymer composites 
(WPC) as a special structural material, xylose as base chem-
ical and lignin as biopolymer [3–6]. One important applica-
tion is wood pulp—used for paper and cardboard—with 
a global production of 184 million tons in 2017, excluding 
recovered paper [7].

For producing paper, wood must be defibered, which is 
known as pulping. Unfortunately, this defibration is quite 
challenging because of the complex structure of wood 
with the lignin matrix. Therefore mechanical (includ-
ing thermomechanical and semi-chemical) or chemical 
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methods are applied [8, 9]. In mechanical pulping, on the 
one hand, the grinding and refining processes increase 
the temperature, which leads to softening the lignin and 
breaking the bonds between the fibers. On the other hand, 
chemical pulping achieves defibration by removing the 
two cellulose-fiber-surrounding components, lignin, 
and hemicelluloses [10]. Besides these three main com-
ponents, wood also contains many organic compounds. 
Since those organic compounds can be extracted with 
organic solvents or hot water, they are called accessory 
compounds or extractives [11]. Björklund Jansson and 
Nilvebrant [12] define wood extractives as the chemical 
compounds that are extractable from wood with various 
neutral solvents. With this definition, the accessory com-
ponents of wood can be clearly differentiated from the 
major structural components (cellulose, hemicelluloses, 
and lignin), because neutral solvents, in general, do not 
dissolve any of the main wood components. Cellulose 
can only be dissolved by special solvents that break the 
intermolecular hydrogen bridge bonds [13, 14]. Hemicel-
luloses must be hydrolysed under acidic (sulfite pulping) 
or alkaline (Kraft pulping) conditions. Apart from novel 
methods, in conventional pulping lignin has to be cleaved 
and dissolved under alkaline conditions (Kraft pulping), 
or sulfonated first (sulfite process) to make it soluble [15].

Although wood extractives usually do not exceed five 
percent of dry wood mass on average (heartwood and 
sapwood)—except some tropical and subtropical woods, 
which contain significantly higher amounts of extractives 
(up to 20 wt% based on dry wood)—they can be a serious 
issue for pulping as well as for the pulp itself. Therefore, 
the removal of these wood extractives should be consid-
ered as pulp (pre-)treatment—not only for avoiding any 
problems during pulping but also for ensuring satisfying 
pulp quality [11, 16, 17].

After a short introduction to wood extractives, includ-
ing an overview on analytical basics, this paper describes 
the effects of wood extractives on pulp and paper quality 
and production. The removal of wood extractives as solu-
tion for these problems is addressed in the main part of 
this paper later on. Beginning with wood yard operations 
and biological treatment, this paper is an extensive review 

of different technologies for removing wood extractives, 
from conventional pulping and bleaching processes 
through different organic-solvent-based extractions to 
several promising novel methods, including the utilization 
of extracted wood extractives.

2  Introduction to wood extractives

The so-called wood extractives or accessory compounds 
are a mixture of many low- and high-molecular-weight 
compounds that can be extracted from wood with hot 
water and organic solvents [11, 12, 18]. In living tress, 
wood extractives play different important roles, which is 
a reason for the complex extractive’s composition. They 
protect living trees against biotic attacks like insects and 
fungi, and play an important role for the metabolism of 
trees (particularly the parenchyma resin which is described 
later on) [11, 12, 19–21].

2.1  Content and classification

The extractives content of wood, as well as the exact 
extractives composition, depends on various factors. On 
the one hand, the extractives vary not only between the 
two groups, softwoods (Gymnospermae, SW) and hard-
woods (Angiospermae, HW) but also among species and 
even single trees, as shown by Ekeberg et al. [22]. On the 
other hand, there are differences in the accessory compo-
nent’s content depending on the location inside the tree 
and the growth conditions like the geographical site, age, 
and cutting season [11, 21, 23, 24]. Thus, universal state-
ments about the extractives content in woods are almost 
impossible.

Table 1 clearly shows the broad range of extractives 
contents published by different authors. Besides different 
genera and species, the determined extractives content is 
also influenced by several other factors, i.e., the sampling 
locations inside the tree, which are often not included in 
literature (like in the references of Table 1). One signifi-
cant variable is the extraction itself because different sol-
vents with different polarities result in different contents 

Table 1  Extractives content 
of different economically 
attractive genera obtained by 
various experimental works

Wood Class Genus Extractives content in wt% on a dry 
matter basis

Samples References

Range Mean SD

HW Beech 1.0–1.6 1.3 0.2 3 [25–27]
HW Eucalyptus 1.4–2.5 2.2 0.5 4 [28–31]
SW Douglas fir 1.1–3.9 2.2 1.2 3 [31–33]
SW Pine 1.0–3.4 2.2 0.9 4 [34–37]
SW Spruce 1.0–4.9 3.0 1.4 4 [2, 38–40]
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and compositions of determined accessory compounds 
[41]. Two wood-related factors important for pulping, 
since they can easily be influenced, are listed by Nisula 
[21]: tree age and the part of the tree. Older trees con-
tain more extractives than younger ones; especially, the 
extractives content of heartwood is higher in older trees 
than in younger ones [23, 42–44]. Experiments of Miranda 
et al. [45], Morais and Pereira [46], and Tasooji et al. [47] 
showed that heartwood, in general, contains significantly 
more extractives than the surrounding sapwood. Other 
parts like knots (the part of the branches inside the stem) 
or the bark contain even more and different accessory 
compounds [48–50]. Björklund Jansson and Nilvebrant 
[12] categorized the different wood extractives depending 
on the chemical composition and structure into aliphatic 
compounds, terpenes, and phenols (presented in Table 2), 
since many important properties, like dissolution behavior 
and volatility, are similar within each of these groups.

The aliphatic compounds and the terpenes can be 
grouped to the so-called resin or pitch, including terpenes, 
resin acids, fatty acids and esters, various alcohols, hydro-
carbons, and other neutral compounds [51]. There are sig-
nificant differences in the resin composition depending 
on the location of the resin inside the wood, inside paren-
chyma cells, or in resin canals. Parenchyma resin, located 
in the parenchyma cells, serves as a reserve nutrient and 
therefore contains mainly fatty acids [52]. In growing trees, 
fatty acids mainly occur as esters (as fats when esterified 
with glycerol in the form of mono-, di- and triglycerides, 
as waxes when esterified with fatty alcohols, and as steryl 
esters when esterified with sterols) [12]. When cells die 
during the transition from sapwood to the inner heart-
wood or when the tree is felled, esters are enzymatically 
hydrolyzed into free fatty acids [21, 51]. The fatty acids 
in wood have lengths of 16–24 carbon atoms, with the 
unsaturated fatty acids oleic, linoleic, and linolenic acid 
(each with 18 carbon atoms) as the main components [12]. 
On the other hand, the resin inside resin canals, canal resin, 
or oleoresin differs from the parenchyma resin in its com-
position. Oleoresin mainly consists of terpenoids, mainly 
resin acids, dissolved in terpenes to ensure flowability. 
The function of canal resin is to seal wounds of the tree 

through evaporation of the volatile terpenes leaving the 
solid resin acids (called rosin) as a hydrophobic mechani-
cal seal back on the tree surface [53]. Although wood does 
not contain phenol, compounds with one or more phenol 
units occur in wood as structural phenolic components 
(i.e., lignin) and non-structural ones [54]. The non-struc-
tural phenolic components are the phenolic extractives, 
one major group of wood extractives. They are essential 
for the durability of wood since they protect the tree from 
different biotic attacks [20]. Björklund Jansson and Nilve-
brant [12] grouped the many different phenolic extractives 
to lignans, stilbenes, flavonoids, tannins, and tropolones.

Since extractives are, as already mentioned, the acces-
sory compounds of wood that can be extracted with hot 
water or organic solvents, they can also be categorized 
with their dissolution behavior. Depending on the solvent, 
they can be divided into hydrophilic and lipophilic extrac-
tives, which are also presented in Table 2 [55].

The classification of wood extractives based on their 
dissolution behavior rates among the most used catego-
rization strategies, but this method also has problems. 
Both lipophilicity and hydrophilicity are just parame-
ters—depending on various factors—not states [56, 57]. 
The polarity of solvents also depends on many parameters 
and is rather a spectrum than just two absolute conditions 
“polar” and “non-polar” [58]. Therefore, the classification 
of the accessory compounds based on their dissolution 
behavior is just an approximate simplification. However, it 
provides an opportunity for predicting dissolution behav-
iors and choosing the proper solvent(s) or mixture(s) for 
the extraction of the desired accessory compound(s), 
rather polar solvents for hydrophilic extractives, and rather 
non-polar solvents for lipophilic extractives. For compar-
ing determined extractives contents, a more reproduc-
ible way to group wood extractives is the classification 
depending on the solvent itself, i.e. (hot-)water extractives, 
acetone extractives, or cyclohexane extractives [59, 60].

2.2  Determination and analysis

Wood can be analyzed for extractives directly with differ-
ent spectroscopy methods. This fast and non-destructive 

Table 2  Classification of wood extractives based on their dissolution behavior, chemical composition, and structure ( adapted from ref. [12])

Lipophilic extractives Hydrophilic extr

Aliphatic compounds Terpenes Phenols

Free fatty acids
Esterified fatty acids (i.e., mono-, di-, triglycerides, waxes, steryl esters)
Fatty alcohols
Hydrocarbons

Sterols
Mono-, sesqui- and diterpenes
Terpenoids

Lignans
Stilbenes
Flavanoids
Tannins
Tropolones
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measurement allows classifying and comparing wood 
species and wood treatments in terms of different wood 
compounds, i.e., certain extractives. Wagner et al. [61] suc-
cessfully applied Fourier-transform RAMAN spectroscopy 
(FT-RAMAN), Fourier-transform infrared spectroscopy 
(FT-IR), and Fourier-transform near-infrared spectroscopy 
(FT-NIR) for this purpose. Similar qualitative analyses were 
carried out by Schnabel et al. [62] with FT-NIR for larch 
wood. However, spectroscopy methods are still not the 
right choice for quantifying wood extractives and require 
further research [61–63].

The two standards T204 [59] and NREL/TP-510–42,619 
[60] describe how to determine the extractives content 
quantitatively. Wood shall be extracted with one or more 
solvents (depending on the desired group(s) of extrac-
tives). These solvents shall be evaporated afterward so that 
the residue can be weighed for calculating the extractives 
content. Even though the evaporation shall be done under 
vacuum and low temperature, the volatile components, 
particularly (mono)terpenes, are mostly also evaporated 
and therefore usually not included in the extract weight 
[59, 60]. Due to their volatility, terpenes, in general, do 
not play an essential role for pulps anyway. Thus, neglect-
ing their contribution to the extractives content is mainly 
accepted, especially when analyzing woods for (develop-
ing) pulping (methods) [12].

However, wood extractives can be quantified directly 
out of the extract without evaporating the solvent first 
with several chromatographic methods like gas chroma-
tography (GC), high-performance liquid chromatography 
(HPLC), size-exclusion chromatography, supercritical fluid 
chromatography, and thin-layer chromatography [64]. GC 
is the most widely used technique for analyzing the acces-
sory compounds of wood with high selectivity and sensi-
tivity [65, 66], even though the derivatization prior to the 
actual measurement includes some time-consuming steps 
[67]. Nisula [21], for example, successfully quantified wood 
extractives in her extensive work with long- and short-col-
umn gas chromatography; resin acids, fatty acids, sterols, 
diterpenoids, juvabiones, lignans, stilbenes, and flavonoids 
with long-column GC, the bigger steryl esters, triacylglyc-
erols, and oligolignans with short-column GC. Poljanšek 
et al. [68], on the other hand, has recommended HPLC as 
the method of choice for analyzing particularly phenolic 
wood compounds. For lipophilic extractives, the resolu-
tion of HPLC is unfortunately not high enough to separate 
some individual wood extractives, particularly sterols and 
fatty acids [21].

Although the content of lipophilic extractives in wood is 
in general significantly lower than the hydrophilic one [69, 
70], methods for analyzing lipophilic extractives are more 
important in pulp and paper manufacture since they cause 
many problems like sticky deposits [55, 71].

2.3  Effects on pulp and paper quality 
and production

The accessory compounds are extracted from wood in 
the papermaking process to a certain amount. Particu-
larly lipophilic extractives such as fatty acids and resin 
acids tend to agglomerate in the process water form-
ing so-called pitch deposits [9, 72]. In Kraft pulping, the 
alkaline conditions enable saponification of the glycerol 
esters to soluble soaps. On the contrary, other lipophilic 
extractives like sterols and sterol esters cannot be saponi-
fied and still form hydrophobic deposits [73]. The ratio of 
unsaponifiable to saponifiable components is, therefore, 
an important indicator of pitch formation in Kraft pulp-
ing. A higher ratio (for example, silver birch, which has one 
of the highest ratios among pulpwood species) indicates 
pitch problems [74] because the deposits stick to process 
equipment, causing contamination and piping blockages 
[75]. Pitch also sticks to different parts of the papermak-
ing machines and stains the felts and canvas, even lead-
ing to major failures like web breaks of the machine [76]. 
Hence, pitch deposition originating from wood extractives 
is responsible for reduced production levels, higher oper-
ating costs, and higher equipment maintenance costs of 
papermaking processes [77]. In Kraft pulp mills, economic 
losses due to pitch problems are assumed to account for 
1–2% of sales [78].

Once pitch deposits become released from the equip-
ment, they contaminate the pulp in the form of dark spots, 
specks, and streaks, lowering the quality of the final prod-
uct [79, 80]. Additionally to dark spots, specks, and streaks, 
extractives are considered to have a negative influence 
on the color and bleachability of pulps [81, 82]. Also, the 
oxidation products of some accessory compounds, par-
ticularly polyphenols, lead to the darkening of wood and 
pulp when exposed to sunlight and oxygen [82]. Pereira 
et al. [20] highlighted stilbenoids as the phenolic com-
pounds that darken wood in the presence of sunlight, 
bringing up some problems when producing paper. Wei 
et al. [83] isolated the phenolic extractives of locust wood 
and observed color changes also when exposed to heat. 
However, chromophores as the UV/VIS absorbing groups 
responsible for the color of wood cannot be attributed 
exclusively to phenolic wood extractives [84]. They also 
originate from lignin to a large extent and sometimes 
even from organometallic extractive complexes [84, 85]. 
Especially heat- and light-induced color changes of wood 
and pulp result from complex reactions of hemicelluloses, 
lignin, and extractives [85].

Besides the negative impact on color and bleachabil-
ity, wood extractives are also responsible for the odor 
of the pulp [86]. Ghadiriasli et al. [87] identified various 
volatile organic compounds (VOC), including terpenes 
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and degradation products from fatty acids and lignin, 
as odor-active compounds in oak wood, while Schreiner 
et al. [88] stated more precisely that fatty acid degrada-
tion products represent about two third of all the odor-
active compounds in pine wood. Among all fatty acid 
degradation products, aldehydes play an essential role as 
odor-active compounds because their odor threshold is 
very low, and their smell is generally considered highly 
unpleasant [12, 89]. Aldehydes are not part of the original 
wood extractives but formed through an auto-oxidation of 
unsaturated fatty acids, called lipid oxidation, catalyzed by 
enzymes and heavy metal ions in wood [90, 91]. Although 
different aldehydes are formed through these lipid oxida-
tion processes, hexanal as a linoleic acid oxidation product 
accounts for most of the aldehydes content [90]. Today’s 
solution to deal with the odor from lipid oxidation in pulp 
and paper is using chelating agents like ethylenediami-
netetraacetic acid (EDTA) to inhibit the catalyzing effect 
of heavy metal ions [12, 90]. However, EDTA is considered 
a risk for the aquatic ecosystem because it influences the 
heavy metals bioavailability and remobilization processes 
in the environment [92, 93]. Munn et al. [93] even con-
cluded in the European Union’s risk assessment report 
about EDTA that there is a need for limiting the environ-
mental risks of EDTA. However, in conventional wastewater 
treatment plants, sufficient degradation of EDTA cannot be 
achieved [92]. EDTA containing process waters must there-
fore undergo special treatment before releasing them into 
the environment, leading to higher process costs [94, 95].

Environmental legislation has led to higher wastewa-
ter treatment requirements and, consequently, multiple 
reuses of process waters in the papermaking industry. 
This system closure decreases the wastewater treatment 
costs and creates new challenges due to the accumula-
tion of wood extractives in process waters [67]. Naicker 
and Sithole [96] observed increasing extractives concen-
tration and chemical oxygen demand (COD) of the pro-
cess water with decreasing fresh water consumption in 
their experiments. Other issues with system closure are 
corrosivity and toxicity of process waters, mainly due to 
wood extractives, and more precisely because of phenolic 
compounds together with resin acids [12, 97]. Krilov and 
Gref [98] explained some corrosion effects with the abil-
ity of some phenolic wood extractives to form iron che-
lates. More specifically, Hazlewood et al. [99] stated that 
the phenolic catechols together with resin acids highly 
increase the corrosivity of black liquor from the Kraft pro-
cess. On the contrary, other wood extractives like palmitic 
acid (a saturated fatty acid) were found to decrease cor-
rosivity [99]. Similar findings were published by Singh 
and Anaya [100], who even found significant differences 
between some HW and SW species when pulping them 
with the Kraft process. Besides corrosivity, toxicity is 

another important effect of wood extractives. This must 
be taken into account for treating the contaminated waste 
streams of the papermaking process, especially because 
there is increased focus on biotechnological processes for 
generating by-products out of waste streams like sludge 
[101] or fines [102]. Also, for conventional treatment of 
pulp mill sludge, wood extractives shall be removed by 
hydrothermal treatment, for example, to enhance anaero-
bic digestibility [103]. The accessory compounds of wood 
should thus be removed already during or even prior to 
pulping to avoid any further treatment in the papermak-
ing process.

3  Removal of wood extractives during wood 
yard operations

Regardless of any subsequent pulp pre-treatment or the 
pulping itself, there are several opportunities for removing 
wood extractives at the wood yard in advance. The main 
tasks of wood yards include debarking the logs, chipping 
them (except groundwood pulping), screening the chips, 
and storing the wood [104]. The following sections explain 
the possible influences of these process steps on the wood 
extractives content.

3.1  Removal of bark and knots

Log debarking is, in general, the first process step at 
wood yards. It removes the dirt on the logs’ outside and 
ensures that the resulting pulp is free of any bark [10]. On 
the other hand, it is also an efficient method for reducing 
the accessory compounds of the used raw material since 
the content of both lipophilic and hydrophilic extractives 
is usually very high in the bark. Among different species, 
wood extractives account for 20–40% of the dry matter of 
bark [23]. The experiments of Arisandi et al. [105] showed 
that eucalyptus bark contains not only more extractives 
than sapwood or heartwood but also more of every ana-
lyzed group of lipophilic extractives. Salem et al. [106] con-
firmed the findings with SW, showing that particularly fir 
and spruce bark contains up to 3 times as much lipophilic 
extractives than the wood itself. Balaban and Uçar [107] 
compared the content of the accessory compounds of oak 
wood with the one of the corresponding bark using differ-
ent polar and non-polar solvents. All the bark extracts con-
tained more extractives than the wood ones did [107]. The 
high extractives content of bark would negatively influ-
ence pulp quality and pulping; including extended cook-
ing times and increased bleaching chemical consumption. 
Wood debarking prior to pulping has therefore become 
a well-established process. Nowadays, relatively low-cost 
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drum debarkers are among the most used technologies, 
reaching final bark contents below 1% [104].

Also, in debarked wood, the accessory compounds are 
not evenly distributed. For example, the inner heartwood 
is richer in both lipophilic and hydrophilic wood extrac-
tives than the outer sapwood [108, 109]. The starting 
points of branches inside the stem referred to as knots, 
contain even more extractives than all the surrounding 
stemwood [50]. Pohjamo et al. [110] reported significantly 
larger quantities of the phenolic flavonoids in knots than 
in the stem of the same trees. Other hydrophilic com-
pounds like lignans can account for even 20% of the mass 
of the knots [111]. Willför et al. [112] analyzed knots for 
lipophilic wood extractives and found large amounts from 
4.5 wt% up to 32 wt%. Besides the higher extractives con-
tent, knots also differ in the mechanical properties from 
wood since they are much denser and contain shorter 
and stiffer fibers. As so-called reaction wood, they have 
to withstand higher mechanical stress [21]. They are not 
fully cooked in chemical pulping and therefore leave the 
digester as large and dark impurities. Subsequent pressure 
screens remove the knots (called knotting) from the pulp 
stream [113]. However, the high extractives content of 
knots can negatively influence the entire pulp and paper 
manufacturing process, as already explained. Removing 
knots even before pulping should thus be considered. 
When chipping the logs, knots mainly result in over-thick 
chips because they are adamant and rigid [114]. Based on 
this finding and the fact that knots are denser than stem-
wood, Eckerman and Holmbom [115] developed a method 
for separating knots from the oversized chip fraction. This 
method, called “ChipSep”, relies on the phenomenon that 
dried knots are heavier than water, whereas dried stem-
wood, is lighter than water, provided that the dry matter 
content of the dried knots and stemwood is at least 85% 
(advantageously at least 87%), according to the patent of 
Eckerman and Holmbom [115]. Hence, knots containing 
wood sinks in water while knots-free wood rises towards 
the water surface [115].

3.2  Wood storage and biological treatment

Besides debarking and chipping, one primary purpose of 
a wood yard is wood storage. Delivered logs and cut wood 
chips are stored to ensure continuous supply of the subse-
quent pulping processes and compensate for any fluctua-
tions in raw material supply [104]. Moreover, wood storage 
is even recommended to decrease the extractives content 
of the wood. During this wood seasoning, the accessory 
compounds of wood are reduced through volatilization, 
oxidative processes, and enzymatic hydrolysis in tree cells 
and by microorganisms [116]. In fact, the content of wood 
extractives starts to decrease immediately after felling 

the trees and continues during storage, in the shape of 
chips and even entire logs, as shown in the experiments 
of Gutiérrez et al. [117] and Silverio et al. [80]. The reaction 
rate of all the chemical and biochemical reactions occur-
ring during storage is highly dependent on environmental 
conditions, i.e., temperature, UV irradiation, wind, rain, and 
storage conditions like ventilation, protection with cov-
ers and the duration of storage [23]. The main reactions 
include oxidation of wood resin, hydrolysis of glycerides 
and other esters, loss of volatile components, and micro-
bial degradation [12]. Logs and particularly wood chips 
require well-suited storage conditions.

Otherwise, chip deterioration and wood decay due 
to sap stain and a fungal attack occur [104]. Ramnath 
et al. [118] even found variations in bacterial and fungal 
communities on frozen stored wood chips. They showed 
that storing the chips at − 20 °C had similar effects on the 
decrease of lipophilic wood extractives than seasoning 
does. During six months of storage, 25–44% reduction of 
lipophilic extractives was observed [118].

To summarize, wood seasoning can be applied as a 
strategy for reducing wood extractives without a signifi-
cant decrease in the quality of the wood, but wood might 
be attacked by microorganisms, resulting in chip dete-
rioration and mass losses of cellulose and hemicelluloses 
[16]. Seasoning offers no control over the microbial species 
growing on wood chips, leading to unpredictable wood 
effects, like loss of brightness or strength. Nevertheless, 
methods for controlled seasoning have been developed 
using microorganisms that effectively remove extractives 
without causing discoloration or strength loss [119]. This 
biological treatment method includes different bacteria 
strains and fungi, such as white-rot fungi, and is referred 
to as biopulping. The employed microorganisms can also 
digest lignin to a certain extent [120, 121]. Dorado et al. 
[122] proved white-rot fungi to decrease the amount of 
accessory wood compounds successfully. Their experi-
ments removed up to 51% of resin acids and up to 87% of 
free fatty acids from pine wood within two weeks, while 
total loss of wood mass was below 12% [122]. Similar find-
ings were published by Thao et al. [123], who removed up 
to 89% of fatty acids and fatty alcohols and 79% of free 
sterols from acacia wood within 30 days by means of a 
white-rot fungus. Košíková et al. [124] investigated four 
yeast strains concerning their wood extractives removal 
behavior. They could decrease the extractives content up 
to 63% and the fatty and resin acids up to 78% within four 
weeks. Experiments on bacterial strains done by Burnes 
et al. [125] and Kallioinen et al. [126] showed that the total 
wood extractives content can be bacterially decreased up 
to 41% (the lipophilic extractives even up to 67%) within 
two weeks without any visible discoloration of the wood. 
However, the experiments about biopulping mentioned 
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above showed that microbiological treatment has to be 
carried out in a bioreactor under controlled conditions and 
takes quite long (several weeks) compared to mechanical 
or chemical pulping (minutes to hours).

4  Extractives’ removal through conventional 
pulping

The two conventional technological principles to produce 
paper pulp out of wood are mechanical and chemical pro-
cesses, differing in the yields (80–95% at mechanical pulp-
ing comparing to 45–55% at chemical pulping), properties, 
and economic potential [8].

The defibration during pulping leads to exposure of 
the resin channels, making oleoresin accessible for disso-
lution and chemical reactions. On the one hand, this can 
lead to pitch problems at mechanical pulping, but on the 
other hand, it enables deresination in chemical pulping 
[12]. The parenchyma resin, on the contrary, is more dif-
ficult to remove because the pulping liquors must diffuse 
into the parenchyma cells, dissolve the resin or form soap 
micelles with the sterols and esters and diffuse out again 
afterwards. This process is enhanced by breaking the cell 
walls through chemical or mechanical pulping [21].

4.1  Mechanical and semi‑chemical pulping

Mechanical pulping can be divided into two main catego-
ries, depending on the defibering method; groundwood 
pulp (GWP) obtained by grinding processes and refined 
mechanical pulp (RMP) produced with refining processes 
[8]. In semi-chemical pulping processes, the wood under-
goes mild chemical treatment preceded by a mechanical 
refining step [2]. The most important refining process is 
thermomechanical pulping (TMP). Before refining, the 
wood chips are heated with steam (to 100–130 °C) to sof-
ten the lignin [10, 127]. The thermal treatment can also be 
combined with a chemical treatment to produce chemi-
thermomechanical pulp (CTMP), representing the transi-
tion from mechanical to chemical pulps [2, 128].

Except for CTMP, the mechanical pulp contains most of 
the original lignin and still many accessory compounds 
[82]. However, the high temperatures of the defibering 
processes lead to partial degradation of cellulose and 
hemicelluloses. The resulting saccharides are then dis-
solved in the process water. Increased temperatures 
(above approximately 160 °C) at the TMP process even 
enhance these mechanisms, as shown by the work of 
Schneider et al. [129]. Besides saccharides, also extractives 
are liberated to a certain amount and released into the 
process water afterwards. These extracted accessory com-
pounds do not only include hydrophilic extractives but 

also lipophilic extractives like fatty and resin acids [130]. 
Resin acids and phenolic compounds contribute the most 
to the toxicity of mechanical pulping process waters [12].

4.2  Chemical pulping

Compared to mechanical pulping, in chemical pulping, 
lignin is rather removed by degradation and dissolution 
than just softened. Depending on the chemicals used 
for cooking the wood chips, there are mainly two types 
of processes: the sulfite process and the sulfate or Kraft 
process as the dominant pulping process [131]. Johansson 
et al. [132] stated as early as 1987 that most of the world’s 
chemical pulp is produced by the Kraft process because 
of several advantages, including versatility in dealing with 
different raw materials and efficient recovery of cooking 
chemicals. Sixta et al. [9] defined Kraft pulping 2006 still 
the dominating chemical pulping process with almost 90% 
of the produced pulp worldwide, although sulfite pulp-
ing has accounted for approximately 70% of the world’s 
dissolving pulp production [9]. Especially for dissolving 
pulp, wood extractives are important disruptive factors 
since they decrease the reactivity of cellulose with car-
bon disulfide when producing viscose out of dissolving 
pulp [133]. The accessory compounds of wood are usu-
ally mainly removed through chemical pulping but lead 
to increased consumption of cooking chemicals since they 
compete with lignin and hinder its removal [81].

The pH-flexible sulfite process uses aqueous sulfur 
dioxide and a base for cooking the wood chips. The domi-
nating sulfite process in Europe is the acid magnesium 
bisulfite process [10]. While hemicelluloses are removed 
directly through hydrolysis during a cooking process 
called digestion, lignin must be sulfonated by the bisulfite 
ions to make it soluble in the cooking liquor [15]. In addi-
tion to hemicelluloses and lignin, most of the accessory 
compounds of wood are also removed through sulfite 
pulping. Unfortunately, some extractives participate 
in the sulfonation reactions, competing with lignin and 
increasing cooking liquor consumption [81]. Nevertheless, 
Rodrigues et al. [133] removed with the acid sulfite pro-
cess nearly 85 wt% (based on initial dry wood) of acetone-
soluble wood extractives, leaving mainly just extractives 
consisting of fatty acids and sterols in the unbleached 
pulp [133]. Nevertheless, Sixta et al. [9] listed the extrac-
tives content of sulfite pulp and Kraft pulp for both spruce 
and beech wood, showing that the sulfate process even 
removed about twice as much extractives as the sulfite 
one, independent of the wood class (SW/HW). Duan et al. 
[134] published similar findings and attributed them to the 
alkaline conditions of the Kraft process, which promote 
saponification and subsequent extractives removal.
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In Kraft pulping, lignin is depolymerized by cooking 
wood chips with an alkaline cooking liquor consisting of 
caustic soda and sodium sulfide. The resulting phenolic 
fragments are then dissolved into the cooking liquor [135]. 
For producing dissolving pulp, hemicelluloses have to be 
removed from wood by prehydrolysis prior to pulping. The 
prehydrolysis can be done with diluted acid (acid-prehy-
drolysis) or just hot water, called autohydrolysis because 
wood typically releases acetic acid through autohydrolysis 
[136]. Although autohydrolysis is technically a hot-water 
extraction, Da Silva Morais et al. [137] and Li et al. [138] 
found an increased extractive content, especially at more 
severe prehydrolysis conditions. Da Silva Morais et al. [137] 
explained that phenomenon with the partial degrada-
tion of some macromolecules (mainly hemicelluloses) at 
high prehydrolysis temperatures. Therefore, the macro-
molecules are mobilized, meaning that the degradation 
products can easily be extracted in the case of subse-
quent extractions. When determining the extractives con-
tent gravimetrically by evaporating the solvent from the 
extract, the degradation products are then distorting the 
extractives content. As already mentioned, experiments 
showed, that the sulfate process removes about twice as 
many extractives as the sulfite one due to saponification. 
The alkaline black liquor converts resin and fatty acids into 
soluble sodium soaps [12]. However, Dunlop-Jones et al. 
[139] published that in typical Kraft pulping, only half of 
the potentially saponifiable wood resin was saponified 
in the digester. Moreover, Shin et al. [140] found sterols, 
steryl esters, and fatty acids as the main compounds in 
residual Kraft pulp extractives. Therefore, there is a need 
to further eliminate the remaining accessory wood com-
pounds through pulp bleaching, for example, removing 
the unsaturated fatty acids by oxygen delignification [140].

4.3  Pulp bleaching

Extended cooking for removing color in pulp originating 
from lignin, extractives and other colored impurities would 
significantly decrease pulp quality due to enhanced cel-
lulose degradation [141]. Thus, pulp bleaching has been 
developed, which is defined by Sixta et al. [141] as a chemi-
cal process for removing the color sources in pulps, has 
been introduced. To quantify the results of these bleaching 
processes, brightness has been established as an indica-
tion of the pulp’s whiteness [10]. Starting with chlorine 
as the main bleaching agent, in the 1980s, so-called ele-
mental chlorine-free (ECF) bleaching processes have been 
developed to substitute chlorine with chlorine dioxide 
(D). The recent development is the totally chlorine-free 
(TCF) bleaching process, applying oxygen (O), hydrogen 
peroxide (P) and/or ozone (Z) as bleaching agents, and an 
alkaline extraction stage (E) [141]. Since mechanical pulp 

aims to minimize mass loss, lignin of mechanical pulps is 
rather just brightened than removed compared to chemi-
cal pulps. This so-called lignin-preserving bleaching is 
accomplished commercially, primarily with hydrogen 
peroxide and/or sodium dithionate [142].

Alkaline hydrogen peroxide bleaching as lignin-
preserving bleaching method decreases the lipophilic 
extractives content of TMP just slightly [143]. Ekman and 
Holmbom [144] examined alkaline peroxide bleaching 
of mechanical pulps with spruce groundwood. Hydro-
philic extractives were oxidized almost wholly, whereas 
resin acids were just partly oxidized and fatty acids even 
unaffected [144]. As already mentioned, chemical pulp-
ing typically eliminates far more wood extractives than 
mechanical pulping, showed by Rodrigues et al. [133], 
with a removal rate of 85 wt% (based on initial dry wood) 
acetone-soluble wood extractives through the acid sulfite 
process. With subsequent E–O–P bleaching, they removed 
further 11 wt%, leaving just four wt% of the initial extrac-
tives in the bleached pulp, mainly consisting of fatty acids 
and sterols [133]. España Orozco et al. [145] achieved com-
parable results with oxygen-reinforced alkaline extraction 
of mixed HW sulfite pulp, followed by Z and P bleaching. 
They decreased the gravimetric acetone extract of pulp by 
68% through the TCF bleaching sequence, with oxygen-
reinforced alkaline extraction as the most effective stage, 
leaving mainly just sterols and sterol esters in the pulp. For 
lipophilic extractives (determined by GC–FID), the highest 
drop was observed after Z bleaching (− 38%). Freire et al. 
[146] and Gutiérrez et al. [147] compared different bleach-
ing sequences with eucalyptus Kraft pulp. They observed 
that unsaturated sterols and fatty acids were extensively 
degraded during D and Z bleaching but only partially 
degraded during O and P bleaching. The wood extractives 
removed during bleaching are not only degraded and oxi-
dized but also dissolved to a certain extent into bleaching 
and washing liquids, as shown through analysis of pitch 
deposits in bleaching stages by Del Rio et al. [75] and eval-
uation of precipitated extractives on bleached Kraft pulp 
by Koljonen et al. [148]. For avoiding such problems dur-
ing bleaching, the extractives content can be reduced by 
extrations before bleaching or even before pulping which 
is explained in the following chapter.

5  Alternative methods for pulping 
and removing extractives

Currently, high-purity cellulose fibers are commercially 
produced from wood with the sulfite or the Kraft process. 
These pulping methods are considered cellulose-first 
strategies since fractionation of biomass usually targets 
high-quality cellulose. The resulting lignin has different 
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properties than the native one (i.e., it is less reactive) and 
is mainly burned for energy recovery instead of using as a 
by-product [149]. The approach for using all the compo-
nents of the biomass feedstock as products are so-called 
lignocellulose biorefineries. Besides pulping, lignocellu-
lose biorefineries also include separation and purification 
processes, which contrasts the increased revenue streams 
with the high capital and operating costs of up to 20–50% 
of the total capital and operating costs of biorefineries 
[150]. However, there is growing interest in organosolv 
pulping processes using organic solvents instead of inor-
ganic pulping liquors. The recovery of satisfying by-prod-
ucts is easier than in the Kraft process [151].

5.1  Organosolv pulping and extraction with organic 
solvents

Kleinert and Tayenthal [152] successfully carried out 
experiments as early as 1931 for fractionating different 
woods with aqueous ethanol. This so-called organosolv 
pulping uses—as already mentioned—organic solvents. 
It is a two-stage process where hydrolysis degrades hemi-
celluloses, and lignin is dissolved into the organic solvent 
to a certain extent depending on the pulping conditions 
[153]. Johansson et al. [132] showed that the organosolv 
process has considerable potential in terms of delignifi-
cation selectivity. Compared to pulps produced through 
conventional pulping, organosolv SW pulps can have 
higher yields at equal kappa numbers, which indicates 
the lignin content of the pulp [132]. Good delignification 
of the organosolv process was also proved by the experi-
ments of Botello et al. [28] and Kirci and Akgül [154]. They 
concluded that organosolv pulping could be a suitable 
alternative for producing dissolving pulps with very high 
cellulose contents. Moreover, organosolv pulps can have 
better optical and strength properties than conventional 
Kraft pulp [155].

Another advantage of the organosolv process is the 
effective removal of extractives from wood. As already 
described, the accessory compounds of wood can be 
extracted with (aqueous solutions of ) organic solvents. 
This is even considered as the method of choice for the 
exclusive extraction of accessory wood compounds. The 
two most commonly used standards, T204 [59] and NREL/
TP-510–42,619 [60], for quantitatively determining the 
wood extractives content, are based on a mild extrac-
tion with organic solvents through a Soxhlet apparatus. 
According to the standards, the wood shall be extracted 
with organic solvents at ambient pressure and low tem-
peratures (below the solvent’s boiling point) for a long 
period (up to 24 h). The extraction works automatically in 
a closed loop with a boiler on the bottom, a condenser on 
the top, and the extraction thimble with a siphon as well as 

a vapor bypass in the middle. There are many siphon cycles 
within the entire extraction period, with fresh solvent for 
each cycle [59, 60]. The long period for complete extrac-
tion can be compensated with high pressures. National 
Renewable Energy Laboratory [60] describes a method to 
use a speed extractor with high pressures, which allows 
quantitatively extracting the wood in a few minutes. This 
method is called accelerated solvent extraction (ASE). 
Table 3 compares the ASE with the traditional Soxhlet 
extraction, as well as different solvents.

Vek et al. [156] showed that with the same solvent(s), 
ASE yields comparable amounts of extractives but takes 
just 10–20% of the time of Soxhlet extraction. The rea-
son for the difference in extraction time is that Soxhlet 
extraction is carried out under atmospheric pressure and 
temperatures between 7 °C and 10 °C below the boiling 
point of the solvent compared to temperatures above the 
boiling point and pressures higher than 100 bar at the 
speed extraction [158, 160]. The solvent itself, on the con-
trary, can have a significant influence on the determined 
extractives content. It can be seen in Table 3 that solely 
extracting with non-polar solvents like Cyclohexane is 
not appropriate for quantitatively removing wood extrac-
tives. Non-polar solvents mainly extract lipophilic acces-
sory compounds of wood, which are less in amount than 
the hydrophilic ones, as already mentioned. To enhance 
the quantitative removal of wood extractives, non-polar 
solvents should be mixed with miscible polar solvents, or 
a subsequent extraction with a polar solvent should be 
added [69, 156, 159]. Moodley [157] and Schwanninger 
and Hinterstoisser [160] could increase the amount of 
extracted material up to 150% with a hot-water extrac-
tion in addition to the organic solvent extraction step. 
On the other hand, one must be aware of autohydroly-
sis occurring during hot-water extraction, dissolving 
considerable amounts of wood compounds that are not 
wood extractives by definition, i.e., hemicellulose degra-
dation products [161]. Krogell et al. [162] and Song et al. 
[163] removed considerable amounts of hemicelluloses 
from the wood meal by pressurized hot-water extraction 
(PHWE) within 20 min. Increasing the wood particle size 
significantly decreased the amount of total dissolved sol-
ids (TDS) [162, 163]. The influencing factor particle size 
was also investigated by Bertaud et al. [158] at extractions 
of coarse-crushed wood and groundwood with acetone 
and cyclohexane and significantly influenced the extrac-
tion behavior. A lower particle size led to sharply higher 
amounts of extracted wood extractives [158]. In terms 
of process design for an industrial application of organic 
solvent extraction for removing wood extractives, dif-
ferent extraction methods and conditions should thus 
be compared using the actual wood particle size of the 
process later on. Thurbide and Hughes [164] carried out 
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experiments comparing Soxhlet extraction and ASE with 
TMP instead of wood meal as the standards T204 [59] and 
NREL/TP-510–42,619 [60] require. The obtained extractives 
content was quite similar, meaning that even at industrial 
wood particle sizes like TMP, long extraction times can be 
compensated by high temperatures and pressures and 
vice versa [164].

Soxhlet extraction is just a lab-scale method because of 
the long extraction period and the high energy demand 
for recycling the vast amount of organic solvent needed. 
Nevertheless, organic solvent extraction, in general, 
would technically be an interesting technology for remov-
ing wood extractives as pulp (pre-)treatment as well as 
for pulping itself. Shin et  al. [165], for example, could 

Table 3  Lab scale extractions of groundwood with different methods and solvents

Description: The amount of extracted wood extractives in wt% is based on initial dry wood
1 Fagus sylvatica L.; 2Eucalyptus grandis; 3Eucalyptus nitens; 4Abies alba; 5Pinus pinaster; 6Pinus nigra; 7Picea abies

Wood genus Extraction 1 Extraction 2 Amount of 
extracted extrac-
tives in wt%

Reference

Method Solvent(s) Time in min Method Solvent(s) Time in min

Beech1 Soxhlet Cyclohexane 240 – – – 1.0 [156]
Beech1 Soxhlet Cyclohexane 240 Soxhlet Methanol 360 5.7 [156]
Beech1 ASE Cyclohexane 15 – – - 1.0 [156]
Beech1 ASE Cyclohexane 15 ASE Methanol 15 5.3 [156]
Eucalyptus2 Soxhlet Acetone 240–300 – – – 3.1 [157]
Eucalyptus2 Hot-water Water 180 – – – 4.6 [157]
Eucalyptus2 Hot-water Water 180 Soxhlet Acetone 240–300 5.2 [157]
Eucalyptus2 Hot-water Water 180 Soxhlet Ethanol/Toluene 

(1/2)
240–300 6.7 [157]

Eucalyptus3 Soxhlet Acetone 240–300 – – – 2.2 [157]
Eucalyptus3 Hot-water Water 180 – – – 4.8 [157]
Eucalyptus3 Hot-water Water 180 Soxhlet Acetone 240–300 5.4 [157]
Eucalyptus3 Hot-water Water 180 Soxhlet Ethanol/Toluene 

(1/2)
240–300 5.4 [157]

Fir4 Soxhlet Acetone 360 Soxhlet Acetone/Cyclohex-
ane (1/9)

480 4.9 [158]

Fir4 ASE n-Hexane 20 ASE Acetone/Water 
(95/5)

20 5.9 [158]

Pine5 Soxhlet Acetone 360 Soxhlet Acetone/Cyclohex-
ane (1/9)

480 5.7 [158]

Pine5 ASE n-Hexane 20 ASE Acetone/Water 
(95/5)

20 9.5 [158]

Pine6 Soxhlet Cyclohexane 360 – – – 4.1 [159]
Pine6 Soxhlet Cyclohexane 360 Soxhlet EtOH 360 4.8 [159]
Pine6 Soxhlet Acetone 480 – – – 4.6 [159]
Pine6 Soxhlet Cyclohexane/EtOH 

(2:1 v/v)
360 – – – 4.6 [159]

Pine6 Soxhlet Cyclohexane/EtOH 
(2:1 v/v)

360 Soxhlet EtOH 360 4.8 [159]

Spruce7 Soxhlet Acetone 360 Soxhlet Acetone/Cyclohex-
ane (1/9)

480 4.8 [158]

Spruce7 ASE n-Hexane 20 ASE Acetone/Water 
(95/5)

20 6.9 [158]

Spruce7 Soxhlet Benzene/EtOH 
(2:1 v/v) + EtOH 
(abs.) + EtOH (95 
vol%)

540 – – – 2.3 [160]

Spruce7 Soxhlet Benzene/EtOH 
(2:1 v/v) + EtOH 
(abs.) + EtOH (95 
vol%)

540 Hot-water Water 180 4.2 [160]
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significantly decrease the chromophore groups of aspen 
Kraft pulp just by extracting the pulp with organic sol-
vents to remove residual extractives. Baptista et al. [166] 
extracted wood with organic solvents even prior to Kraft 
cooking. The results showed better bleachability and less 
chlorine dioxide consumption to reach the same bright-
ness levels when bleaching the pulp [166].

Despite all the advantages of extracting wood with 
organic solvents and aqueous solutions of organic sol-
vents, like good pulp properties and superior capabilities 
of removing lignin as well as extractives (depending on the 
process conditions), it is unfortunately not an economic 
pulp (pre-)treatment method [167]. Notably, organic sol-
vent recycling has a significant impact on the energy con-
sumption of the process, as it remains one of the main 
challenges towards an economically viable design [168, 
169].

5.2  Novel extraction and fractionation methods

In the organosolv process, as already mentioned, not only 
the accessory compounds of wood are extracted, but also 
lignin and hemicelluloses by breaking down the internal 
bonds. The lignin obtained as a by-product of this process 
is characterized by high purity and quality [170]. On the 
other hand, organic solvents are associated with flam-
mability, volatility, toxicity, environmental hazards, and 
increased costs [171, 172]. Thus, extensive research has 
been done to develop various (pre-)treatment processes 
with different methods and solvents, particularly environ-
mentally friendly or green solvents [172, 173].

One alternative method with green solvents is super-
critical extraction (SCE), more precisely, the extraction with 
supercritical fluids. The advantages of using supercritical 
fluids are the low viscosity, high diffusivity, high dissolving 
power, and low surface tension, leading to higher solvent 
mass transfer when penetrating cell wall layers. Typical 
SCE solvents are water, carbon dioxide, and mixtures with 
organic co-solvents [171]. Supercritical extraction with car-
bon dioxide (SC-CO2) has become an established technol-
ogy since  CO2 is non-toxic, non-flammable, and recyclable. 
Furthermore, carbon dioxide is considered non-polar and 
dissolves lipophilic compounds, i.e., resin and fatty acids 
[158]. Another alternative process is steam explosion, 
which is technically the treatment of wood through hot 
steam under pressure with a subsequent pressure drop to 
atmospheric pressure. This leads to the destruction of cell 
wall layers and easier solubilization of wood compounds 
[174]. Table 4 compares different supercritical extractions 
and steam explosion treatments with Soxhlet as the refer-
ence method for quantitatively extracting the accessory 
wood compounds.

As it can be seen in Table 4, supercritical extraction and 
steam explosion can yield significantly more extractives 
than a Soxhlet extraction. Still, one should be aware that 
SCE and especially steam explosion degrades hemicellu-
loses to a certain extent [170]. This means that the extrac-
tives content gravimetrically determined by evaporating 
the solvent from the extract can incorrectly be too high 
because the evaporation residue contains extractives 
and hemicellulose degradation products. Nevertheless, 
Demirbaş [175], for example, extracted four times more 
extractives and ten times more amount of fatty acids with 
SCE than the Soxhlet extractions. The big advantage of 
steam explosion is the lower capital costs and the higher 
energy efficiency, which makes it suitable for lab-scale and 
commercialized applications from an economical point of 
view [176]. Despite the benefits of SC–CO2 as low solvent 
costs and low temperatures, the exceptionally high pres-
sure of up to several hundred bars is a barrier for upscaling 
this process to an industrial scale [177].

One relatively new approach to overcome the disad-
vantages of using volatile organic solvents, or applying 
high pressures for SCE or steam explosion, for example, are 
ionic liquids (ILs) which are also considered to have lower 
environmental impacts [178]. ILs are salts and therefore 
composed of anions and cations. The properties resulting 
from this composition are thermal stability, remarkable 
solvating ability, nonvolatility, and near-zero vapor pres-
sure [179]. Especially in biorefineries, ILs were proven to 
be an effective solvent for fractionating wood and even 
dissolving entire wood particulates after an autohydrolysis 
step, as shown by Deb et al. [180]. On the other hand, Papa 
et al. [181] could extract significant amounts of the ter-
pene α-pinene from pine wood applying IL treatment, and 
Kilulya et al. [182] demonstrated the removal of lipophilic 
wood extractives from dissolving pulp with ILs in amounts 
comparable to other extraction technologies. Additionally, 
ILs exhibit favorable behavior when producing food sup-
plements or drugs out of wood, i.e., antioxidants. Pinkert 
et al. [183] successfully applied food-additive-derived ILs 
for extracting wood lignin without dissolving or degrading 
cellulose. However, the drawback was the requirement of 
recycling the ILs more than 100 times for an economically 
feasible process [183]. The reason are high costs for ILs due 
to synthesis, purification, and downstream processing pro-
cedures, which are currently the limiting factors for using 
ILs at a large scale [179]. Other disadvantages of ILs are 
poor biodegradability and biocompatibility, and usually, 
fossil resources are needed to produce ILs [184]. In 2007, 
Fukaya et al. [185] developed so-called “Bio-ILs” completely 
derived from biomaterials to overcome these problems. 
However, Yiin et al. [184] concludes that further research 
has to be done on Bio-ILs, because studies are still limited 
in 2021.
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One of the drawbacks of all the treatment methods 
mentioned above is the heat transfer resistance limiting 
the process efficiency. Microwave (MW) technology, which 
has received increased attention in recent years, can over-
come this limitation because MWs penetrate materials and 
deliver energy throughout the material volume. Therefore, 
this so-called in-core volumetric heating generates heat 
directly inside the volume instead of heat transfer through 
conduction and convection when conventionally heating 
from outside [186]. The advantages are enhancement of 
reaction rate, reduction of the reaction time, increased 
product yield, and less formation of by-products, provided 
that the solvent and/or the biomass are high-microwave-
absorption materials [187]. For example, Xu et al. [188] 
proved MW technology as an efficient method by liquefy-
ing about 75% of the initial wood in methanol at 180 °C in 
just 15 min. However, applying microwave extraction can 
lead to local overheating since composition, geometry, 
and size affect microwave power distribution, making it 
challenging to up-scaling the process [171].

Another novel method applying high-energy radiation 
is ultrasonic-assisted extraction (UEA) [189]. The principle 
behind UAE is disrupting the solid structure with ultrasonic 
waves [190]. In detail, the ultrasonic waves degrade cell 
walls and rupture bonds between lignin, hemicelluloses, 
and cellulose [171]. He et al. [191] proved the ultrasound-
induced mechanical damage of wood structure in his work 
and observed a significant reduction of wood extractives. 
Wang et al. [192] could increase the extraction efficiency 
even by factor 2.6 when extracting hemicellulosic and 
phenolic compounds from bamboo wood with water. 
Similar findings were published by Sillero et al. [193], who 
successfully increased the extraction of phenolic wood 
extractives from different HW species with intensified UEA. 
Although UEA has been successfully proved as an effective 
extraction method, much more research has to be carried 
out for using UEA in large industrial-scale processes, i.e., 
optimization in terms of ultrasound power input and fre-
quency [189].

6  Utilization of wood extractives

When applying extractive methods as pulp (pre-)treat-
ment, the accessory compounds of wood cannot only be 
removed but also isolated as side products since they have 
many interesting properties.

Wood extractives play an essential role in protecting liv-
ing trees against fungal attacks and other pests like insects 
[19]. Especially phenolic extractives and resin acids act as 
natural fungicides of trees [12, 194]. The extract of Delonix 
regia (also known as flame tree or flamboyant) in the study 
of Salem et al. [195] showed inhibition of fungal growth 

and antioxidant activity. Additionally, the extract exhibited 
antibacterial behavior against different bacterial strains, 
i.e., Escherichia coli, suggesting the usage to control plant 
and human pathogens [195]. Hosseini Hashemi and Jahan 
Latibari [196] found that walnut-heartwood-extractives-
coated poplar wood had significantly less mass loss after 
exposing it to white-rot fungus than untreated poplar 
wood. Belt [197] observed pine knot extract to have a sig-
nificant antifungal character, but suggested more study 
before approving pine extractives as preservative chemi-
cals. However, wood extractives have enormous potential 
in wood protection because they have many different anti-
microbial properties, are renewable, and are less eco-toxic 
than chemical biocides [198].

Pine extractives have been used by humans for hun-
dreds of years for paintings and coatings, particularly for 
caulking seams of wooden ships [199]. Since distilling 
wood extractives, the two resulting products, turpentine 
and rosin, have served as important platform chemicals. 
Today, the overwhelming predominance of petroleum-
based chemicals has led to much less usage of wood 
extractives than their potential would be. Nevertheless, 
the rising demand for renewable materials and chemicals 
increases interest in wood extractives [200].

Currently, wood extractives resulting from thermome-
chanical pulping are wasted because today’s approaches 
for managing them with additives during pulping do not 
allow efficient recovery [201]. In Kraft pulping of SW, on 
the other hand, the volatile accessory compounds of wood 
can be isolated, yielding approximately 10 kg/ton of pulp. 
These volatile extractives mainly consist of monoterpenes 
and are distilled for removing impurities. The resulting 
fraction is called turpentine, with the major constituent 
α-pinene. Turpentine is mainly used for producing chemi-
cals, fragrances, and flavors. The non-volatile accessory 
compounds of wood, mainly soaps of resin acids and fatty 
acids, are separated from the cooking liquor after the Kraft 
cooking process. The addition of sulfuric acid liberates the 
free fatty acids, giving crude tall oil (CTO) with a yield of 
up to 50 kg/ton of pulp [202]. The CTO production in 2018 
was about 2.5 million metric tons worldwide. From that 
amount, globally, two million metric tons were refined, 
while the rest was used for heat and power generation 
[203]. The distillation products of CTO are 30–50% pitch, 
30–50% fatty acids, and 15–35% resin acids [204]. In the 
rosin fraction (colophony), Holmbom [205] found 62–80% 
of the resin acids from the crude tall oil feed.

From a product point of view, CTO products can be 
divided into chemical intermediates, biodiesel, and tall oil 
pitch. Pitch is currently just used for heat and power gen-
eration, whereas the chemical intermediates, rich in resin 
acids, are used as adhesives and in paintings and printing 
inks [203]. The fatty acids of tall oil can be converted into 
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biodiesel by esterification with the challenge of remov-
ing the remaining sulfur [206]. However, tall oil biodiesel 
is one way to add more value to CTO. In Finland, the first 
industrial-scale CTO biodiesel plant worldwide produced 
more than 100,000 tons of biodiesel per year, already in 
2015 [207, 208].

7  Concluding remarks and outlook

Wood extractives are still a big issue for the pulp and paper 
industry. They lower pulp quality and cause many prob-
lems for the pulping process itself due to the formation of 
sticky deposits. Some established process steps already 
decrease the extractives content to a certain extent, i.e., 
debarking, chemical pulping, and bleaching. Addition-
ally, many alternative technologies for reducing accessory 
wood compounds have been developed to replace or sup-
plement the conventional process steps, as shown in Fig. 1.

Wood debarking as a well-established technology is 
a very effective method to reduce the wood extractives 
content. In bark, wood extractives account for 20–40% 
[23] of the dry matter compared to less than in wood. 
Research about the extractives content of different wood 
parts showed that besides bark, also knots contain large 
amounts of extractives from 4.5 wt% up to 32 wt% [112]. 
Knots are also denser and stronger than heart- and sap-
wood, which allows rejecting knot-containing chips. Wood 

seasoning after chipping can also reduce the accessory 
compounds even prior to pulping. Still, it requires well-
suited storage conditions and long storage times for signif-
icantly lowering the extractives content. Otherwise, wood 
decay and/or fungal attack might lead to quality losses. 
On the other hand, several studies proved different fungi 
and bacterial strains to effectively decrease the extractives 
content by more than 60% [124] without decreasing wood 
quality. However, the main drawback for an industrial-scale 
use is the requirement of controlled conditions in a bio-
reactor for several weeks required for such a biological 
treatment.

Conventional pulping also removes wood extractives to 
a certain extent. At mechanical pulping, just a small part 
of hydrophilic and lipophilic wood extractives are released 
into the process water, but Rodrigues et al. [133], for exam-
ple, could remove in their work nearly 85 wt% (based on 
initial dry wood) of acetone-soluble wood extractives by 
the acid sulfite process. Kraft pulping was found to remove 
even more extractives than the sulfite process does. Fur-
thermore, pulp bleaching plays an important role in 
decreasing the amount of accessory wood compounds. 
With the right choice of pulping stages, the residual 
extractives content can be lowered significantly, leaving 
mainly just sterols and sterol esters in the bleached pulp.

Additionally, a number of organic-solvent-based 
pulping and extraction methods have been developed 
to remove the accessory compounds from wood and 

Fig. 1  Overview of established 
and alternative methods for 
removing wood extractives 
at pulp production. Descrip-
tion: Blue solid-line frames 
are established conventional 
processes, green double-line 
frames are novel alternative 
methods. Solid lines inside 
the frames separate differ-
ent options at the respective 
process stage; dashed lines 
indicate possible combinations 
of different methods
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pulps. The extraction with organic solvents, as one of 
the most used extraction techniques for woody biomass, 
even allows quantitatively removing wood extractives 
and is therefore also the method of choice for determin-
ing the extractives content. However, the typical organic 
solvents like ethanol, acetone, or cyclohexane are quite 
volatile and highly flammable. This has led—together 
with economic challenges for solvent recycling—to the 
development of novel extraction methods, ranging from 
alternative solvents like supercritical fluids or ILs through 
MW technology as an alternative heating method to UAE 
for enhancing the extraction by mechanically damaging 
cell wall structures. All these extraction-based methods 
are not only technically suitable for removing wood 
extractives but can also be used as an alternative pulp-
ing method for wood fractionation and delignification, 
as proved by many studies. Moreover, the extraction-
based removal of wood extractives allows using the 
extracted accessory compounds of wood, i.e., as natu-
ral biocides or platform chemicals. However, further 
research is required to overcome the problems of novel 
extraction methods which are currently hindering the 
application for removing wood extractives on an indus-
trial scale. On the one hand, there is a need for better 
synthesis and recycling processes to reduce operating 
costs (ILs). On the other hand, there are several technical 
issues, like high pressures (SCE) and irradiation power 
input and distribution for large geometries (MW tech-
nology and UAE).

This need for research has also been intensified by 
enhancing environmental legislation. On the one hand, 
state-of-the-art processes for avoiding negative impacts 
of wood extractives on pulp and paper quality by add-
ing chemicals will most likely be restricted by law. Most 
additives, i.e., complexing agents against lipid oxidation 
of wood, are already considered as risks for the aquatic 
ecosystems. On the other hand, higher wastewater treat-
ment requirements and fresh water usage regulations 
have led to increased process water system closure and, 
consequently, to an accumulation of wood extractives in 
process waters. The resulting lower product quality and 
higher maintenance costs (due to blockages and web 
breaks, for example) can only be avoided by expensive 
process water treatment. An alternative solution is remov-
ing wood extractives as pulp (pre-)treatment, which is still 
in the research and development stage. Nevertheless, 
some novel methods, like extracting wood with super-
critical fluids or ILs and using MW and UAE technologies, 
are still performed on a lab scale but already delivering 
promising results for solving this issue in the near future.
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