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Abstract
Northern lakes are important sources of  CH4 in the atmosphere under the background of permafrost thaw and winter 
warming. We synthesize studies on thermokarst lakes, including various carbon sources for  CH4 emission and the influ-
ence of thermokarst drainage on carbon emission, to show the evasion potential of ancient carbon that stored in the 
permafrost and  CH4 emission dynamics along with thermokarst lake evolution. Besides, we discuss the lake  CH4 dynamics 
in seasonally ice-covered lakes, especially for under-ice  CH4 accumulation and emission during spring ice melt and the 
possible influential factors for  CH4 emission in ice-melt period. We summarize the latest findings and point out that fur-
ther research should be conducted to investigate the possibility of abundant ancient carbon emission from thermokarst 
lakes under climate warming and quantify the contribution of ice-melt  CH4 emission from northern lakes on a large scale.
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1 Introduction

Atmospheric  CH4 is the second major greenhouse gas, 
with 32 times higher global-warming potential than  CO2 
for a 100-year time horizon, and contributes to about 
23% to the additional radiative forcing accumulated in 
the lower atmosphere since 1750 [25]. Over the past two 
decades, surface freshwaters including lakes, reservoirs, 
and rivers have been recognized as important global  CH4 
sources [4, 70], whereas the contribution of northern lakes 
is neglected and overshadowed by wetland emission [11, 
96]. In the northern high-latitude regions, temperatures 
have risen 0.6 °C per decade over the last 30 years, which 
is twice as fast as the global average [32]. This is com-
bined with the increase in permafrost degeneration [1] 

and rapid warming of lake surface water [63]. Under this 
background, a growing number of studies had started to 
pay attention to the role of northern freshwaters (lakes 
and ponds) in  CH4 emissions. The themes are focused on 
the following:

I.  CH4 emissions from northern thermokarst lakes. 
Thermokarst lakes can mobilize deeper permafrost stored 
organic matter, especially for the mineralization of Pleisto-
cene-aged carbon, which may result in positive warming 
feedback of climate change [76]. However, more research 
suggests that the permafrost carbon feedback is the syner-
gies of thermokarst lake formation, extension, drainage, 
and vegetation resume processes (e.g., [22, 87].

II.  CH4 emissions in the seasonally ice-covered lakes. In 
northern lakes, a significant part of the annual flux occurs 
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during the ice-melt period in spring [34, 43, 56] besides the 
autumn overturn period for dimictic lakes [26]. Hence, the 
winter ice-covered period is recognized as an accumula-
tion season of  CH4, and knowledge about the importance 
of lake carbon cycle in the ice-covered period is impor-
tant to understand present-day conditions and predict 
the effects of climate change on aquatic systems and the 
referring feedback effects on the climate [43].

Here, we review the increasing knowledge on  CH4 emis-
sions from northern lakes and provide expectations for 
future studies.

2  Thermokarst lake dynamics and  CH4 
emission feedback

2.1  Permafrost thaw and thermokarst lake 
formation

Permafrost is defined as ground that remains at or below 
0 °C for at least two consecutive years (Permafrost Sub-
committee, 1988) and is estimated to occupy about 24% 
of the northern hemisphere land area, with approxi-
mately 70% distributed between 45°N and 67°N [97]. 
Permafrost warming continues along with the increase 
in air temperature. Near-surface permafrost in the High 
Arctic and other very cold areas has warmed by more 
than 0.5 °C since 2007–2009, and the layer of the ground 
that thaws in summer, which is usually identified as 
active layer, has deepened in most areas where perma-
frost is monitored [1]. Permafrost in the subarctic zone, 

where the permanently frozen ground is discontinuous, 
is especially vulnerable to environmental change as it is 
already close to its thawing point [61]. While even in the 
Arctic zone of continuous permafrost, an abrupt, large 
increase in the extent of permafrost degradation has 
been observed [36].

Thermokarst is the process by which the thawing 
permafrost ground causes land subsidence, resulting in 
development of distinctive landforms [46, 76]. Thermo-
karst formation has important impacts on the hydrology, 
geomorphology, biogeochemistry, and ecology of the Arc-
tic landscape [8], which will be accelerated under climate 
change [62]. For example, lakes are formed in the thermo-
karst landforms following thawing of ice-rich permafrost 
or melting of massive ground ice and snow [29]. Thermo-
karst lakes are widespread throughout the Arctic and sub-
arctic lowland areas of western and northern Alaska [64], 
northern Scandinavia [14], Canada [9], and Siberia [59]. 
For example, thermokarst lakes comprise approximately 
90% of the lakes in the Russian permafrost zone [88], and 
thermokarst can affect 10–30% of Arctic lowland land-
scapes in northern Alaska [36].

Thermokarst lakes could bring positive feedbacks to 
permafrost thaw as permafrost thaw is much deeper under 
lakes than under terrestrial soils [74, 99]. Thawed water 
enhances heat flow into the upper permafrost, leading to 
the thawing of previously frozen soil. If lakes deepen past 
the maximum depths of winter ice, which are approxi-
mately 1.5–2 m in the outer Alaskan Arctic Coastal Plain [2], 
they maintain a perennially unfrozen pool of liquid water 
and thawed sediment, which is termed as talik (Fig. 1). The 

Fig. 1  Schematic showing the 
thaw-lake  CH4 production by 
organic carbon of different 
ages. The supply of H to  CH4 
production by Late Pleistocene 
carbon occurs along thermo-
karst erosion margins, and the 
radiocarbon age of  CH4 tend 
to be younger (e.g., Holocene-
aged) toward the lake center. 
The figure is  modified from 
Brosius et al. [10]
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talik can deepen and expose the formerly sequestered 
organic carbon to microbial activity [2].

Besides of the strong influence on the surface energy 
balance in permafrost regions [12, 38], thermokarst lakes 
are also considered to be potential sources of greenhouse 
gas, which may result in positive warming feedback of cli-
mate [76]. Permafrost soils store more carbon than that 
currently present in the atmosphere and all living bio-
mass combined, which has accumulated for over tens of 
thousands of years as senesced plant materials are frozen 
and preserved [97, 98]. Thermokarst lakes can mobilize 
deeper permafrost stored organic carbon and anaerobic 
environments in the lake bottoms result in the microbial 
decomposition of organic matter and  CH4 production and 
emission [88, 89]. Thermokarst lakes were found to be  CH4 
emission hotspots in the northern area [96] and experts 
assessment revealed that a third to a half of expect climate 
forcing of permafrost change is from  CH4 [75]. Focusing 
on the theme of permafrost  CH4 feedback, future studies 
should answer the following questions: (1) whether mas-
sive old carbon (Pleistocene age) stored in the permafrost 
will be emitted as  CH4, and (2) how future thermokarst 
lake dynamics (drainage or extension) would affect  CH4 
emissions.

2.2  Carbon source for  CH4 emission: old 
versus young carbon

Regions that remained unglaciated throughout the last 
glacial maximum accumulated thicker sediments and 
abundant frozen organic carbon. Among these sedi-
ments is one carbon and ice-rich silty loess that termed as 
yedoma in Siberia, which represents an organic-rich (~ 2% 
carbon by weight) Pleistocene-aged loess permafrost with 
a total volumetric ground ice content likely ranges from 
65 to 90% [73, 80]. Yedoma covered more than 1 million 
 km2 of the north plain of Siberia and Central Alaska to an 
average depth of ~ 20 m [80, 99]. These sediments had car-
bon contents about 10 to 30 times the amount of carbon 
generally found in deep, non-permafrost soils. Although 
yedoma deposits cover only 6% of the global permafrost 
area, they may store around 20% of all permafrost carbon 
[80].

Yedoma sediments began melting during the Holocene 
to form thermokarst lakes, where  CH4 is produced and 
released primarily by bubbling [88, 99. A study of 40 lakes 
in Alaska showed that  CH4 emissions from the thermokarst 
lakes formed in yedoma permafrost soils are much higher 
than from non-yedoma lakes [78]. Since the high carbon 
content of Pleistocene-aged permafrost soils, especially for 
the yedoma region, thermokarst lake was thought to be a 
canal of the release of old carbon stocks previously stored 
in permafrost. Experiments showed that the Pleistocene 

carbon in yedoma soils could lost quite quickly when per-
mafrost thawed [98], and stable isotopes and radiocarbon 
analyses indicated the distinct δ13C and 14C-depleted car-
bon source (δ13CH4 = −70%, 14C age 16,500 years) for  CH4 
production in North Siberian lakes, suggesting that con-
tinued warming of permafrost in the future could lead to 
accelerated release of 14C-depleted  CH4 (i.e., ancient car-
bon) from expanding thermokarst lakes [90].

Recently, substrate sources for  CH4 production in the 
permafrost thaw area have been more precisely investi-
gated. Melt water from permafrost ice serves as H source 
for  CH4 production in thermokarst lakes. Based on δDCH4 
measurements, researchers found that Late Pleistocene-
aged permafrost ground ice is the dominant H source of 
 CH4 production in primary (i.e., first-generation) thermo-
karst lakes, whereas after evolution through lake drain-
age and reformation, etc. [37], H source of  CH4 in the 
later generation lakes is primarily from Holocene-aged 
permafrost ground ice [10]. Besides, the carbon source is 
also varying in thermokarst lakes. The carbon trajectories 
for yedoma-region thermokarst basins showed the peak 
flux of yedoma carbon (e.g., old carbon) at the peak for-
mation of thermokarst lake during deglaciation [93]. An 
extensive investigation of thermokarst lakes in Alaska, 
Canada, Sweden, and Siberia revealed that  CH4 emissions 
from thermokarst lakes are directly proportional to the 
mass of soil carbon inputs to the lakes from the erosion 
of thawing permafrost. Moreover, late Pleistocene-aged 
yedoma soil organic carbon is released in high-flux hot-
spot seeps located in thermokarst expansion zones, or 
along boundaries of thawing permafrost, whereas  CH4 
from seeps in other zones of yedoma lakes has relatively 
younger age [92, 94]. Thus, the radiocarbon age of  CH4 is 
the oldest along thermokarst erosion margins and tends to 
be younger with increased distance toward the lake center 
(Fig. 1) [10, 44, 94].

However, a recent study on lakes in Alaska’s North Slope 
found that lake carbon emissions primarily originate from 
the degradation of recently formed terrestrial carbon, and 
Pleistocene carbon has only minor contributions [22]. 
Moreover, they found that the decomposition and emis-
sion of ancient carbon are the greatest from the lakes in 
the coastal plain geology unit, which maintains the com-
bination of warming temperatures, ancient carbon stor-
age, and the development of new or expanding taliks in 
the thermokarst [22]. Besides, through incubation experi-
ments, Knoblauch et al. [45] pointed out that  CH4 emission 
in permafrost deposits is not decided by age but instead 
depends on the organic matter concentration and qual-
ity that formed under different past climatic conditions. 
Recently, a synthesis of 14C measurements from the north-
ern permafrost region showed that the age of  CH4 emitted 
from lakes depended primarily on the age and quantity 
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of soil organic carbon in sediments and on the mode of 
emission [24], since lake ebullition  CH4 was dominated by 
old carbon especially in high-emission point, while lakes 
showed much younger diffusive  CH4 fluxes [24, 58]. There-
fore, whether relatively fresh and young carbon or ancient 
permafrost carbon dominates  CH4 production in Arctic 
lakes may vary among lakes and regions, so future stud-
ies must consider permafrost thawing and lake-forming 
processes, as well as permafrost topographical, geological, 
and organic matter characteristics.

2.3  Thermokarst drainage and carbon emission

Although increased surface ponding in warming perma-
frost environments driven by slumping and collapsed ter-
rain features that subsequently fill with water is expected, 
satellite images of regions rich in thermokarst lakes in 
many regions show numerous drained and vegetated lake 
basins, generally exceeding the number and area of extant 
lakes [29]. The water-level decline and lake shrinkage 
mainly occur in the southerly zones of discontinuous, spo-
radic, and isolated permafrost, while the continuous zone 
is experiencing lake expansion or no significant change 
[13, 79]. Such differences in observations can be explained 
if the processes are considered as a continuum, i.e., initial 
development of thermokarst and lake expansion caused 
by warming, followed by a reduction in lake surface area 
to complete subsurface drainage as the permafrost warms 
and degrades further, allowing hydrological connections 
between surface and underground flows through portions 
of unfrozen ground [79]. Lateral drainage caused by lake-
shore breaching has also been reported even in the con-
tinuous permafrost zone [29]. The dynamics of thaw lakes 
are markedly influenced by local topography; in low-relief 
topography, the lake is simulated to expand rapidly and 
fully drained, while in a high-relief-topography, lake grows 
slowly and continuously and is only partial drained [44].

Lake drainage causes lake shrinkage and water-level 
decrease, even return lake area to terrestrial wetland 
areas, which has a profound impact on the carbon cycle. 
Previous studies found  CH4 flux in the floodplain of the 
eastern Siberia decrease rapidly with lower water table, 
while it serves as a large  CO2 sink [85, 86]. An investiga-
tion in Québec, Canada, revealed that permafrost thaw-
ing is not primarily accompanied with an increase in 
thermokarst lakes, but rather with a remarkable increase 
in vegetation cover [7]. The degradation of permafrost 
stimulates net carbon storage in the wooded boreal 
peatlands [84]. Peat accumulation rates were highest in 
young (50–500 years) drained lake basins, which stores 
organic carbon that likely offset greenhouse gas release 
from thermokarst-impacted landscapes [35]. Above all, 
[93] proved a shift of thermokarst lakes from carbon 

sources to sinks during the Holocene epoch accom-
panied by lake drainage and they considered that lake 
drainage lowers lake water level, slowing thermokarst 
and stimulating growth of benthic mosses and other 
plants. In summary, expanding thermokarst lakes can 
result in carbon evasion by exposing substantial quan-
tities of organic matter to decomposition by microbes, 
whereas lower near-future  CH4 emissions from these 
landscapes than previously assumed were predicted 
due to lake drainage, and the drained or shrinking water 
masses act as net carbon sinks (at least for  CO2) when 
vegetation resumes and peat accumulates in old lake-
beds [87].

Besides of hydrology, lake drainage could also change 
the redox condition in the permafrost region. Drained 
lakes may shift from being a source of  CH4 to being a 
source of  CO2, whereas  CH4 release decreases due to oxi-
dation or the inhibition of  CH4 production [87]. Neverthe-
less, considering the greater  CH4 global-warming potential 
than  CO2, the full magnitude of the climate effect from 
thermokarst lake drainage depends on the comprehen-
sive estimation of carbon emission and their warming 
potential. By incubating the permafrost soils in aerobic 
and anaerobic conditions separately in 15 °C for 500 days, 
Lee et al. [49] showed that permafrost carbon in a rela-
tively aerobic ecosystems may have a greater effect on 
climate. The similar method was used by Knoblauch et al. 
[45] for a 1200 days incubation in 4 °C, which found only 
25% of aerobically mineralized carbon was released in the 
absence of oxygen. Besides, Schuur et al. [76] compared 
the results from the aerobic permafrost soil incubation [71] 
with those from another anaerobic incubations [83] and 
reported 78–85% lower carbon emissions in anaerobic 
soils than in aerobic ones. More importantly, a long-term 
incubation (> 12 years) showed that carbon at near-sat-
urated conditions may remain largely immobilized over 
decades [21]. Moreover, even when accounting for the 
higher global warming potential of  CH4 relative to  CO2, 
the ratio of aerobic to anaerobic  CO2–C equivalent (sum 
of  CO2–C plus  CH4–C expressed as  CO2–C equivalent) was 
2.3 times higher in fully aerobic soils than under anaerobic 
conditions [72]. Hence, a unit of newly thawed permafrost 
carbon could have a greater impact on climate over a cen-
tury if it thaws and decomposes within drier, more aerobic 
soil than an equivalent amount of carbon within water-
logged soil or sediment [76]. In summary, thermokarst lake 
drainage may induce higher carbon emission as  CO2 and 
less  CH4 emission in permafrost regions, while the vegeta-
tion resume in the original lake area may increase carbon 
sink. Thus, the landscape changes and their consequences 
owing to permafrost warming could not be simply defined 
because changes in permafrost–thermokarst–vegetation 
should be comprehensively considered.
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3  CH4 emissions in seasonally ice‑covered 
lakes

Climate-sensitive northern lakes and ponds are critical 
components of  CH4 release [96]. Significant seasonal  CH4 
emission has been found in temperate and subtropical 
lakes because of temperature differences [50, 53, 60], 
whereas the situation in northern lakes should be different 
because of the long ice-covered period. Temperate lakes 
may have abundant  CH4 oxidized or released to the atmos-
phere during the autumn overturn after  CH4 storage in the 
summer stagnation period [26], while annual  CH4 emis-
sions in seasonally ice-covered northern dimictic lakes 
are characterized by two cycles of  CH4 loss and buildup, 
namely  CH4 loss during spring and autumn overturn with 
interim periods of buildup during summer stratification 
and under winter ice cover [56]. The winter ecology may be 
more active and play a more important role than expected; 
it can even influence the subsequent summer nutrient 
variables and biomass [30]. Conversely, reduced ice-cover 
dates in northern lakes [52] highlight an urgent need for 
research focused on under-ice  CH4 dynamics and the con-
tribution to annual emission.

3.1  CH4 accumulation under ice and spring 
emission

In boreal, Arctic, and many mountainous regions, lakes are 
covered by ice for a major part of the year. In lakes,  CH4 is 

typically produced in anoxic bottom sediments by metha-
nogenic microbes and can be released to the atmosphere 
by diffusion, vascular transport through aquatic plants, or 
ebullition (bubbling) in the open-water season [3]. While 
in most cases, the atmospheric exchange is limited when 
the ice on, and gases are trapped in the ice and underlying 
water (Fig. 2), with a little part escape through openings in 
the ice owing to ice cracks caused by increased pressure 
and/or warm waters from inflows and frequent  CH4 bub-
bling [88], as well as from emergent vegetation through 
the ice [48]. Water-dissolved  CH4 that diffuses from the 
sediment accumulates in the water column beneath the 
ice, as well as the ebullition  CH4. In the early winter when 
ice is forming, bubbles are encapsulated by downward-
growing lake ice, and then bubbles are trapped beneath 
the ice wall with a part dissolving into the water column 
[90]. If  CH4 escaped oxidation under ice and during the ice 
out,  CH4 accumulation under the ice could result in gas 
“storage,” and large diffusion emissions occur when the ice 
melts in spring. This emission is often enhanced by full or 
partial lake overturn [43, 56, 81]. Overturn can cause oxy-
genation, potentially removing  CH4 [28, 68], but it can also 
efficiently transport gases from the lake bottom through-
out the water column onto the lake surface before diffus-
ing to the atmosphere [26]. Consequently,  CH4 trapped 
during winter can be efficiently released during spring 
when ice melts and water mixes. 

Numerous studies have pointed out the importance of 
 CH4 accumulation under ice and emission during spring 
ice thaw, but their contribution to annual  CH4 emission 

Fig. 2  Methane dynamics in northern seasonally ice-covered lakes during the summer and winter
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remains uncertain for lakes on a regional or larger spa-
tial scale. Thus, more studies covering the whole year 
and accounting for  CH4 emission during the ice-out and 
autumnal mixing period are needed to better assess the 
contribution of northern lakes to the global carbon cycle, 
and their sensitivity to climate change. In the present 
work, we compiled published studies inferring quantified 
 CH4 emission for both the ice-melt and open-water peri-
ods. The method used is similar to that in Denfeld et al. [18] 
but with supplementation of newly published data. Ice 
melt refers to springtime when the start of ice thaw until 
complete ice off. Open-water time is ice free that includes 
the summer and the possible autumn turnover period. We 
obtained data for 261 lakes with 265 data points (Table 1 
and Supporting Information Table S1). Previous studies 
estimated the spring efflux by using bubble traps under 
the ice or floating chambers, as well as by sampling  CH4 
dissolved in the lake water right before and after ice melt 
or by monitoring  CH4 fluxes with eddy covariance [34]. Just 
like that in Denfeld et al. [18], we also calculated the per-
centage contribution of ice-melt flux to annual  CH4 emis-
sion to reduce the uncertainty between different methods 
used to estimate  CH4 fluxes. Results show that the ice-
melt emission contribution ranges from 0 to 100%, with 
an average of 28% and a median of 18%. There were 23% 
observations of ice-melt  CH4 emission that had annual 
emission contribution more than 50%.  CH4 ebullition is 
considered only in limited studies, and the estimated ice-
melt  CH4 emission contribution that includes ebullition 
is slightly lower or higher than the estimates that do not 
include ebullition (the differences were lower than 10%) 
depending on the influence of ebullition on  CH4 flux in 
ice-melt and ice-free periods (Table S1).

Studies about ice-melt lake  CH4 emission have been 
primarily conducted in Finland and Sweden, Siberia, and 
northern North America (Table 1). Higher  CH4 emission 
occurs in lakes located in Alaska, which has yedoma-sed-
iment distribution [99] and permafrost-affected regions 
in Western Siberia [77]. Moreover, the ice-melt period  CH4 
emission contribution has no obvious difference among 

various study areas, except the high value in the Minne-
sota, USA, although the limited measurement in this area 
precludes further comparison (Table 1).

It should be noted that the spring ice-melt  CH4 emis-
sion may be underestimated for the following seasons. 
Firstly, the  CH4 ebullition through open hole in winter 
lake ice and the ice-bubble storage [91] are tend to be 
neglected when using quantified carbon gas storage 
before and after ice-out to estimate the spring efflux [34, 
43]. Secondly, the unfreezing or ice-out period is brief for 
most northern lakes, during which considerable amounts 
of gas are emitted rapidly, while at this time the lakes are 
inaccessible due to the floating ice. Hence, it is urgent to 
develop better methods to capture this critical and chal-
lenging period [66].

3.2  The possible influencing factors for ice‑melt  CH4 
emission

3.2.1  Ice‑melt  CH4 emission versus lake area and depth

Previous studies estimating spring efflux have found the 
relationships of ice-melt  CH4 flux with physical lake char-
acteristics. For example, Michmerhuizen et al. [56] con-
sidered that  CH4 emission per unit area decreases with 
increased lake area. More studies have focused on ice-melt 
carbon emission versus lake depth. The study on three 
lakes in northern Sweden by Jansen et al. [34] concluded 
that spring  CH4 emission contribution is higher in deep 
lakes than in shallow ones. However, the study of Juu-
tinen et al. [40] involving 207 Finnish lakes suggested that 
very humic, shallow lakes have more  CH4 storage in late 
winter–spring period than in summer–autumn. Recently, 
Prėskienis et al. [66] pointed out that water body morphol-
ogy could strongly affect the seasonal patterns of  CH4 flux 
through the effect on the mixing regime.

Here, we examined the relationships between ice-melt 
 CH4 emission flux/ contribution and lake area/ maximum 
depth, and found relatively high spring ice-melt  CH4 emis-
sion from small and shallow lakes (Fig. 3). Similar results 

Table 1  Northern lakes’  CH4 emissions at ice-melt and ice-free peri-
ods from different study areas expressed as average ± standard 
deviation, and the percentage contribution of ice-melt  CH4 emis-

sion to annual emission expressed as mean and median values. The 
ebullition flux is not included

Lake number Study area Ice melt (mmol  m−2) Ice free (mmol  m−2) Contribution (%) References

16 Alaska, USA 364.1 ± 934.5 1423.8 ± 3666.5 16 (median = 14) [65, 78]
10 Northern Canada 113.3 ± 136.5 266.4 ± 377.5 29 (median = 18) [47, 95, 16, 55]
2 Minnesota, USA 240 ± 28.3 110 ± 70.7 70 [81]
29 Western Siberia 511.0 ± 598.1 3258.3 ± 3203.1 19 (median = 17) [77]
204 Finland & Sweden 90.2 ± 104.3 134.3 ± 151.2 29 (median = 18) [6, 18, 19, 31, 33, 

34, 39–43, 48, 
57]
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were reported for  CH4 fluxes in the ice-free period in Wik 
et al. [96]. While different from the results in Wik et al. [96] 
that found weaker effect of lake area on  CH4 fluxes than 
maximum depth, our results showed slightly greater effect 
of lake area (general linear model, R2 = 0.29) than maxi-
mum depth (general linear model, R2 = 0.23) on ice-melt 
 CH4 fluxes. This finding is consistent with the discussion 
in Denfeld et al. [18] that small lakes often have incom-
plete autumn mixing and faster ice development, due 
to the characteristics of well shelter from the wind and 
rapid cooling, which may result in high  CH4 concentra-
tions under ice. However, we found weak or no correlation 
between the contribution percentage and lake character-
istics (for the lake area, general linear model, R2 = 0.01) 
(Fig. 3). This result may be explained by the similar effects 
of lake morphology on  CH4 fluxes in the spring ice-melt 
and ice-free periods. Figure 3 also shows that the over 50% 
ice-melt  CH4 emission contributions are mostly within the 
areas of 0.1–100 ha and maximum depths of 1–10 m, indi-
cating the potential of higher spring  CH4 emission contri-
bution in shallow and small lakes. However, these results 

also suggest the existence of other factors that influence 
ice-melt  CH4 emission.

3.2.2  Ice‑melt  CH4 emission versus  CH4 oxidation

The under-ice accumulation of  CH4 during ice cover within 
a lake is influenced by the rates of  CH4 production and oxi-
dation.  CH4 oxidation is proved to occur at under ice low 
temperatures [67] and methanotrophs are highly active in 
ice-covered lake water [41]. The presence of ice impeded 
 CH4 diffusion and ebullition, resulting in  CH4 accumula-
tion under ice. Hence, different from the  CH4 limitation in 
summer, aerobic  CH4 oxidation is thought to be primar-
ily controlled by the redox condition in the winter [54]. 
The under-ice water oxygen concentration is related to 
respiration and photosynthesis, as well as water-column 
volume. Hence,  CH4 oxidation during ice cover may vary 
among shallow and deep lakes; the prevailing low oxy-
gen concentration in the shallow lakes may induce to  CH4 
oversaturation under ice. For example, Phelps et al. [65] 
explored several shallow lakes and found the decline of 

Fig. 3  Ice-melt  CH4 emission flux (mmol  m−2) and the percentage contribution in relation to lake area and maximum depth. Red lines are 
linear fits of all data; blue dash lines equal to 50% contribution. Note logarithmic axes
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oxygen levels after ice cover combined with increased 
 CH4 levels following lake anoxia, and they considered that 
the marked increase in  CH4 under the ice is due more to 
decreased rates of  CH4 oxidation than to increased rates 
of  CH4 production. In contrast, Striegl and Michmerhui-
zen [81] examined two larger and deeper lakes (~ 10 m 
maximum depth), and found that complete anoxia does 
not commonly occur in the water column;  CH4 oxidation 
potential is continuously present all the time.

Apart from interior processes under ice, the water-col-
umn redox condition is also influenced by the lake-mixing 
event. A complete spring turnover of the water column 
brings oxygen to the hypolimnion and may result in an 
oxic condition in the hypolimnion during summer. By con-
trast, short or incomplete spring turnover may accompany 
the anoxic condition in the hypolimnion in the summer 
[41]. Similarly, the autumn turnover could probably influ-
ence the redox condition during winter ice cover, which is 
directly linked to  CH4 oxidation and accumulation under 
ice. The study of Kankaala et al. [41] in a small, shallow lake 
that has incomplete spring water-column mixing revealed 
that the total  CH4 consumption in the water column dur-
ing the winter ice-covered period is higher than the efflux 
to the atmosphere in spring, and that 79%  CH4 is con-
sumed in the water column on an annual scale. Although 
water-column mixing upon ice melt tends to release  CH4 
accumulated in the bottom waters directly into the atmos-
phere, increased potential of  CH4 oxidation in the water 
column could occur when water-column mixing occurs 
before the ice melt, but complete mixing is more com-
monly observed only at the time of ice melt [18].

Winter  CH4 oxidation seems to play a more important 
role in lakes with high  CH4 ebullition from the sediment 
because the dissolution of bubbles that accumulated 
under the ice increases the potential of  CH4 oxidation. 
Model estimation has shown that 80 percent of  CH4 in 
bubbles trapped by ice dissolves into the lake water under 
the ice, and about half of that is oxidized [28]. The recent 
study by Elder et al. [23] using the measurement of dis-
solved gas concentrations and their 14C and 13C isotopes 
showed that the winter ice forced 50% ebullition  CH4 to be 
oxidized by the end of winter, and the other half is accu-
mulated in the dissolved  CH4 pool under ice. Apart from 
dissolution,  CH4 trapped in bubbles could also be released 
through diffusion, contributing to  CH4 accumulation in 
the ice–water interface, where significant  CH4 oxidation 
may be fueled [67]. However, an incubation experiment 
for under-ice lake water revealed that elevated  CH4 con-
centration in the oxic lake water could not sufficiently 
activate  CH4 oxidation in some lakes with low phosphate 
concentrations, suggesting that  CH4 oxidation does not 
depend on  CH4 or oxygen availability in these lakes. While 
 CH4 oxidation was restricted to three lakes, where the 

phosphate concentrations were highest, they speculated 
that available phosphate may potentially provide suffi-
cient phosphorus to sustain fast-growing heterotrophs 
and slow-growing methanotrophs because all organisms 
require phosphorus for cell division, energy transforma-
tions, and cell maintenance [17]. The relationship between 
methanotrophs abundance and phosphate concentration 
was also found in other lakes [69].

In summary,  CH4 oxidation under ice or during the ice 
melt could significantly decrease  CH4 emission to the air, 
which depends on  CH4 production, oxygen available, the 
extent of lake mixing, as well as the nutrients that may 
influence the methanotrophs. Besides, an increasing num-
ber of studies have confirmed cascading effects of lake 
ecology in the ice-cover and ice-free periods. For example, 
the dissolved oxygen concentration and thermodynamic 
could be influenced by former lake turnover [63], and the 
ice conditions, for instance, duration and thickness, have 
also been observed to affect the phytoplankton commu-
nity in the subsequent ice-free seasons [20, 27]. Neverthe-
less, we only have ambiguous knowledge on some impor-
tant questions about  CH4 and oxygen dynamics under ice, 
such as how autumn overturn affect winter oxygen con-
centration and how reduced ice-cover duration affect  CH4 
production in the next ice-free season.

3.2.3  Ice‑melt  CH4 emission versus hydrological carbon 
input

Apart from autochthonous carbon by photosynthesis, a 
large amount of carbon in the lake is from river inflow, 
that is allochthonous carbon. The evidence shows that 
global change in northern regions leads to reduced pri-
mary productivity, resulting in increased proportion of 
allochthonous dissolved organic matter supply to north-
ern lakes [15]. The hydrological patterns may influence 
carbon loading to lakes [82] and carbon evasion from the 
lakes. The result of a process-oriented lake biogeochemical 
model suggests that increasing organic matter input from 
the catchment increases future  CH4 emission in lakes [5]. 
Moreover, rivers could also directly bring dissolved car-
bon into the lake, especially for dissolved  CO2 in ground-
water and surface water, whereas the input of external 
source  CH4 is thought to account for a smaller proportion 
than  CH4 produced by anaerobic decomposition in lake 
sediment [81]. However, this viewpoint seems to be chal-
lenged when an extreme rain event occurs. After heavy 
rain,  CH4 concentration in the metalimnion and epilimnion 
increases and exceeds the  CH4 concentration in deeper 
water when the water column is stratified, indicating that 
 CH4 may be transported from the external [51, 57].

Except for runoff, other factors such as atmospheric 
pressure and water-column stratification, which could 
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influence lake surface  CH4 concentration in heavy rain, 
have rarely been discussed. These factors are important 
because heavy rain accompanied with wind may break 
up the long-term temperature stratification, resulting in 
the come-up of bottom  CH4. External dissolved organic 
carbon and  CH4 import can also contribute to ice-melt 
 CH4 emission. Abundant carbon received by groundwater 
and surface water input maintains methanogenesis dur-
ing the ice-covered wintertime, inducing large lake  CH4 
storage in the late winter and emission to the atmosphere 
immediately following ice melt [81]. Denfeld et al. [19] 
found higher  CH4 concentrations in surface waters dur-
ing sporadic ice-melt events over winter and considered 
that hydrological inputs should be a key driver of below-
ice  CH4 in the lake. Meanwhile, the effect of external  CH4 
or carbon input on  CH4 emission at ice melt may depend 
on soil and landscape features, for example, whether the 
surrounding basin can export organic matter or  CH4 into 
the lake.

4  Summary

We reviewed research on  CH4 emission in northern 
thermokarst and seasonally ice-covered lakes. These topics 
are associated with a sense of urgency and societal need 
under observed and modeled permafrost warming, near-
surface permafrost degeneration, increased hydrological 
activity of thermokarst lakes, winter warming, and reduced 
ice-cover duration over the past decades [52, 76], 94]. We 
found the following key issues that need to be addressed 
to enhance our understanding of  CH4 emission contrib-
uted by northern lakes.

(1) Ancient carbon stored in permafrost could be sub-
stantially emitted as carbon gas under climate warm-
ing. To determine the potential of ancient carbon 
emission, future research in the northern permafrost 
region must consider the thermokarst and lake-form-
ing processes, the variable geological conditions, and 
the carbon dynamics of thermokarst lakes.

(2) The evolution trends of thermokarst lakes in continu-
ous and discontinuous permafrost regions, such as 
the thermokarst lake expansion or drainage, and the 
corresponding influence on  CH4 emission and feed-
back to future climate change should be explored.

(3) The cascading effects of lake ecology in the ice-cover 
and ice-free periods, and the influence on  CH4 emis-
sion under climate change are observed.

(4) Large-scale studies on lake  CH4 dynamics under 
ice and comparison with mechanisms in the ice-
free period (e.g.,  CH4 production and  CH4 oxidation 

related to water temperature, redox condition, and 
nutrients) should be conducted.
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