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Abstract
Aiming at suppressing noise interference, improving the fault detection ability of seismic data, fully excavating the effec-
tive information in seismic data, and further improving the accuracy of fault detection, this study proposes a seismic 
fault detection method that combines the local binary pattern/variance (LBP/VAR) operator with guided filtering. The 
proposed method combines the advantages of LBP/VAR and guided filtering to remove noise from seismic data, and can 
simultaneously smooth the data and preserve linear features. When compared with several existing methods (coherent 
operator, LBP/VAR operator, LBP/VAR operator based on median filtering, and Canny operator based on guided filtering), 
the proposed method exhibits a better SNR, a better ability to identify small faults, and robustness to noise. This novel 
algorithm can control the balance between noise attenuation and effective signal preservation as well as effectively 
detect faults in seismic data. Therefore, the proposed method effectively improves the fault identification accuracy, 
facilitates the gas-bearing analysis of the structure, provides guidance for the actual well location deployment of the 
project, and has important practical significance for oil and gas exploration and development.
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1 Introduction

Fault detection is a basic and important aspect of seis-
mic data interpretation, the reliability of which is greatly 
affected by the signal-to-noise ratio (SNR). Due to the influ-
ence of various complex factors, such as the vibration of 
the external environment, the interference of industrial 
alternating currents, and complex shallow surfaces, seis-
mic data inevitably contain random noise, which results 
in a relatively low SNR [1–3]. Thus, reducing random noise 
during seismic data processing, while preserving complex 
structural information has important practical signifi-
cance. Many filtering methods are used to remove noise 
and improve the SNR, such as average filtering, median 

filtering [4], alpha mean filtering, and PC filtering [5]. How-
ever, these filtering methods also blur transverse disconti-
nuities. Dossary et al. [6] reviewed filtering methods that 
can simultaneously smooth seismic data and preserve 
linear features and indicated the need to develop new 
seismic signal denoising technology.

Guided filtering has exhibited good image process-
ing effects in other fields [7–9]. This algorithm employs a 
local linear model as an anisotropic filter [10], which can 
effectively remove seismic noise and preserve edge char-
acteristics. Li et al. [11] added a first-order edge percep-
tion constraint and boundary perception weight to the 
filter, resulting in a weighted guided filtering algorithm 
that avoids the halo effect as much as possible. Dai et al. 
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[12] introduced an additional measure of spatial similarity, 
developed full-connection guided filtering, and improved 
the self-adaptability of the local area of the image. Moreo-
ver, Kou et al. [13] achieved good results in image detail 
enhancement and significance detection using gradient 
domain-guided filtering.

According to the fault characteristics of seismic data, 
the local binary pattern (LBP) can be used for data pro-
cessing and detection. The LBP was proposed by Ojala 
[14] as an algorithm for describing image texture features. 
Ojala et al. [15] first extended the basic LBP operator to 
any circular neighborhood from the perspective of a fixed 
topological structure. Others have improved the LBP by 
reducing the impact of noise and extending the greyscale 
between pixels by integrating the local binary mode into 
the local multi-valued mode [16]. Recently, many schol-
ars have made improvements to the LBP and proposed 
various deformation LBP operators applicable to different 
fields [17–19]. Guo et al. [20] extended the completed LBP 
(CLBP) operator from the perspective of the coding mode. 
Tadi-Bani et al. [21] propose a new content based image 
retrieval approach using combination of color and texture 
information in spatial and transform domains, which pro-
vides higher precision than many existing methods. Heik-
kila et al. [22] proposed a centrosymmetric LBP (CS-LBP), 
which effectively reduces the dimensions of the basic LBP 
operator to 16 dimensions. Fekri-Ershad [23] proposed 
titled multi threshold uniform-based local ternary patterns 
with notation MTULTP, which is a skillful combination of 
LTP and MLBP with novelty in feature extracting and local 
pattern selecting. Furthermore, to integrate local spatial 
structure and contrast information, Lei et al. [24] proposed 
the LBP/VAR operator, which can detect faults and perform 
threshold optimization processing, resulting in significant 
advantages in detecting seismic faults.

In this study, the advantages of guided filtering and the 
LBP/VAR operator are combined to the extract local tex-
ture information of images for seismic fault detection. This 
method is robust to light and rotation and can compare 
textures between images. Experiments are conducted 
using model data, seismic data, and fault pictures, which 
confirm the ability of the proposed operator to effectively 
describe faults.

2  Materials and methods

2.1  Guided filtering

The guided image filter is a local linear image filter [7, 8] 
with good edge preservation characteristics that requires 
a guiding graph. This guiding image can be a single image 
or an input image; if an input image is used, the guided 

filtering will preserve the edges, which can be used for 
image reconstruction [25].

Guided filtering is used to process 2D seismic images in 
the time domain; it is assumed that the input 2D seismic 
image is pi, the guiding image is Ii, and the output image is 
qi. Ii and pi can be the same or different seismic images. The 
filter linear transformation relationship between Ii and qi is

where ak, bk are the coefficients of the linear function 
when the center of the window is located at k, �r(k) is the 
center of the pixel k, and r is the radius of �r(k) . We then 
find the gradient for both sides of equation:

where a is a constant, which means that the edge infor-
mation of qi and Ii has a linear relationship. In order to 
determine the linear coefficient, the difference between 
qi and pi should be minimized. The linear coefficient can 
be obtained by minimizing the cost function, which is 
defined as:

where ε is the regularization factor to adjust coefficient ak 
and prevent it from becoming too large. The coefficients 
ak and bk are obtained by solving the minimum extremum 
of Eq. 3; for details refer to Zhang [26].

2.2  LBP/VAR operator

The LBP is an algorithm proposed by Ojala et al. [14] to 
assist in describing the local contrast of images and to 
extract the local texture information of images. The tra-
ditional LBP has many limitations. In recent years, many 
scholars have improved the LBP in concrete applications 
and put forward various deformation LBP operators.

The rotation invariant unified local binary pattern 
(LBPriu2) is in a pixel region with a radius of R and P is the 
number of neighboring points. Fekri-Ershad studied circu-
lar symmetric neighbors for various radius (R) and number 
of neighbors (P) [27]. The gray value of the center point 
(gc) from the gray value of the surrounding pixels of the 
circularly symmetric neighborhood gp.  LBPriu2 of the center 
point in the local region is defined as

The values of s(x) , gp(x, y),and U(LBPP,R) are computed as

(1)qi =
∑
i

�r(Ii) pi = akIi + bk , ∀i ∈ �r

(2)∇q = a∇I

(3)E(ak , bk) =
∑
i∈�k

((akIi + bk − pi)
2 + �a2

k
)

(4)LBPriu2
P,R

=

⎧
⎪⎨⎪⎩

P−1∑
i=0

s(gp−gc)2
i if U(LBPP,R)≤2

P+1 otherwise

⎫⎪⎬⎪⎭
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where s(x) is the sign function, and U(LBPP,R) determines 
the number of jumps of binary encoding (bit 0/1 change) 
and sets the local binary pattern of U < 2 as the unified pat-
tern. The LBPriu2 operator is a gray-scale rotation invariant 
operator, which can well describe the spatial structure of 
images and omits the contrast between pixels.

In fault detection using seismic data, it is important to 
distinguish the contrast of data points (pixels). Therefore, 
to retain the contrast between pixels, VAR is defined as:

where µ is the expectation of the gray value of the sam-
pling points in the neighborhood, and VAR can provide 
rich texture comparison information. The larger the VAR 
value is, the greater the contribution to the region’s dif-
ferentiation will be, and therefore, the coding weight cor-
responding to the region will be large.

The LBP/VAR operator is defined as:

where:

The LBP/VAR operator integrates the local spatial 
structure and contrast information, and has the advan-
tages of both. It is not only robust to illumination and 

(5)s(x) =
{
1 x≥0

0 otherwise

(6)gp(x, y) = (−R sin(2�p∕P), R cos(2�p∕P))

(7)U(LBPP,R) = |s(gP−1 − gc) − s(g0 − gc)| +
p−1∑
i−1

|s(gp − gc) − s(gp−1 − gc)|

(8)VARP,R(i, j) =
1

p

p−1∑
p=0

(gp − �)2 , where � =
1

p

p−1∑
p=0

gp

(9)LBP∕VARP,R(k) =
∑
i

∑
j

�(LBPP,R(i, j), k), k ∈ [0, K ]

(10)LBP∕VARP,R(k) =

{
VARP,R(i, j), LBPP,R(i, j) = k

0 otherwise

rotation, but also includes the texture contrast between 
images. Fault detection experiments using this operator 
have a good fault detection rate.

2.3  LBP/VAR Operator based on guided filtering

In this study, seismic data were optimized and de-noised 
by guided filtering, and then further enhanced images. 
Then, LBP/VAR operator technology was used to extract 
local texture information to identify seismic faults. A 
seismic fault detection method based on guided filter-
ing of the LBP/VAR operator is proposed in this paper. 
To further illustrate the LBP/VAR operator based seismic 
fault detection method, we demonstrate the selection 
of radius r and regularization parameter ε in the guided 
filtering and discuss the algorithm steps in detail.

2.3.1  Parameter selection

The smoothing effect of guided filtering on an image 
is determined by the window radius, r, and regulariza-
tion parameter, ε. To calculate the matrix mean square 
error (MSE) of the theoretical model, a seismic section 
is adopted in this study. According to Fig. 1, the smaller 
the values of r and ε, the closer the mean square devia-
tion to the original data; thus, fewer details of image 
are filtered out, resulting in higher similarity between 
the filtered data and the original data. On the other 
hand, filtering out more detail of image in a progres-
sively smoother image. According to Fig. 1a, ε exhibits 
only a small change above 0.16; this change becomes 
increasingly small once r is larger than 5 (Fig. 1b). In this 
study, ε = 0.01; thus, when r = 1, the dominant effect 

Fig. 1  Mean square error (MSE) 
of seismic data according to 
different parameters. a window 
radius, r, and b regularization 
parameter,ε 
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is denoising, and when r = 16, the dominant effect is 
smoothing.

2.3.2  Algorithm steps

In this study, the input image is used as the guide graph 
for conducting self-guided image filtering to maintain the 
edge characteristics. The different steps of the algorithm 
are as follows:

1. Conduct self-guided image filtering on the input seis-
mic profile, using r = 1 and ε = 0.01 for the dominant 
denoising function. The result of guided filtering,  q1, 
loses few texture details.

2. Take  q1 as the input diagram of guided filtering and 
conduct self-guided image filtering. At this time, r = 16 
and ε = 0.01; thus, the filtered image loses more details, 
and the filtering result  q2 is obtained. The filtered 
details are  q1–q2.

3. Obtain the enhanced image. We use  q3 = t ×  (q1–
q2) +  q1, t is the detail enhancement coefficient. Experi-
ments show that when t = 3, the enhanced image has 
great advantages in computational efficiency and fault 
recognition effect in this paper.

4. Grayscale enhanced image. The amplitude value of 
the guided filtering image is converted into gray 256 
levels. That is, gray level 0 corresponds to the lowest 
amplitudes and gray level 255 corresponds to the 
highest amplitudes on the guided filtering image.

5. According to Eq.  (4), the pixel value of each 3 × 3 
region in the slice of seismic data is calculated, and 
a new value is obtained, until each pixel in the image 
is LBP processed, and the local binarization image is 
obtained.

6. In image processing, small gray areas will produce 
a certain degree of interference. The LBP threshold 
is optimized according to the LBP histogram of the 
original seismic image. Values below the threshold 
are denoted as 0. Then, we refer to the LBP/VAR histo-
gram to optimize the LBP/VAR threshold. In this paper, 
the upper and lower thresholds are set to 38 and 235, 
respectively. The gray value of pixels less than the 
lower threshold value of 38 is set to 0 (black), while the 
gray value of pixels greater than the upper threshold 
value of 235 is set to 255 (white).

7. According to Eqs. (4)–(8), the correlation features of 
LBP/VAR are further extracted.

8. The variable parameters are adjusted throughout the 
process by trial calculation, so that the results have 

better adaptability, stability, and effectiveness. The 
calculation flowchart is shown in Fig. 2.

3  Results and discussion

To verify the effectiveness of the LBP/VAR operator based 
on guided filtering for seismic fault detection, it was com-
pared with different image edge-based fault detection 
operators, i.e., the coherent operator [2], the Canny oper-
ator based on guided filtering [5], the LBP/VAR operator 
[24], and the LBP/VAR operator based on median filter-
ing. Four different tests were conducted to determine the 
effectiveness of the proposed model, i.e., fault detection 
using the general Marmousi model, a seismic section, a 
seismic slice, and actual fault images.

3.1  Theoretical fault model test

The Marmousi seismic model (shown in Fig. 3a) is a classic 
seismic forward geological model for evaluating seismic 
methods because it contains the characteristics of anisot-
ropy, attenuation, and complex strata. It has widely been 
used in the field of geophysics and was selected to test the 
effectiveness of the LBP/VAR operator seismic fault detec-
tion method based on guided filtering.

3.1.1  Model test

We used split step Fourier forward modeling and migra-
tion to obtain the seismic profile of the Marmousi model, 
which had the CDP interval of 12.5 m, a sampling rate of 
1 ms, and a 30-Hz ricker wavelet [28]. In this paper, we 
only used small areas with developed faults, and obvious 
fault responses were selected for processing. In this area, 
the number of seismic wave in-phase axes suddenly 
increases or disappears, and the seismic wave in-phase 
axes are staggered, bifurcated, and merged. There are 
phenomena such as the turning of in-phase axes under 
the theoretical model, which constitute a complex 
block fault system. The LBP/VAR, the median filtering-
LBP/VAR, the guided filtering-Canny, and the guided 
filtering-LBP/VAR algorithm were compared, with the 
results shown in Fig. 3. The results show that the above 
operators can effectively detect faults, and the results 
are consistent with the theoretical model. Comparing 
Fig. 3b and c shows that the LBP/VAR operator exhibits 
better fault detection than the LBP/VAR operator based 
on median filtering. Although it improves the SNR, the 

Fig. 2  Calculation flowchart for 
the proposed algorithm Input data Parameter optimization Guided filtering LBP/VAR Output

Image

enhancement
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LBP/VAR operator based on median filtering also blurs 
transverse discontinuities in some places, resulting in 
inferior detection results. Moreover, the detection results 
of the common Canny operator based on guided filter-
ing (Fig. 3d) reveal that not all strata are depicted and 
blank areas remain, which is not conducive to the deline-
ation of faults. Conversely, the LBP/VAR operator based 
on guided filtering detects faults slightly better than 
other methods (Fig. 3e). The detection results show fine 
stratigraphic characterization and easy identification of 
breakpoints.

3.1.2  Model added noise test

In this test, 20% and 30% Gaussian noise of the maxi-
mum effective amplitude was added to the Marmousi 
model (Fig. 3a). The test results of the LBP/VAR operator 
based on guided filtering were then analyzed (Fig. 4). 
The results show that faults can be identified with dif-
ferent amounts of noise. Even when the noise reaches 
20%, fault contours and formation boundaries can still 
be identified. For 20% noise, the LBP/VAR operator based 
on guided filtering exhibits slightly better fault detec-
tion than the LBP/VAR operator, as well as certain anti-
interference ability.

3.1.3  Results of evaluation

We introduce structural similarity (SSIM) and peak signal-
to-noise ratio (PSNR) parameters to evaluate the image 
quality. SSIM is a good parameter for measuring image 
quality [29]. The simplest form of the equation is:

Here, �x and �y are the averages of x and y, respec-
tively, and σx �x and σy �y represent the standard devia-
tions of x and y, respectively σxy �xy represents the covari-
ance of x and y, whereas C1 and C2 are constants. The 
range of SSIM values is [0, 1]. The higher the SSIM, the 
better the quality of image.

PSNR is an objective standard used to measure image 
distortion or noise level. PSNR can be defined as follows:

Here, Max is the maximum amplitude value of image, 
O(m,n) and MSE is the mean square error for the two 
images, which is defined as follows:

(11)SSIM =
(2�x �y+)(2�xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

(12)PSNR = 10log10Max2∕MSE

Fig. 3  Results of the Marmousi-model test obtained by different methods. a Marmousi-model; b close-up of the detection area; c LBP/VAR 
method; d median filtering-LBP/VAR method; e guided filtering-Canny method; and f guided filtering-LBP/VAR method
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Here, we used the original images without noise, 
O(m,n). The processed image, as the contrast images, 
C(m,n). Here, m is the horizontal pixel of the image and 
n is the vertical pixel of the image. Generally, PSNR is 
considered to be better if its value is greater than 30. The 
larger the PSNR between the two images, the more simi-
lar the two images are. We use Fig. 3b as the input image 
and Fig. 3c, Fig. 3d, Fig. 3e and Fig. 3f as the contrast 
image to calculate SSIM and PSNR, as shown in Table 1.

Table  1 shows that the guided filtering-LBP/VAR 
method has the largest SSIM and the highest PSNR, 
and it is superior to the other methods regarding the 
quantitative evaluation of parameters PSNR and SSM. 

(13)MSE =
1

mn

m∑
i=1

n∑
j=1

||C(i, j) − O(i, j) ||2

Therefore, we chose this method when testing the other 
data.

3.2  Seismic profile detection

In the study area, faults are developed, including continu-
ous strata, which constitute a complex block fault system. 
The detection of this section has high requirements for 
fault detection technology, which has a certain research 
value. The CDP interval is 12.5 m. Figure 5a shows the origi-
nal seismic profile of inline1224, which has relatively well-
developed faults and relatively continuous strata, form-
ing a complex block fault system. Thus, this profile places 
higher requirements on fault detection technology. The 
coherence section obtained using landmarks is shown in 
Fig. 5b, which contains certain noise and other disorderly 
reflection phenomena. In Fig. 5b, the more continuous 
coaxial strong reflection region is depicted in blue in the 
coherent section (highly coherent region), and the strata 
typically reflect more continuous strata. The less coherent 
or incoherent regions (red and light blue) in the coherent 
section predominantly reflect the faults or cracks in the 
seismic section; however, some of the fault features are 
not obvious [25, 30]. Figure 5c is obtained using the LBP/
VAR operator proposed in [24] to detect the fault. The over-
all section exhibits good quality and can depict the basic 

Fig. 4  Results of the Marmousi 
model added noise test. a 
Operator based on guided 
filter-LBP/VAR is increased 
by 10%; b operator based 
on guided filter-LBP/VAR is 
increased by 20%; c operator 
based on LBP/VAR is increased 
by 10%; and d operator based 
on LBP/VAR is increased by 
20%

Table 1  Quantitative 
evaluation of different 
methods

The contrast 
image

SSIM PSNR

Fig. 3c 36.79 0.83
Fig. 3d 32.21 0.78
Fig. 3e 22.97 0.70
Fig. 3f 37.31 0.88



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:869  | https://doi.org/10.1007/s42452-021-04866-0 Research Article

distribution of strata and fault strikes. Figure 5d is obtained 
by detecting faults with the LBP/VAR operator based on 
median filtering, which also filters out some effective infor-
mation. The detection result of the canny operator with 
guided filtering is again not conducive to the delineation 
of faults (Fig. 5e). In contrast, the LBP/VAR operator based 
on guided filtering results in fine stratigraphic characteri-
zation and clearer small faults (Fig. 5f ).

3.3  Seismic slice detection

A planar graph of the study area after seismic interpre-
tation is selected to detect and analyze the results. The 
results of each operator are shown in Fig. 6. The fault 
information can be better identified from the coherence 
attribute [25] in Fig. 4-11 (b). Again, the LBP/VAR opera-
tor based on the median filter preserves the structure, but 
blurs effective information (Fig. 6d), and the Canny opera-
tor based on guided filtering cannot effectively detect the 
study area plane (Fig. 6e), whereas the LBP/VAR opera-
tor based on guided filtering not only detects the faults 
detected by conventional operators, but also has certain 
advantages in the identification of small faults, which is 
helpful in analyzing the cutting relationship, extension 
range, and fault trend between faults in a plane (Fig. 6f ).

3.4  Actual geological section test

A geological section with clear fault characteristics (taken 
from https:// www. veer. com) was selected for analysis. This 
image is the Wolf Hill sandstone formation in Arizona, USA. 
Petrified Forest Member is a package of siliceous conglom-
eratic sandstones and interbedded mudstone called the 
Sonsela sandstone bed (Fig. 7a). The type area of the Son-
sela sandstone bed is along the east flank of the Defiance 
Uplift north of Petrified Forest, where the unit is 120–200 
feet thick and consists of two conglomeratic sandstone 
beds separated by siltstone. Since the fault features of the 
map are obvious, we used this image to verify the pro-
posed method. The detection results are good, stratifica-
tion is clear, and the faults are easily observed, and the 
results are shown in Fig. 7. Compared with other operators, 
the LBP/VAR operator based on guided filtering exhibits 
a better performance both in stratification definition and 
in coaxial discontinuity characterization.

3.5  Comparison of fault detection methods

The coherent body technique is a simple way to detect 
faults; however, it is only suitable for strata with obvious 
reflection characteristics and has certain limitations for 
strata with good continuity [25]. The LBP/VAR operator 

Fig. 5  Results of the actual seismic profile test a Original picture and results obtained by the b coherence operator; c LBP/VAR method; d 
median filtering-LBP/VAR method; e guided filtering-Canny method; and f guided filtering-LBP/VAR method

https://www.veer.com
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Fig. 6  Results of the study area plane test a Original picture and the results obtained by the b coherence operator; c LBP/VAR method; d 
median filtering-LBP/VAR method; e guided filtering-Canny method; and f guided filtering-LBP/VAR method

Fig. 7  Results of the actual 
geological section test: a 
original picture and results 
obtained by the b LBP/VAR 
method; c median filtering-
LBP/VAR method; and d guided 
filtering-LBP/VAR method
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based on median filtering detects faults improves the 
SNR and blurs transverse discontinuities. The Canny 
operator based on guided filtering does not delineate all 
strata and leaves blank areas, which is not conducive to 
fault delineation. Overall, the LBP/VAR operator based on 
guided filtering results in a clearer detection of faults and 
the breakpoint location direction axis fault break. It also 
results in better continuity of non-tectonic faults after pro-
cessing, more continuous phase axes, and preservation of 
structures as well as the simultaneous suppression of the 
effects of noise. Moreover, the proposed method enhances 
the image more clearly, boasts a certain anti-interference 
ability, and can improve horizon and fault interpretation.

4  Conclusions

Fault seismic responses are typically characterized by lat-
eral discontinuities such as in-phase axial displacement or 
interruption of seismic waves. Improper filtering destroys 
the edge of the structure; therefore, it is crucial to preserve 
the structure, while suppressing noise. This study showed 
that the proposed LBP/VAR operator seismic fault detec-
tion method based on guided filtering can control the bal-
ance between noise attenuation and effective signal pres-
ervation as well as effectively detect faults in seismic data.

The results obtained by the proposed method are bet-
ter than those obtained using the coherent operator, LBP/
VAR operator, LBP/VAR operator based on median filtering, 
or Canny operator based on guided filtering. Specifically, 
the proposed method results in a higher SNR, with more 
obvious fault features that are consistent with actual faults, 
and a certain ability to identify small faults. Moreover, the 
operator is robust to noise; thus, the fault detection results 
can provide guidance for fault interpretation. Some input 
parameters (window radius r, and regularization param-
eter ε) are tuned in this paper for specific seismic data-
sets. Providing a general parameter based optimization 
method as input parameters and additional complicated 
fault characteristics will be integrated into the proposed 
fault detection method in future work.
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